|
|
/*++
Copyright (c) 1999-2000 Microsoft Corporation
Module Name:
mdlpool.c
Abstract:
This file contains the implementation of an MDL buffer pool.
Author:
Shaun Cox (shaunco) 21-Oct-1999
--*/
#include "ntddk.h"
#include "mdlpool.h"
typedef PVOID LPVOID; #include "align.h" // Macros: ROUND_UP_POINTER, POINTER_IS_ALIGNED
#define SHOW_DEBUG_OUTPUT 0
#define SCAVENGE_PERIOD_IN_SECONDS 30
#define MINIMUM_PAGE_LIFETIME_IN_SECONDS 20
#define USED_PAGES_SCAVENGE_THRESHOLD 64
#if defined (_WIN64)
#define MAX_CACHE_LINE_SIZE 128
#define BLOCK_TYPE SLIST_HEADER
#else
#define MAX_CACHE_LINE_SIZE 64
#define BLOCK_TYPE PVOID
#endif
// The following structures are used in the single allocation that
// a pool handle points to.
// PoolHandle ---> [POOL_HEADER + CPU_POOL_HEADER for cpu 0 +
// CPU_POOL_HEADER for cpu 1 + ...
// CPU_POOL_HEADER for cpu N]
//
// POOL_HEADER is the data common to all CPUs for a given pool.
//
typedef struct _POOL_HEADER { // cache-line -----
struct _POOL_HEADER_BASE { ULONG Tag; USHORT BufferSize; USHORT MdlsPerPage; PVOID Allocation; }; UCHAR Alignment[MAX_CACHE_LINE_SIZE - (sizeof(struct _POOL_HEADER_BASE) % MAX_CACHE_LINE_SIZE)]; } POOL_HEADER, *PPOOL_HEADER;
C_ASSERT(sizeof(POOL_HEADER) % MAX_CACHE_LINE_SIZE == 0);
// CPU_POOL_HEADER is the data specific to a CPU for a given pool.
//
typedef struct _CPU_POOL_HEADER { // cache-line -----
struct _CPU_POOL_HEADER_BASE { // The doubly-linked list of pages that make up this processor's pool.
// These pages have one or more free MDLs available.
//
LIST_ENTRY PageList;
// The doubly-linked list of pages that are fully in use. This list
// is separate from the above list so that we do not spend time walking
// a very long list during MdpAllocate when many pages are fully used.
//
LIST_ENTRY UsedPageList;
// The next scheduled time (in units of KeQueryTickCount()) for
// scavenging this pool. The next scavenge will happen no earlier
// that this.
//
LARGE_INTEGER NextScavengeTick;
// Count of pages on the used page list.
// If this becomes greater than USED_PAGES_SCAVENGE_THRESHOLD
// and we know we missed a page move during a prior MdpFree,
// we will scavenge during the next MdpAllocate.
//
USHORT PagesOnUsedPageList;
// Set to TRUE during MdpFree if could not move a previously used
// page back to the normal list because the free was done by a
// non-owning processor. Set to FALSE during MdpScavenge.
//
BOOLEAN MissedPageMove;
// The number of the processor that owns this pool.
//
UCHAR OwnerCpu;
ULONG TotalMdlsAllocated; ULONG TotalMdlsFreed; ULONG PeakMdlsInUse; ULONG TotalPagesAllocated; ULONG TotalPagesFreed; ULONG PeakPagesInUse; }; UCHAR Alignment[MAX_CACHE_LINE_SIZE - (sizeof(struct _CPU_POOL_HEADER_BASE) % MAX_CACHE_LINE_SIZE)]; } CPU_POOL_HEADER, *PCPU_POOL_HEADER;
C_ASSERT(sizeof(CPU_POOL_HEADER) % MAX_CACHE_LINE_SIZE == 0);
// PAGE_HEADER is the data at the beginning of each allocated pool page
// that describes the current state of the MDLs on the page.
//
typedef struct _PAGE_HEADER { // cache-line -----
// Back pointer to the owning cpu pool.
//
PCPU_POOL_HEADER Pool;
// Linkage entry for the list of pages managed by the cpu pool.
//
LIST_ENTRY PageLink;
// Number of MDLs built so far on this page. MDLs are built on
// demand. When this number reaches Pool->MdlsPerPage, all MDLs on this
// page have been built.
//
USHORT MdlsBuilt;
// Boolean indicator of whether or not this page is on the cpu pool's
// used-page list. This is checked during MdpFree to see if the page
// should be moved back to the normal page list.
// (it is a USHORT, instead of BOOLEAN, for proper padding)
//
USHORT OnUsedPageList;
// List of free MDLs on this page.
//
SLIST_HEADER FreeList;
// The value of KeQueryTickCount (normalized to units of seconds)
// which represents the time after which this page can be freed back
// to the system's pool. This time is only used once the depth of
// FreeList is Pool->MdlsPerPage. (i.e. this time is only used if
// the page is completely unused.)
//
LARGE_INTEGER LastUsedTick;
} PAGE_HEADER, *PPAGE_HEADER;
// MDLs that we build are always limited to one page and they never
// describe buffers that span a page boundry.
//
#define MDLSIZE sizeof(MDL) + sizeof(PFN_NUMBER)
// Get a pointer to the overall pool given a pointer to one of
// the per-processor pools within it.
//
__inline PPOOL_HEADER PoolFromCpuPool( IN PCPU_POOL_HEADER CpuPool ) { return (PPOOL_HEADER)(CpuPool - CpuPool->OwnerCpu) - 1; }
__inline VOID ConvertSecondsToTicks( IN ULONG Seconds, OUT PLARGE_INTEGER Ticks ) { // If the following assert fires, you need to cast Seconds below to
// ULONGLONG so that 64 bit multiplication and division are used.
// The current code assumes less that 430 seconds so that the
// 32 multiplication below won't overflow.
//
ASSERT(Seconds < 430);
Ticks->HighPart = 0; Ticks->LowPart = (Seconds * 10*1000*1000) / KeQueryTimeIncrement(); }
// Build the next MDL on the specified pool page.
// This can only be called if not all of the MDLs have been built yet.
//
PMDL MdppBuildNextMdl( IN const POOL_HEADER* Pool, IN OUT PPAGE_HEADER Page ) { PMDL Mdl; ULONG BlockSize = ALIGN_UP(MDLSIZE + Pool->BufferSize, BLOCK_TYPE);
ASSERT(Page->MdlsBuilt < Pool->MdlsPerPage); ASSERT((PAGE_SIZE - sizeof(PAGE_HEADER)) / BlockSize == Pool->MdlsPerPage);
Mdl = (PMDL)((PCHAR)(Page + 1) + (Page->MdlsBuilt * BlockSize)); ASSERT(PAGE_ALIGN(Mdl) == Page);
MmInitializeMdl(Mdl, (PCHAR)Mdl + MDLSIZE, Pool->BufferSize); MmBuildMdlForNonPagedPool(Mdl);
ASSERT(MDLSIZE == Mdl->Size); ASSERT(MmGetMdlBaseVa(Mdl) == Page); ASSERT(MmGetMdlByteCount(Mdl) == Pool->BufferSize);
Page->MdlsBuilt++;
return Mdl; }
// Allocate a new pool page and insert it at the head of the specified
// CPU pool. Build the first MDL on the new page and return a pointer
// to it.
//
PMDL MdppAllocateNewPageAndBuildOneMdl( IN const POOL_HEADER* Pool, IN PCPU_POOL_HEADER CpuPool ) { PPAGE_HEADER Page; PMDL Mdl = NULL; ULONG PagesInUse;
ASSERT(Pool);
Page = ExAllocatePoolWithTagPriority(NonPagedPool, PAGE_SIZE, Pool->Tag, NormalPoolPriority); if (Page) { ASSERT(Page == PAGE_ALIGN(Page));
RtlZeroMemory(Page, sizeof(PAGE_HEADER)); Page->Pool = CpuPool; ExInitializeSListHead(&Page->FreeList);
// Insert the page at the head of the cpu's pool.
//
InsertHeadList(&CpuPool->PageList, &Page->PageLink); CpuPool->TotalPagesAllocated++;
// Update the pool's statistics.
//
PagesInUse = CpuPool->TotalPagesAllocated - CpuPool->TotalPagesFreed; if (PagesInUse > CpuPool->PeakPagesInUse) { CpuPool->PeakPagesInUse = PagesInUse; }
Mdl = MdppBuildNextMdl(Pool, Page); ASSERT(Mdl);
#if SHOW_DEBUG_OUTPUT
DbgPrint( "[%d] %c%c%c%c page allocated : Pages(a%4d,u%4d,p%4d), Mdls(a%6d,u%6d,p%6d)\n", CpuPool->OwnerCpu, Pool->Tag, Pool->Tag >> 8, Pool->Tag >> 16, Pool->Tag >> 24, CpuPool->TotalPagesAllocated, CpuPool->TotalPagesAllocated - CpuPool->TotalPagesFreed, CpuPool->PeakPagesInUse, CpuPool->TotalMdlsAllocated, CpuPool->TotalMdlsAllocated - CpuPool->TotalMdlsFreed, CpuPool->PeakMdlsInUse); #endif
}
return Mdl; }
// Free the specified pool page back to the system's pool.
//
VOID MdppFreePage( IN PCPU_POOL_HEADER CpuPool, IN PPAGE_HEADER Page ) { #if SHOW_DEBUG_OUTPUT
ULONG Tag; #endif
ASSERT(Page == PAGE_ALIGN(Page)); ASSERT(Page->Pool == CpuPool);
ExFreePool (Page); CpuPool->TotalPagesFreed++;
ASSERT(CpuPool->TotalPagesFreed <= CpuPool->TotalPagesAllocated);
#if SHOW_DEBUG_OUTPUT
Tag = PoolFromCpuPool(CpuPool)->Tag;
DbgPrint( "[%d] %c%c%c%c page freed : Pages(a%4d,u%4d,p%4d), Mdls(a%6d,u%6d,p%6d)\n", CpuPool->OwnerCpu, Tag, Tag >> 8, Tag >> 16, Tag >> 24, CpuPool->TotalPagesAllocated, CpuPool->TotalPagesAllocated - CpuPool->TotalPagesFreed, CpuPool->PeakPagesInUse, CpuPool->TotalMdlsAllocated, CpuPool->TotalMdlsAllocated - CpuPool->TotalMdlsFreed, CpuPool->PeakMdlsInUse); #endif
}
// Free the specified pool page list back to the system's pool.
//
VOID MdppFreeList( IN PCPU_POOL_HEADER CpuPool, IN PLIST_ENTRY Head ) { PPOOL_HEADER Pool; PPAGE_HEADER Page; PLIST_ENTRY Scan; PLIST_ENTRY Next; BOOLEAN UsedPageList;
Pool = PoolFromCpuPool(CpuPool); UsedPageList = (Head == &CpuPool->UsedPageList);
for (Scan = Head->Flink; Scan != Head; Scan = Next) { Page = CONTAINING_RECORD(Scan, PAGE_HEADER, PageLink); ASSERT(Page == PAGE_ALIGN(Page)); ASSERT(CpuPool == Page->Pool); ASSERT(UsedPageList ? Page->OnUsedPageList : !Page->OnUsedPageList); ASSERT(Page->MdlsBuilt <= Pool->MdlsPerPage); ASSERT(Page->MdlsBuilt == ExQueryDepthSList(&Page->FreeList)); // Step to the next link before we free this page.
//
Next = Scan->Flink; RemoveEntryList(Scan); MdppFreePage(CpuPool, Page); } }
// Reclaim the memory consumed by completely unused pool pages belonging
// to the specified per-processor pool.
//
// Caller IRQL: [DISPATCH_LEVEL]
//
VOID MdppScavengePool( IN OUT PCPU_POOL_HEADER CpuPool ) { PPOOL_HEADER Pool; PPAGE_HEADER Page; PLIST_ENTRY Scan; PLIST_ENTRY Next; LARGE_INTEGER Ticks; LARGE_INTEGER TicksDelta;
// We must not only be at DISPATCH_LEVEL (or higher), we must also
// be called on the processor that owns the specified pool.
//
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL); ASSERT(KeGetCurrentProcessorNumber() == CpuPool->OwnerCpu);
Pool = PoolFromCpuPool(CpuPool);
KeQueryTickCount(&Ticks);
// Compute the next tick value which represents the earliest time
// that we will scavenge this pool again.
//
ConvertSecondsToTicks(SCAVENGE_PERIOD_IN_SECONDS, &TicksDelta); CpuPool->NextScavengeTick.QuadPart = Ticks.QuadPart + TicksDelta.QuadPart;
// Compute the tick value which represents the last point at which
// its okay to free a page.
//
ConvertSecondsToTicks(MINIMUM_PAGE_LIFETIME_IN_SECONDS, &TicksDelta); Ticks.QuadPart = Ticks.QuadPart - TicksDelta.QuadPart;
for (Scan = CpuPool->PageList.Flink; Scan != &CpuPool->PageList; Scan = Next) { Page = CONTAINING_RECORD(Scan, PAGE_HEADER, PageLink); ASSERT(Page == PAGE_ALIGN(Page)); ASSERT(CpuPool == Page->Pool); ASSERT(!Page->OnUsedPageList);
// Step to the next link before we possibly unlink this page.
//
Next = Scan->Flink;
if ((Pool->MdlsPerPage == ExQueryDepthSList(&Page->FreeList)) && (Ticks.QuadPart > Page->LastUsedTick.QuadPart)) { RemoveEntryList(Scan);
MdppFreePage(CpuPool, Page); } }
// Scan the used pages to see if they can be moved back to the normal
// list. This can happen if too many frees by non-owning processors
// are done. In that case, the pages get orphaned on the used-page
// list after all of their MDLs have been freed to the page. Un-orphan
// them here.
//
for (Scan = CpuPool->UsedPageList.Flink; Scan != &CpuPool->UsedPageList; Scan = Next) { Page = CONTAINING_RECORD(Scan, PAGE_HEADER, PageLink); ASSERT(Page == PAGE_ALIGN(Page)); ASSERT(CpuPool == Page->Pool); ASSERT(Page->OnUsedPageList);
// Step to the next link before we possibly unlink this page.
//
Next = Scan->Flink;
if (0 != ExQueryDepthSList(&Page->FreeList)) { RemoveEntryList(Scan); Page->OnUsedPageList = FALSE; InsertTailList(&CpuPool->PageList, Scan); CpuPool->PagesOnUsedPageList--;
#if SHOW_DEBUG_OUTPUT
DbgPrint( "[%d] %c%c%c%c page moved off of used-page list during scavenge\n", CpuPool->OwnerCpu, Pool->Tag, Pool->Tag >> 8, Pool->Tag >> 16, Pool->Tag >> 24); #endif
} }
// Reset our indicator of a missed page move now that we've scavenged.
//
CpuPool->MissedPageMove = FALSE; }
// Creates a pool of MDLs built over non-paged pool. Each MDL describes
// a buffer that is BufferSize bytes long. If NULL is not returned,
// MdpDestroyPool should be called at a later time to reclaim the
// resources used by the pool.
//
// Arguments:
// BufferSize - The size, in bytes, of the buffer that each MDL
// should describe.
// Tag - The pool tag to be used internally for calls to
// ExAllocatePoolWithTag. This allows callers to track
// memory consumption for different pools.
//
// Returns the handle used to identify the pool.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
HANDLE MdpCreatePool( IN USHORT BufferSize, IN ULONG Tag ) { SIZE_T Size; PVOID Allocation; PPOOL_HEADER Pool = NULL; PCPU_POOL_HEADER CpuPool; USHORT BlockSize; CCHAR NumberCpus = KeNumberProcessors; CCHAR i;
ASSERT(BufferSize);
// Compute the size of our pool header allocation.
// Add padding to ensure that the pool header can begin on a cache line.
//
Size = sizeof(POOL_HEADER) + (sizeof(CPU_POOL_HEADER) * NumberCpus) + (MAX_CACHE_LINE_SIZE - MEMORY_ALLOCATION_ALIGNMENT);
// Allocate the pool header.
//
Allocation = ExAllocatePoolWithTag(NonPagedPool, Size, ' pdM'); if (Allocation) { ASSERT(POINTER_IS_ALIGNED(Allocation, MEMORY_ALLOCATION_ALIGNMENT)); RtlZeroMemory(Allocation, Size); Pool = ROUND_UP_POINTER(Allocation, MAX_CACHE_LINE_SIZE); BlockSize = (USHORT)ALIGN_UP(MDLSIZE + BufferSize, BLOCK_TYPE);
// Initialize the pool header fields.
//
Pool->Tag = Tag; Pool->BufferSize = BufferSize; Pool->MdlsPerPage = (PAGE_SIZE - sizeof(PAGE_HEADER)) / BlockSize; Pool->Allocation = Allocation; // Initialize the per-cpu pool headers.
//
CpuPool = (PCPU_POOL_HEADER)(Pool + 1);
for (i = 0; i < NumberCpus; i++) { InitializeListHead(&CpuPool[i].PageList); InitializeListHead(&CpuPool[i].UsedPageList); CpuPool[i].OwnerCpu = i; } }
return Pool; }
// Destroys a pool of MDLs previously created by a call to MdpCreatePool.
//
// Arguments:
// Pool - Handle which identifies the pool being destroyed.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
VOID MdpDestroyPool( IN HANDLE PoolHandle ) { PPOOL_HEADER Pool; PCPU_POOL_HEADER CpuPool; CCHAR NumberCpus = KeNumberProcessors; CCHAR i;
ASSERT(PoolHandle);
Pool = (PPOOL_HEADER)PoolHandle; if (!Pool) { return; }
for (i = 0, CpuPool = (PCPU_POOL_HEADER)(Pool + 1); i < NumberCpus; i++, CpuPool++) { ASSERT(CpuPool->OwnerCpu == (ULONG)i);
MdppFreeList(CpuPool, &CpuPool->PageList); MdppFreeList(CpuPool, &CpuPool->UsedPageList);
ASSERT(CpuPool->TotalPagesAllocated == CpuPool->TotalPagesFreed); ASSERT(CpuPool->TotalMdlsAllocated == CpuPool->TotalMdlsFreed); }
ASSERT(Pool == ROUND_UP_POINTER(Pool->Allocation, MAX_CACHE_LINE_SIZE)); ExFreePool(Pool->Allocation); }
// Returns an MDL allocated from a pool. NULL is returned if the
// request could not be granted.
//
// Arguments:
// PoolHandle - Handle which identifies the pool being allocated from.
// Buffer - Address to receive the pointer to the underlying mapped buffer
// described by the MDL.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
PMDL MdpAllocate( IN HANDLE PoolHandle, OUT PVOID* Buffer ) { KIRQL OldIrql; PMDL Mdl;
OldIrql = KeRaiseIrqlToDpcLevel();
Mdl = MdpAllocateAtDpcLevel(PoolHandle, Buffer);
KeLowerIrql(OldIrql);
return Mdl; }
// Returns an MDL allocated from a pool. NULL is returned if the
// request could not be granted.
//
// Arguments:
// PoolHandle - Handle which identifies the pool being allocated from.
// Buffer - Address to receive the pointer to the underlying mapped buffer
// described by the MDL.
//
// Caller IRQL: [DISPATCH_LEVEL]
//
PMDL MdpAllocateAtDpcLevel( IN HANDLE PoolHandle, OUT PVOID* Buffer ) { PPOOL_HEADER Pool; PCPU_POOL_HEADER CpuPool; PPAGE_HEADER Page; PSLIST_ENTRY MdlLink; PMDL Mdl = NULL; ULONG Cpu; LARGE_INTEGER Ticks;
#if DBG
ASSERT(PoolHandle); ASSERT(Buffer); ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL); #endif
*Buffer = NULL;
Pool = (PPOOL_HEADER)PoolHandle; Cpu = KeGetCurrentProcessorNumber(); CpuPool = (PCPU_POOL_HEADER)(Pool + 1) + Cpu;
// If we know we've had frees by non-owning processors and there
// are more than USED_PAGES_SCAVENGE_THRESHOLD pages on the used
// page list, it is time to scavenge. This is common in situations
// where the buffer size is very large causing there to be just a few
// MDLs per page. Pages get used up quickly and if non-owning frees
// are prevalent, the used page list can get very big even in
// the normal scavenge period.
//
if (CpuPool->MissedPageMove && (CpuPool->PagesOnUsedPageList > USED_PAGES_SCAVENGE_THRESHOLD)) { #if SHOW_DEBUG_OUTPUT
DbgPrint( "[%d] %c%c%c%c Scavenging because of excessive used pages.\n", CpuPool->OwnerCpu, Pool->Tag, Pool->Tag >> 8, Pool->Tag >> 16, Pool->Tag >> 24); #endif
MdppScavengePool(CpuPool); } else { // See if the minimum time has passed since we last scavenged
// the pool. If it has, we'll scavenge again. Normally, scavenging
// should only be performed when we free. However, for the case when
// the caller constantly frees on a non-owning processor, we'll
// take this chance to do the scavenging.
//
KeQueryTickCount(&Ticks); if (Ticks.QuadPart > CpuPool->NextScavengeTick.QuadPart) { MdppScavengePool(CpuPool); } }
if (!IsListEmpty(&CpuPool->PageList)) { Page = CONTAINING_RECORD(CpuPool->PageList.Flink, PAGE_HEADER, PageLink); ASSERT(Page == PAGE_ALIGN(Page)); ASSERT(CpuPool == Page->Pool); ASSERT(!Page->OnUsedPageList);
MdlLink = InterlockedPopEntrySList(&Page->FreeList); if (MdlLink) { Mdl = CONTAINING_RECORD(MdlLink, MDL, Next); } else { // If there were no MDLs on this page's free list, it had better
// mean we haven't yet built all of the MDLs on the page.
// (Otherwise, what is a fully used page doing on the page list
// and not on the used-page list?)
//
ASSERT(Page->MdlsBuilt < Pool->MdlsPerPage);
Mdl = MdppBuildNextMdl(Pool, Page); ASSERT(Mdl); }
if ((Page != PAGE_ALIGN(Page)) || (CpuPool != Page->Pool) || Page->OnUsedPageList || (PAGE_ALIGN(Mdl) != Page)) { KeBugCheckEx(BAD_POOL_CALLER, 2, (ULONG_PTR)Mdl, (ULONG_PTR)Page, (ULONG_PTR)CpuPool); }
// Got an MDL. Now check to see if it was the last one on a fully
// built page. If so, move the page to the used-page list.
//
if ((0 == ExQueryDepthSList(&Page->FreeList)) && (Page->MdlsBuilt == Pool->MdlsPerPage)) { PLIST_ENTRY PageLink; PageLink = RemoveHeadList(&CpuPool->PageList); InsertTailList(&CpuPool->UsedPageList, PageLink); Page->OnUsedPageList = TRUE; CpuPool->PagesOnUsedPageList++;
ASSERT(Page == CONTAINING_RECORD(PageLink, PAGE_HEADER, PageLink));
#if SHOW_DEBUG_OUTPUT
DbgPrint( "[%d] %c%c%c%c page moved to used-page list\n", CpuPool->OwnerCpu, Pool->Tag, Pool->Tag >> 8, Pool->Tag >> 16, Pool->Tag >> 24); #endif
}
ASSERT(Mdl); goto GotAnMdl; } else { // The page list is empty so we have to allocate and add a new page.
//
Mdl = MdppAllocateNewPageAndBuildOneMdl(Pool, CpuPool); }
// If we are returning an MDL, update the statistics.
//
if (Mdl) { ULONG MdlsInUse; GotAnMdl:
CpuPool->TotalMdlsAllocated++;
MdlsInUse = CpuPool->TotalMdlsAllocated - CpuPool->TotalMdlsFreed; if (MdlsInUse > CpuPool->PeakMdlsInUse) { CpuPool->PeakMdlsInUse = MdlsInUse; }
// Don't give anyone ideas about where this might point. I don't
// want anyone trashing my pool because they thought this field
// was valid for some reason.
//
Mdl->Next = NULL;
// Reset the length of the buffer described by the MDL. This is
// a convienence to callers who sometimes adjust this length while
// using the MDL, but who expect it to be reset on subsequent MDL
// allocations.
//
Mdl->ByteCount = Pool->BufferSize;
ASSERT(Mdl->MdlFlags & MDL_SOURCE_IS_NONPAGED_POOL); *Buffer = Mdl->MappedSystemVa; }
return Mdl; }
// Free an MDL to the pool from which it was allocated.
//
// Arguments:
// Mdl - An Mdl returned from a prior call to MdpAllocate.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
VOID MdpFree( IN PMDL Mdl ) { PPAGE_HEADER Page; PCPU_POOL_HEADER CpuPool; PPOOL_HEADER Pool; LARGE_INTEGER Ticks; LOGICAL PageIsOnUsedPageList; LOGICAL Scavenge = FALSE;
ASSERT(Mdl);
// Get the address of the page that this MDL maps. This is where
// our page header is stored.
//
Page = PAGE_ALIGN(Mdl);
// Follow the back pointer in the page header to locate the owning
// cpu's pool.
//
CpuPool = Page->Pool;
// Locate the pool header.
//
Pool = PoolFromCpuPool(CpuPool);
//#if DBG
// If someone changed the MDL to point to there own buffer,
// or otherwise corrupted it, we'll stop here and let them know.
//
if ((MmGetMdlBaseVa(Mdl) != Page) || (MDLSIZE != Mdl->Size) || ((ULONG_PTR)Mdl->MappedSystemVa != (ULONG_PTR)Mdl + MDLSIZE) || (MmGetMdlVirtualAddress(Mdl) != Mdl->MappedSystemVa)) { KeBugCheckEx(BAD_POOL_CALLER, 3, (ULONG_PTR)Mdl, (ULONG_PTR)CpuPool, (ULONG_PTR)Pool); } //#endif
// See if the minimum time has passed since we last scavenged
// the pool. If it has, we'll scavenge again.
//
KeQueryTickCount(&Ticks); if (Ticks.QuadPart > CpuPool->NextScavengeTick.QuadPart) { Scavenge = TRUE; }
// Note the tick that this page was last used. If this is the last MDL to
// be returned to this page, this sets the minimum time that this page will
// continue to live unless it gets re-used.
//
Page->LastUsedTick.QuadPart = Ticks.QuadPart;
// If this page is on the used-page list, we'll put it back on the normal
// page list (only after pushing the MDL back on the page's free list)
// if, after raising IRQL, we are on the processor that owns this
// pool.
//
PageIsOnUsedPageList = Page->OnUsedPageList;
InterlockedIncrement(&CpuPool->TotalMdlsFreed);
// Now return the MDL to the page's free list.
//
InterlockedPushEntrySList(&Page->FreeList, (PSLIST_ENTRY)&Mdl->Next);
//
// Warning: Now that the MDL is back on the page, one cannot *reliably*
// dereference anything through 'Page' anymore. It may have just been
// scavenged by its owning processor and subsequently freed. This is a
// particularly rare condition given that MINIMUM_PAGE_LIFETIME_IN_SECONDS
// is 20s, so we choose to live with it. The alternative would be to walk
// the UsedPageList whenever PageIsOnUsedPageList is true, making the
// MdpFree operation potentially expensive. We saved off the value of
// Page->OnUsedPageList before returning the MDL so we would not risk
// touching Page to get this value only to find that it was false.
//
// If we need to move the page from the used-page list to the normal
// page list, or if we need to scavenge, we need to be at DISPATCH_LEVEL
// and be executing on the processor that owns this pool.
// Find out if the CPU we are executing on right now owns this pool.
// Note that if we are running at PASSIVE_LEVEL, the current CPU may
// change over the duration of this function call, so this value is
// not absolute over the life of the function.
//
if ((PageIsOnUsedPageList || Scavenge) && (KeGetCurrentProcessorNumber() == CpuPool->OwnerCpu)) { KIRQL OldIrql;
OldIrql = KeRaiseIrqlToDpcLevel();
// Now that we are at DISPATCH_LEVEL, perform the work if we are still
// executing on the processor that owns the pool.
//
if (KeGetCurrentProcessorNumber() == CpuPool->OwnerCpu) { // If the page is still on the used-page list (meaning another
// MdpFree didn't just sneak by) and still has a free MDL (for
// instance, an MdpAllocate might sneak in on its owning processor,
// scavenge the page, and allocate the MDL we just freed; thereby
// putting it back on the used-page list), then put the page on the
// normal list. Very important to do this after (not before)
// returning the MDL to the free list because MdpAllocate expects
// MDL's to be available from pages on the page list.
//
if (PageIsOnUsedPageList && Page->OnUsedPageList && (0 != ExQueryDepthSList(&Page->FreeList))) { RemoveEntryList(&Page->PageLink); Page->OnUsedPageList = FALSE; InsertTailList(&CpuPool->PageList, &Page->PageLink); CpuPool->PagesOnUsedPageList--;
PageIsOnUsedPageList = FALSE;
#if SHOW_DEBUG_OUTPUT
DbgPrint( "[%d] %c%c%c%c page moved off of used-page list\n", CpuPool->OwnerCpu, Pool->Tag, Pool->Tag >> 8, Pool->Tag >> 16, Pool->Tag >> 24); #endif
}
// Perform the scavenge if we previously noted we needed to do so.
//
if (Scavenge) { MdppScavengePool(CpuPool); } }
KeLowerIrql(OldIrql); }
// If we missed being able to put this page back on the normal list.
// note it.
//
if (PageIsOnUsedPageList) { CpuPool->MissedPageMove = TRUE; } }
|