|
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil -*- (for GNU Emacs)
//
// Copyright (c) 1985-2000 Microsoft Corporation
//
// This file is part of the Microsoft Research IPv6 Network Protocol Stack.
// You should have received a copy of the Microsoft End-User License Agreement
// for this software along with this release; see the file "license.txt".
// If not, please see http://www.research.microsoft.com/msripv6/license.htm,
// or write to Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399.
//
// Abstract:
//
// Common transport layer address object handling code.
//
// This file contains the TDI address object related procedures,
// including TDI open address, TDI close address, etc.
//
// The local address objects are stored in a hash table, protected
// by the AddrObjTableLock. In order to insert or delete from the
// hash table this lock must be held, as well as the address object
// lock. The table lock must always be taken before the object lock.
//
#include "oscfg.h"
#include "ndis.h"
#include "tdi.h"
#include "tdistat.h"
#include "ip6imp.h"
#include "ip6def.h"
#include "route.h"
#include "mld.h"
#include "tdint.h"
#include "tdistat.h"
#include "queue.h"
#include "transprt.h"
#include "addr.h"
#include "udp.h"
#include "raw.h"
#ifndef UDP_ONLY
#include "tcp.h"
#include "tcpconn.h"
#include "tcpdeliv.h"
#else
#include "tcpdeb.h"
#endif
#include "info.h"
#include "tcpcfg.h"
#include "ntddip6.h" // included only to get the common socket -> kernel interface structures.
extern KSPIN_LOCK DGSendReqLock;
// Addess object hash table.
uint AddrObjTableSize; AddrObj **AddrObjTable; AddrObj *LastAO; // one element lookup cache.
KSPIN_LOCK AddrObjTableLock; KMUTEX AddrSDMutex; #define AO_HASH(a, p) (((a).u.Word[7] + (uint)(p)) % AddrObjTableSize)
ushort NextUserPort = MIN_USER_PORT;
RTL_BITMAP PortBitmapTcp; RTL_BITMAP PortBitmapUdp; ulong PortBitmapBufferTcp[(1 << 16) / (sizeof(ulong) * 8)]; ulong PortBitmapBufferUdp[(1 << 16) / (sizeof(ulong) * 8)];
//
// All of the init code can be discarded.
//
#ifdef ALLOC_PRAGMA
int InitAddr();
#pragma alloc_text(INIT, InitAddr)
#endif // ALLOC_PRAGMA
//* ReadNextAO - Read the next AddrObj in the table.
//
// Called to read the next AddrObj in the table. The needed information
// is derived from the incoming context, which is assumed to be valid.
// We'll copy the information, and then update the context value with
// the next AddrObj to be read.
//
uint // Returns: TRUE if more data is available to be read, FALSE is not.
ReadNextAO( void *Context, // Pointer to a UDPContext.
void *Buffer) // Pointer to a UDP6ListenerEntry structure.
{ UDPContext *UContext = (UDPContext *)Context; UDP6ListenerEntry *UEntry = (UDP6ListenerEntry *)Buffer; AddrObj *CurrentAO; uint i;
CurrentAO = UContext->uc_ao; CHECK_STRUCT(CurrentAO, ao);
UEntry->ule_localaddr = CurrentAO->ao_addr; UEntry->ule_localscopeid = CurrentAO->ao_scope_id; UEntry->ule_localport = CurrentAO->ao_port; UEntry->ule_owningpid = CurrentAO->ao_owningpid;
// We've filled it in. Now update the context.
CurrentAO = CurrentAO->ao_next; if (CurrentAO != NULL && CurrentAO->ao_prot == IP_PROTOCOL_UDP) { UContext->uc_ao = CurrentAO; return TRUE; } else { // The next AO is NULL, or not a UDP AO. Loop through the AddrObjTable
// looking for a new one.
i = UContext->uc_index;
for (;;) { while (CurrentAO != NULL) { if (CurrentAO->ao_prot == IP_PROTOCOL_UDP) break; else CurrentAO = CurrentAO->ao_next; }
if (CurrentAO != NULL) break; // Get out of for (;;) loop.
ASSERT(CurrentAO == NULL);
// Didn't find one on this chain. Walk down the table, looking
// for the next one.
while (++i < AddrObjTableSize) { if (AddrObjTable[i] != NULL) { CurrentAO = AddrObjTable[i]; break; // Out of while loop.
} }
if (i == AddrObjTableSize) break; // Out of for (;;) loop.
}
// If we found one, return it.
if (CurrentAO != NULL) { UContext->uc_ao = CurrentAO; UContext->uc_index = i; return TRUE; } else { UContext->uc_index = 0; UContext->uc_ao = NULL; return FALSE; } } }
//* ValidateAOContext - Validate the context for reading the AddrObj table.
//
// Called to start reading the AddrObj table sequentially. We take in
// a context, and if the values are 0 we return information about the
// first AddrObj in the table. Otherwise we make sure that the context value
// is valid, and if it is we return TRUE.
// We assume the caller holds the AddrObjTable lock.
//
uint // Returns: TRUE if data in table, FALSE if not.
ValidateAOContext( void *Context, // Pointer to a UDPContext.
uint *Valid) // Pointer to value to set to true if context is valid.
{ UDPContext *UContext = (UDPContext *)Context; uint i; AddrObj *TargetAO; AddrObj *CurrentAO;
i = UContext->uc_index; TargetAO = UContext->uc_ao;
// If the context values are 0 and NULL, we're starting from the beginning.
if (i == 0 && TargetAO == NULL) { *Valid = TRUE; do { if ((CurrentAO = AddrObjTable[i]) != NULL) { CHECK_STRUCT(CurrentAO, ao); while (CurrentAO != NULL && CurrentAO->ao_prot != IP_PROTOCOL_UDP) CurrentAO = CurrentAO->ao_next;
if (CurrentAO != NULL) break; } i++; } while (i < AddrObjTableSize);
if (CurrentAO != NULL) { UContext->uc_index = i; UContext->uc_ao = CurrentAO; return TRUE; } else return FALSE;
} else {
// We've been given a context. We just need to make sure that it's
// valid.
if (i < AddrObjTableSize) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { if (CurrentAO == TargetAO) { if (CurrentAO->ao_prot == IP_PROTOCOL_UDP) { *Valid = TRUE; return TRUE; } break; } else { CurrentAO = CurrentAO->ao_next; } } }
// If we get here, we didn't find the matching AddrObj.
*Valid = FALSE; return FALSE; } }
//* FindIfIndexOnAO - Find an interface index in an address-object's list.
//
// This routine is called to determine whether a given interface index
// appears in the list of interfaces with which the given address-object
// is associated.
//
// The routine is called from 'GetAddrObj' with the table lock held
// but with the object lock not held. We take the object lock to look at
// its interface list, and release the lock before returning control.
//
uint // Returns: The index if found, or 0 if none.
FindIfIndexOnAO( AddrObj *AO, // Address object to be searched.
Interface *IF) // The interface to be found.
{ uint *IfList; KIRQL Irql;
KeAcquireSpinLock(&AO->ao_lock, &Irql); if ((IfList = AO->ao_iflist) != NULL) { while (*IfList) { if (*IfList == IF->Index) { KeReleaseSpinLock(&AO->ao_lock, Irql); return IF->Index; } IfList++; } } KeReleaseSpinLock(&AO->ao_lock, Irql);
//
// If an interface list was present and the interface was not found,
// return zero. Otherwise, if no interface list was present there is no
// restriction on the object, so return the interface index as though the
// interface appeared in the list.
//
return IfList ? 0 : IF->Index; }
//* GetAddrObj - Find a local address object.
//
// This is the local address object lookup routine. We take as input the
// local address and port and a pointer to a 'previous' address object.
// The hash table entries in each bucket are sorted in order of increasing
// address, and we skip over any object that has an address lower than the
// 'previous' address. To get the first address object, pass in a previous
// value of NULL.
//
// We assume that the table lock is held while we're in this routine. We
// don't take each object lock, since the local address and port can't change
// while the entry is in the table and the table lock is held so nothing can
// be inserted or deleted.
//
AddrObj * // Returns: A pointer to the Address object, or NULL if none.
GetAddrObj( IPv6Addr *LocalAddr, // Local IP address of object to find (may be NULL).
IPv6Addr *RemoteAddr, // Remote IP address to check against (may be NULL
// if IF is also NULL).
uint LocalScopeId, // Scope identifier for local IP address.
ushort LocalPort, // Local port of object to find.
uchar Protocol, // Protocol to find address.
AddrObj *PreviousAO, // Pointer to last address object found.
Interface *IF) // Interface to find in interface list (may be NULL).
{ AddrObj *CurrentAO; // Current address object we're examining.
#if DBG
if (PreviousAO != NULL) CHECK_STRUCT(PreviousAO, ao); #endif
#if 0
//
// Check our 1-element cache for a match.
//
if ((PreviousAO == NULL) && (LastAO != NULL)) { CHECK_STRUCT(LastAO, ao); if ((LastAO->ao_prot == Protocol) && IP6_ADDR_EQUAL(LastAO->ao_addr, LocalAddr) && (LastAO->ao_port == LocalPort)) { return LastAO; } } #endif
// Find the appropriate bucket in the hash table, and search for a match.
// If we don't find one the first time through, we'll try again with a
// wildcard local address.
for (;;) {
CurrentAO = AddrObjTable[AO_HASH(*LocalAddr, LocalPort)];
// While we haven't hit the end of the list, examine each element.
while (CurrentAO != NULL) {
CHECK_STRUCT(CurrentAO, ao);
// If the current one is greater than one we were given, check it.
if (CurrentAO > PreviousAO) { if (!(CurrentAO->ao_flags & AO_RAW_FLAG)) { //
// This is an ordinary (non-raw) socket.
// Only match if we meet all the criteria.
//
if (IP6_ADDR_EQUAL(&CurrentAO->ao_addr, LocalAddr) && (CurrentAO->ao_scope_id == LocalScopeId) && (CurrentAO->ao_port == LocalPort) && (CurrentAO->ao_prot == Protocol)) {
if ((IF == NULL) || DoesAOAllowPacket(CurrentAO, IF, RemoteAddr)) { // Found a match. Update cache and return.
LastAO = CurrentAO; return CurrentAO; } } } else { //
// This is a raw socket.
//
if ((Protocol != IP_PROTOCOL_UDP) #ifndef UDP_ONLY
&& (Protocol != IP_PROTOCOL_TCP) #endif
) { IF_TCPDBG(TCP_DEBUG_RAW) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_TCPDBG, "matching <p, a> <%u, %lx> ao %lx <%u, %lx>\n", Protocol, LocalAddr, CurrentAO, CurrentAO->ao_prot, CurrentAO->ao_addr)); }
if (IP6_ADDR_EQUAL(&CurrentAO->ao_addr, LocalAddr) && (CurrentAO->ao_scope_id == LocalScopeId) && ((CurrentAO->ao_prot == Protocol) || (CurrentAO->ao_prot == 0))) {
if ((IF == NULL) || DoesAOAllowPacket(CurrentAO, IF, RemoteAddr)) { // Found a match. Update cache and return.
LastAO = CurrentAO; return CurrentAO; } } } } }
// Either it was less than the previous one, or they didn't match.
// Keep searching in this bucket.
CurrentAO = CurrentAO->ao_next; }
//
// When we get here, we've hit the end of the list we were examining.
// If we weren't examining a wildcard address, look for a wild card
// address.
//
if (!IP6_ADDR_EQUAL(LocalAddr, &UnspecifiedAddr)) { LocalAddr = &UnspecifiedAddr; LocalScopeId = 0; PreviousAO = NULL; } else return NULL; // We looked for a wildcard and couldn't find
// one, so fail.
} }
//* GetNextAddrObj - Get the next address object in a sequential search.
//
// This is the 'get next' routine, called when we are reading the address
// object table sequentially. We pull the appropriate parameters from the
// search context, call GetAddrObj, and update the search context with what
// we find. This routine assumes the AddrObjTableLock is held by the caller.
//
AddrObj * // Returns: Pointer to AddrObj, or NULL if search failed.
GetNextAddrObj( AOSearchContext *SearchContext) // Context for search taking place.
{ AddrObj *FoundAO; // Pointer to the address object we found.
ASSERT(SearchContext != NULL);
// Try and find a match.
FoundAO = GetAddrObj(&SearchContext->asc_local_addr, &SearchContext->asc_remote_addr, SearchContext->asc_scope_id, SearchContext->asc_port, SearchContext->asc_prot, SearchContext->asc_previous, SearchContext->asc_interface);
// Found a match. Update the search context for next time.
if (FoundAO != NULL) { SearchContext->asc_previous = FoundAO; SearchContext->asc_local_addr = FoundAO->ao_addr; SearchContext->asc_scope_id = FoundAO->ao_scope_id; // Don't bother to update port or protocol, they don't change.
} return FoundAO; }
//* GetFirstAddrObj - Get the first matching address object.
//
// The routine called to start a sequential read of the AddrObj table. We
// initialize the provided search context and then call GetNextAddrObj to do
// the actual read. We assume the AddrObjTableLock is held by the caller.
//
AddrObj * // Returns: Pointer to AO found, or NULL if we couldn't find any.
GetFirstAddrObj( IPv6Addr *LocalAddr, // Local IP address of object to be found.
IPv6Addr *RemoteAddr, // Remote IP address to check against.
uint LocalScopeId, // Scope identifier for local IP address.
ushort LocalPort, // Local port of object to be found.
uchar Protocol, // Protocol of object to be found.
Interface *IF, // Interface to check against.
AOSearchContext *SearchContext) // Context to be used during search.
{ ASSERT(SearchContext != NULL);
// Fill in the search context.
SearchContext->asc_previous = NULL; // Haven't found one yet.
SearchContext->asc_local_addr = *LocalAddr; SearchContext->asc_remote_addr = *RemoteAddr; SearchContext->asc_scope_id = LocalScopeId; SearchContext->asc_port = LocalPort; SearchContext->asc_prot = Protocol; SearchContext->asc_interface = IF; return GetNextAddrObj(SearchContext); }
//* InsertAddrObj - Insert an address object into the AddrObj table.
//
// Called to insert an AO into the table, assuming the table lock is held.
// We hash on the addr and port, and then insert in into the correct place
// (sorted by address of the objects).
//
void // Returns: Nothing.
InsertAddrObj( AddrObj *NewAO) // Pointer to AddrObj to be inserted.
{ AddrObj *PrevAO; // Pointer to previous address object in hash chain.
AddrObj *CurrentAO; // Pointer to current AO in table.
CHECK_STRUCT(NewAO, ao);
PrevAO = CONTAINING_RECORD(&AddrObjTable[AO_HASH(NewAO->ao_addr, NewAO->ao_port)], AddrObj, ao_next); CurrentAO = PrevAO->ao_next;
// Loop through the chain until we hit the end or until we find an entry
// whose address is greater than ours.
while (CurrentAO != NULL) {
CHECK_STRUCT(CurrentAO, ao); ASSERT(CurrentAO != NewAO); // Debug check to make sure we aren't
// inserting the same entry.
if (NewAO < CurrentAO) break; PrevAO = CurrentAO; CurrentAO = CurrentAO->ao_next; }
// At this point, PrevAO points to the AO before the new one. Insert it
// there.
ASSERT(PrevAO != NULL); ASSERT(PrevAO->ao_next == CurrentAO);
NewAO->ao_next = CurrentAO; PrevAO->ao_next = NewAO; if (NewAO->ao_prot == IP_PROTOCOL_UDP) UStats.us_numaddrs++; }
//* RemoveAddrObj - Remove an address object from the table.
//
// Called when we need to remove an address object from the table. We hash on
// the addr and port, then walk the table looking for the object. We assume
// that the table lock is held.
//
// The AddrObj may have already been removed from the table if it was
// invalidated for some reason, so we need to check for the case of not
// finding it.
//
void // Returns: Nothing.
RemoveAddrObj( AddrObj *RemovedAO) // AddrObj to delete.
{ AddrObj *PrevAO; // Pointer to previous address object in hash chain.
AddrObj *CurrentAO; // Pointer to current AO in table.
CHECK_STRUCT(RemovedAO, ao);
PrevAO = CONTAINING_RECORD(&AddrObjTable[AO_HASH(RemovedAO->ao_addr, RemovedAO->ao_port)], AddrObj, ao_next); CurrentAO = PrevAO->ao_next;
// Walk the table, looking for a match.
while (CurrentAO != NULL) { CHECK_STRUCT(CurrentAO, ao);
if (CurrentAO == RemovedAO) { PrevAO->ao_next = CurrentAO->ao_next; if (CurrentAO->ao_prot == IP_PROTOCOL_UDP) { UStats.us_numaddrs--; } if (CurrentAO == LastAO) { LastAO = NULL; } return; } else { PrevAO = CurrentAO; CurrentAO = CurrentAO->ao_next; } }
//
// If we get here, we didn't find him. This is OK, but we should say
// something about it.
//
KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_RARE, "RemoveAddrObj: Object not found.\n")); }
//* FindAnyAddrObj - Find an AO with matching port on any local address.
//
// Called for wildcard address opens. We go through the entire addrobj table,
// and see if anyone has the specified port. We assume that the lock is
// already held on the table.
//
AddrObj * // Returns: Pointer to AO found, or NULL is noone has it.
FindAnyAddrObj( ushort Port, // Port to be looked for.
uchar Protocol) // Protocol on which to look.
{ uint i; // Index variable.
AddrObj *CurrentAO; // Current AddrObj being examined.
for (i = 0; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { CHECK_STRUCT(CurrentAO, ao);
if (CurrentAO->ao_port == Port && CurrentAO->ao_prot == Protocol) return CurrentAO; else CurrentAO = CurrentAO->ao_next; } }
return NULL; }
//* RebuildAddrObjBitmap - reconstruct the address-object bitmap from scratch.
//
// Called when we need to reconcile the contents of our lookaside bitmap
// with the actual contents of the address-object table. We clear the bitmap,
// then scan the address-object table and mark each entry's bit as 'in-use'.
// Assumes the caller holds the AddrObjTableLock.
//
// Input: nothing.
//
// Return: nothing.
//
void RebuildAddrObjBitmap(void) { uint i; AddrObj* CurrentAO;
RtlClearAllBits(&PortBitmapTcp); RtlClearAllBits(&PortBitmapUdp);
for (i = 0; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { CHECK_STRUCT(CurrentAO, ao);
if (CurrentAO->ao_prot == IP_PROTOCOL_TCP) { RtlSetBit(&PortBitmapTcp, net_short(CurrentAO->ao_port)); } else if (CurrentAO->ao_prot == IP_PROTOCOL_UDP) { RtlSetBit(&PortBitmapUdp, net_short(CurrentAO->ao_port)); } CurrentAO = CurrentAO->ao_next; } } }
//* GetAddress - Get an IP address and port from a TDI address structure.
//
// Called when we need to get our addressing information from a TDI
// address structure. We go through the structure, and return what we
// find.
//
uchar // Return: TRUE if we find an address, FALSE if we don't.
GetAddress( TRANSPORT_ADDRESS UNALIGNED *AddrList, // Pointer to structure to search.
IPv6Addr *Addr, // Where to return IP address.
ulong *ScopeId, // Where to return address scope.
ushort *Port) // Where to return Port.
{ int i; // Index variable.
TA_ADDRESS *CurrentAddr; // Address we're examining and may use.
// First, verify that someplace in Address is an address we can use.
CurrentAddr = (TA_ADDRESS *) AddrList->Address;
for (i = 0; i < AddrList->TAAddressCount; i++) { if (CurrentAddr->AddressType == TDI_ADDRESS_TYPE_IP6) { if (CurrentAddr->AddressLength >= TDI_ADDRESS_LENGTH_IP6) { //
// It's an IPv6 address. Pull out the values.
//
TDI_ADDRESS_IP6 UNALIGNED *ValidAddr = (TDI_ADDRESS_IP6 UNALIGNED *)CurrentAddr->Address;
*Port = ValidAddr->sin6_port; RtlCopyMemory(Addr, ValidAddr->sin6_addr, sizeof(IPv6Addr)); *ScopeId = ValidAddr->sin6_scope_id; return TRUE; } else return FALSE; // Wrong length for address.
} else { //
// Wrong address type. Skip over it to next one in list.
//
CurrentAddr = (TA_ADDRESS *)(CurrentAddr->Address + CurrentAddr->AddressLength); } }
return FALSE; // Didn't find a match.
}
//* InvalidateAddrs - Invalidate all AOs for a specific address.
//
// Called when we need to invalidate all AOs for a specific address. Walk
// down the table with the lock held, and take the lock on each AddrObj.
// If the address matches, mark it as invalid, pull off all requests,
// and continue. At the end we'll complete all requests with an error.
//
void // Returns: Nothing.
InvalidateAddrs( IPv6Addr *Addr, // Addr to be invalidated.
uint ScopeId) // Scope id for Addr.
{ Queue SendQ, RcvQ; AORequest *ReqList; KIRQL Irql0, Irql1; // One per lock nesting level.
uint i; AddrObj *AO; DGSendReq *SendReq; DGRcvReq *RcvReq; AOMCastAddr *MA;
INITQ(&SendQ); INITQ(&RcvQ); ReqList = NULL;
KeAcquireSpinLock(&AddrObjTableLock, &Irql0); for (i = 0; i < AddrObjTableSize; i++) { // Walk down each hash bucket, looking for a match.
AO = AddrObjTable[i]; while (AO != NULL) { CHECK_STRUCT(AO, ao);
KeAcquireSpinLock(&AO->ao_lock, &Irql1); if (IP6_ADDR_EQUAL(&AO->ao_addr, Addr) && (AO->ao_scope_id == ScopeId) && AO_VALID(AO)) { // This one matches. Mark as invalid, then pull his requests.
SET_AO_INVALID(AO);
// If he has a request on him, pull him off.
if (AO->ao_request != NULL) { AORequest *Temp;
Temp = CONTAINING_RECORD(&AO->ao_request, AORequest, aor_next); do { Temp = Temp->aor_next; } while (Temp->aor_next != NULL);
Temp->aor_next = ReqList; ReqList = AO->ao_request; AO->ao_request = NULL; }
// Go down his send list, pulling things off the send q and
// putting them on our local queue.
while (!EMPTYQ(&AO->ao_sendq)) { DEQUEUE(&AO->ao_sendq, SendReq, DGSendReq, dsr_q); CHECK_STRUCT(SendReq, dsr); ENQUEUE(&SendQ, &SendReq->dsr_q); }
// Do the same for the receive queue.
while (!EMPTYQ(&AO->ao_rcvq)) { DEQUEUE(&AO->ao_rcvq, RcvReq, DGRcvReq, drr_q); CHECK_STRUCT(RcvReq, drr); ENQUEUE(&RcvQ, &RcvReq->drr_q); }
// Free any multicast addresses he may have. IP will have
// deleted them at that level before we get here, so all we
// need to do if free the memory.
MA = AO->ao_mcastlist; while (MA != NULL) { AOMCastAddr *Temp;
Temp = MA; MA = MA->ama_next; ExFreePool(Temp); } AO->ao_mcastlist = NULL;
} KeReleaseSpinLock(&AO->ao_lock, Irql1); AO = AO->ao_next; // Go to the next one.
} } KeReleaseSpinLock(&AddrObjTableLock, Irql0);
// OK, now walk what we've collected, complete it, and free it.
while (ReqList != NULL) { AORequest *Req;
Req = ReqList; ReqList = Req->aor_next; (*Req->aor_rtn)(Req->aor_context, (uint) TDI_ADDR_INVALID, 0); FreeAORequest(Req); }
// Walk down the rcv. q, completing and freeing requests.
while (!EMPTYQ(&RcvQ)) {
DEQUEUE(&RcvQ, RcvReq, DGRcvReq, drr_q); CHECK_STRUCT(RcvReq, drr);
(*RcvReq->drr_rtn)(RcvReq->drr_context, (uint) TDI_ADDR_INVALID, 0);
FreeDGRcvReq(RcvReq);
}
// Now do the same for sends.
while (!EMPTYQ(&SendQ)) {
DEQUEUE(&SendQ, SendReq, DGSendReq, dsr_q); CHECK_STRUCT(SendReq, dsr);
(*SendReq->dsr_rtn)(SendReq->dsr_context, (uint) TDI_ADDR_INVALID, 0);
KeAcquireSpinLock(&DGSendReqLock, &Irql0); FreeDGSendReq(SendReq); KeReleaseSpinLock(&DGSendReqLock, Irql0); } }
//* RequestWorker - Handle a deferred request.
//
// This is the work item callback routine, called by a system worker
// thread when the work item queued by DelayDerefAO is handled.
// We just call ProcessAORequest on the AO.
//
void // Returns: Nothing.
RequestWorker( void *Context) // Pointer to AddrObj.
{ AddrObj *AO = (AddrObj *)Context;
CHECK_STRUCT(AO, ao); ASSERT(AO_BUSY(AO));
ProcessAORequests(AO); }
//* GetAddrOptions - Get the address options.
//
// Called when we're opening an address. We take in a pointer, and walk
// down it looking for address options we know about.
//
void // Returns: Nothing.
GetAddrOptions( void *Ptr, // Pointer to search.
uchar *Reuse, // Pointer to reuse flag.
uchar *DHCPAddr, // Pointer to DHCP flag.
uchar *RawSock) // Pointer to raw socket flag.
{ uchar *OptPtr;
*Reuse = 0; *DHCPAddr = 0; *RawSock = 0;
if (Ptr == NULL) return;
OptPtr = (uchar *)Ptr;
while (*OptPtr != TDI_OPTION_EOL) { if (*OptPtr == TDI_ADDRESS_OPTION_REUSE) *Reuse = 1; else if (*OptPtr == TDI_ADDRESS_OPTION_DHCP) *DHCPAddr = 1; else if (*OptPtr == TDI_ADDRESS_OPTION_RAW) *RawSock = 1;
OptPtr++; } }
//* CheckAddrReuse - enforce port-sharing rules for a new TDI address object.
//
// Called when opening an address, to determine whether the open should
// succeed in the presence of previous binds to the same port.
//
// N.B. Assumes the caller holds both AddrSDMutex and AddrObjTableLock.
// The latter is freed and reacquired in this routine.
//
TDI_STATUS // Returns: TDI_STATUS code of attempt.
CheckAddrReuse( PTDI_REQUEST Request, // Pointer to a TDI request for this open.
uint Protocol, // Protocol on which to open the address.
IPv6Addr* Addr, // Local IP address to open.
ulong ScopeId, // Scope identifier for local IP address.
ushort Port, // Local port number to open.
BOOLEAN NewReuse, // Indicates if reuse requested for the open.
PSECURITY_DESCRIPTOR NewSD, // Captured security-descriptor for the open.
KIRQL* TableIrql) // IRQL at which AddrObjTableLock was taken.
{ PACCESS_STATE AccessState; BOOLEAN AllowReuse; AddrObj* ExistingAO; BOOLEAN ExistingReuse; PSECURITY_DESCRIPTOR ExistingSD; PIRP Irp; PIO_STACK_LOCATION IrpSp; ACCESS_MASK GrantedAccess; NTSTATUS status;
// Look for an existing valid AO and succeed if none.
// Otherwise, capture its reuse flag and security-descriptor.
ExistingAO = GetBestAddrObj(Addr, NULL, ScopeId, Port, (uchar)Protocol, NULL); if (ExistingAO == NULL && IP6_ADDR_EQUAL(Addr, &UnspecifiedAddr) && NewSD == NULL) { ExistingAO = FindAnyAddrObj(Port, (uchar)Protocol); }
if (ExistingAO == NULL) { return TDI_SUCCESS; }
do { // We've got at least one AO, so see if it allows reuse.
// Note that we may need to repeat this for every AO on this port
// in the case where we have multiple AOs sharing the port already,
// since each AO has its own security descriptor. In that event,
// we look at the AOs until one denies access or we've seen them all.
ExistingReuse = !!AO_SHARE(ExistingAO); ExistingSD = ExistingAO->ao_sd; // Succeed immediately if reuse enabled on both instances.
// Otherwise, fail if the two instances have the exact same address
// (whether it's unspecified or specific).
if (ExistingReuse && NewReuse) { return TDI_SUCCESS; } if (IP6_ADDR_EQUAL(&ExistingAO->ao_addr, Addr)) { return TDI_ADDR_IN_USE; } // The two instances have different addresses, and at least one of them
// doesn't have reuse enabled. If the new instance is on the unspecified
// address, the old instance must be on a specific address.
// Allow the bind unless the new instance wants exclusive access
// (i.e. NewSD == NULL).
if (IP6_ADDR_EQUAL(Addr, &UnspecifiedAddr)) { if (NewSD == NULL) { return TDI_ADDR_IN_USE; } return TDI_SUCCESS; } // The two instances have different addresses, and the new instance is
// on a specific address. If the old instance is on a specific address
// too, the two are disjoint and can peacefully coexist.
if (!IP6_ADDR_EQUAL(&ExistingAO->ao_addr, &UnspecifiedAddr)) { return TDI_SUCCESS; } // The new instance is on a specific address and the old instance is on
// the wildcard address. If the old instance wanted exclusive access
// (i.e. ExistingSD == NULL) fail the new instance right away.
// Otherwise, drop the AO table lock and perform an access check
// to see if it's OK for the new instance to steal some traffic from
// the old instance.
//
// N.B. Even though we've dropped the AO table lock, ExistingSD is safe
// since we still have the AO SD mutex.
if (ExistingSD == NULL) { return STATUS_ACCESS_DENIED; } ASSERT(*TableIrql <= PASSIVE_LEVEL); KeReleaseSpinLock(&AddrObjTableLock, *TableIrql); Irp = (PIRP)Request->RequestContext; IrpSp = IoGetCurrentIrpStackLocation(Irp); AccessState = IrpSp->Parameters.Create.SecurityContext->AccessState; SeLockSubjectContext(&AccessState->SubjectSecurityContext); AllowReuse = SeAccessCheck(ExistingSD, &AccessState->SubjectSecurityContext, TRUE, FILE_READ_DATA|FILE_WRITE_DATA, 0, NULL, IoGetFileObjectGenericMapping(), (IrpSp->Flags & SL_FORCE_ACCESS_CHECK) ? UserMode : Irp->RequestorMode, &GrantedAccess, &status); SeUnlockSubjectContext(&AccessState->SubjectSecurityContext); KeAcquireSpinLock(&AddrObjTableLock, TableIrql); if (!AllowReuse) { return status; }
// The existing wildcard AO doesn't mind if the new instance takes
// some of its traffic. If the existing AO has reuse enabled, there
// might be others too on the port, so we'll look for them and do an
// access check against their security-descriptors too.
} while(ExistingReuse && (ExistingAO = GetAddrObj(&UnspecifiedAddr, NULL, ScopeId, Port, (uchar)Protocol, ExistingAO, NULL)) != NULL);
return TDI_SUCCESS; }
//* TdiOpenAddress - Open a TDI address object.
//
// This is the external interface to open an address. The caller provides a
// TDI_REQUEST structure and a TRANSPORT_ADDRESS structure, as well a pointer
// to a variable identifying whether or not we are to allow reuse of an
// address while it's still open.
//
TDI_STATUS // Returns: TDI_STATUS code of attempt.
TdiOpenAddress( PTDI_REQUEST Request, // TDI request structure for this request.
TRANSPORT_ADDRESS UNALIGNED *AddrList, // Address to be opened.
uint Protocol, // Protocol on which to open the address (LSB only).
void *Ptr, // Pointer to option buffer.
PSECURITY_DESCRIPTOR AddrSD) // SD for port-reuse access checks.
{ uint i; // Index variable.
ushort Port; // Local Port we'll use.
IPv6Addr LocalAddr; // Actual address we'll use.
ulong ScopeId; // Address scope.
AddrObj *NewAO; // New AO we'll use.
AddrObj *ExistingAO; // Pointer to existing AO, if any.
KIRQL OldIrql; uchar Reuse, DHCPAddr, RawSock; PRTL_BITMAP PortBitmap;
if (!GetAddress(AddrList, &LocalAddr, &ScopeId, &Port)) return TDI_BAD_ADDR;
// Find the address options we might need.
GetAddrOptions(Ptr, &Reuse, &DHCPAddr, &RawSock);
//
// Allocate the new addr obj now, assuming that we need it,
// so we don't have to do it with locks held later.
//
NewAO = ExAllocatePool(NonPagedPool, sizeof(AddrObj)); if (NewAO == NULL) { // Couldn't allocate an address object.
return TDI_NO_RESOURCES; } RtlZeroMemory(NewAO, sizeof(AddrObj));
//
// Check to make sure IP address is one of our local addresses. This
// is protected with the address table lock, so we can interlock an IP
// address going away through DHCP.
//
KeWaitForSingleObject(&AddrSDMutex, Executive, KernelMode, FALSE, NULL); KeAcquireSpinLock(&AddrObjTableLock, &OldIrql);
if (!IP6_ADDR_EQUAL(&LocalAddr, &UnspecifiedAddr)) { NetTableEntry *NTE;
//
// The user specified a local address (i.e. not wildcarded).
// Call IP to check that this is a valid local address.
// We do this by looking up an NTE for the address; note
// that this will fail if the scope id is specified
// improperly or doesn't match exactly.
//
NTE = FindNetworkWithAddress(&LocalAddr, ScopeId); if (NTE == NULL) { // Not a local address. Fail the request.
BadAddr: KeReleaseSpinLock(&AddrObjTableLock, OldIrql); KeReleaseMutex(&AddrSDMutex, FALSE); ExFreePool(NewAO); return TDI_BAD_ADDR; }
//
// We don't actually want the NTE, we were just checking that
// it exists. So release our reference.
//
ReleaseNTE(NTE);
} else { //
// The user specified the wildcard address.
// Insist that the scope id is zero.
//
if (ScopeId != 0) goto BadAddr; }
//
// The specified IP address is a valid local address. Now we do
// protocol-specific processing. An exception is raw sockets: we
// don't allocate port space for them, regardless of their protocol.
//
if (Protocol == IP_PROTOCOL_TCP) { PortBitmap = &PortBitmapTcp; } else if (Protocol == IP_PROTOCOL_UDP) { PortBitmap = &PortBitmapUdp; } else { PortBitmap = NULL; }
if (!RawSock && PortBitmap) { //
// If no port is specified we have to assign one. If there is a
// port specified, we need to make sure that the IPAddress/Port
// combo isn't already open (unless Reuse is specified). If the
// input address is a wildcard, we need to make sure the address
// isn't open on any local ip address.
//
if (Port == WILDCARD_PORT) { // Have a wildcard port, need to assign an address.
Port = NextUserPort;
for (i = 0; i < NUM_USER_PORTS; i++, Port++) { ushort NetPort; // Port in net byte order.
if (Port > MaxUserPort) { Port = MIN_USER_PORT; RebuildAddrObjBitmap(); }
NetPort = net_short(Port);
if (IP6_ADDR_EQUAL(&LocalAddr, &UnspecifiedAddr)) { // Wildcard IP address.
if (PortBitmap) { if (!RtlCheckBit(PortBitmap, Port)) break; else continue; } else { ExistingAO = FindAnyAddrObj(NetPort, (uchar)Protocol); } } else { ExistingAO = GetBestAddrObj(&LocalAddr, NULL, ScopeId, NetPort, (uchar)Protocol, NULL); }
if (ExistingAO == NULL) break; // Found an unused port.
}
if (i == NUM_USER_PORTS) { // Couldn't find a free port.
KeReleaseSpinLock(&AddrObjTableLock, OldIrql); KeReleaseMutex(&AddrSDMutex, FALSE); ExFreePool(NewAO); return TDI_NO_FREE_ADDR; } NextUserPort = Port + 1; Port = net_short(Port);
} else { //
// A particular port was specified.
//
// Don't check if a DHCP address is specified.
if (!DHCPAddr) { TDI_STATUS Status;
//
// See if we already have this address open and, if so,
// decide whether this request should succeed.
//
Status = CheckAddrReuse(Request, Protocol, &LocalAddr, ScopeId, Port, Reuse, AddrSD, &OldIrql); if (Status != TDI_SUCCESS) { KeReleaseSpinLock(&AddrObjTableLock, OldIrql); KeReleaseMutex(&AddrSDMutex, FALSE); ExFreePool(NewAO); return Status; } } }
//
// We have a new AO. Set up the protocol specific portions.
//
if (Protocol == IP_PROTOCOL_UDP) { NewAO->ao_dgsend = UDPSend; NewAO->ao_maxdgsize = 0xFFFF - sizeof(UDPHeader); }
} else { //
// Either we have a raw socket or this is a protocol for which
// we don't allocate a port. Open over Raw IP.
//
ASSERT(!DHCPAddr);
//
// We must set the port to zero. This puts all the raw sockets
// in one hash bucket, which is necessary for GetAddrObj to
// work correctly. It wouldn't be a bad idea to come up with
// a better scheme...
//
Port = 0; NewAO->ao_dgsend = RawSend; NewAO->ao_maxdgsize = 0xFFFF; NewAO->ao_flags |= AO_RAW_FLAG;
IF_TCPDBG(TCP_DEBUG_RAW) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_TCPDBG, "raw open protocol %u AO %lx\n", Protocol, NewAO)); } }
// When we get here, we know we're creating a brand new address object.
// Port contains the port in question, and NewAO points to the newly
// created AO.
KeInitializeSpinLock(&NewAO->ao_lock); ExInitializeWorkItem(&NewAO->ao_workitem, RequestWorker, NewAO); INITQ(&NewAO->ao_sendq); INITQ(&NewAO->ao_rcvq); INITQ(&NewAO->ao_activeq); INITQ(&NewAO->ao_idleq); INITQ(&NewAO->ao_listenq); NewAO->ao_port = Port; NewAO->ao_addr = LocalAddr; NewAO->ao_scope_id = ScopeId; NewAO->ao_prot = (uchar)Protocol; NewAO->ao_ucast_hops = -1; // This causes system default to be used.
NewAO->ao_mcast_hops = -1; // This causes system default to be used.
NewAO->ao_mcast_loop = TRUE;// Multicast loopback is on by default.
#if DBG
NewAO->ao_sig = ao_signature; #endif
NewAO->ao_sd = AddrSD; NewAO->ao_flags |= AO_VALID_FLAG; // AO is valid.
NewAO->ao_protect = PROTECTION_LEVEL_DEFAULT;
if (DHCPAddr) NewAO->ao_flags |= AO_DHCP_FLAG;
if (Reuse) { SET_AO_SHARE(NewAO); }
NewAO->ao_owningpid = HandleToUlong(PsGetCurrentProcessId());
//
// Note the following fields are left zero - which has this effect:
//
// ao_mcast_if - use the routing table by default.
// ao_udp_cksum_cover - checksum everything.
//
InsertAddrObj(NewAO); if (PortBitmap) { RtlSetBit(PortBitmap, net_short(Port)); } KeReleaseSpinLock(&AddrObjTableLock, OldIrql); KeReleaseMutex(&AddrSDMutex, FALSE); Request->Handle.AddressHandle = NewAO; return TDI_SUCCESS; }
//* DeleteAO - Delete an address object.
//
// The internal routine to delete an address object. We complete any pending
// requests with errors, and remove and free the address object.
//
void // Returns: Nothing.
DeleteAO( AddrObj *DeletedAO) // AddrObj to be deleted.
{ KIRQL Irql0; // One per lock nesting level.
#ifndef UDP_ONLY
TCB *TCBHead = NULL, *CurrentTCB; TCPConn *Conn; Queue *Temp; Queue *CurrentQ; RequestCompleteRoutine Rtn; // Completion routine.
PVOID Context; // User context for completion routine.
#endif
AOMCastAddr *AMA; PSECURITY_DESCRIPTOR AddrSD;
CHECK_STRUCT(DeletedAO, ao); ASSERT(!AO_VALID(DeletedAO)); ASSERT(DeletedAO->ao_usecnt == 0);
KeAcquireSpinLock(&AddrObjTableLock, &Irql0); KeAcquireSpinLockAtDpcLevel(&DGSendReqLock); KeAcquireSpinLockAtDpcLevel(&DeletedAO->ao_lock);
// If he's on an oor queue, remove him.
if (AO_OOR(DeletedAO)) REMOVEQ(&DeletedAO->ao_pendq); KeReleaseSpinLockFromDpcLevel(&DGSendReqLock);
RemoveAddrObj(DeletedAO);
#ifndef UDP_ONLY
// Walk down the list of associated connections and zap their AO pointers.
// For each connection, we need to shut down the connection if it's active.
// If the connection isn't already closing, we'll put a reference on it
// so that it can't go away while we're dealing with the AO, and put it
// on a list. On our way out we'll walk down that list and zap each
// connection.
CurrentQ = &DeletedAO->ao_activeq;
for (;;) { Temp = QHEAD(CurrentQ); while (Temp != QEND(CurrentQ)) { Conn = QSTRUCT(TCPConn, Temp, tc_q);
//
// Move our temp pointer to the next connection now,
// since we may free this connection below.
//
Temp = QNEXT(Temp);
//
// We'll need to unlock the AO in order to look at the Conn.
// While the AO is unlocked, we need to worry about the following
// requests being issued on the Conn:
//
// TdiDisAssociateAddress, TdiConnect: we hold AddrObjTableLock
// so the requests are blocked.
// TdiListen, FindListenConn: the AO is marked invalid already,
// so the requests will fail.
// TdiAccept: this request doesn't update the AO<->Conn link
// (just Conn<->TCB) so we don't care about it.
//
KeReleaseSpinLockFromDpcLevel(&DeletedAO->ao_lock); KeAcquireSpinLockAtDpcLevel(&Conn->tc_ConnBlock->cb_lock);
CHECK_STRUCT(Conn, tc); CurrentTCB = Conn->tc_tcb; if (CurrentTCB != NULL) {
// We have a TCB.
CHECK_STRUCT(CurrentTCB, tcb); KeAcquireSpinLockAtDpcLevel(&CurrentTCB->tcb_lock); if (CurrentTCB->tcb_state != TCB_CLOSED && !CLOSING(CurrentTCB)) { // It's not closing. Put a reference on it and save it
// on the list.
CurrentTCB->tcb_refcnt++; CurrentTCB->tcb_aonext = TCBHead; TCBHead = CurrentTCB; } CurrentTCB->tcb_conn = NULL; CurrentTCB->tcb_rcvind = NULL; if (CurrentTCB->tcb_rcvhndlr == IndicateData && CurrentTCB->tcb_indicated == 0) { if (CurrentTCB->tcb_currcv != NULL) { CurrentTCB->tcb_rcvhndlr = BufferData; } else { CurrentTCB->tcb_rcvhndlr = PendData; } } KeReleaseSpinLockFromDpcLevel(&CurrentTCB->tcb_lock);
//
// Subtract one from the connection's ref count, since we
// are about to remove this TCB from the connection.
//
if (--(Conn->tc_refcnt) == 0) {
//
// We need to execute the code for the done
// routine. There are only three done routines that can
// be called. CloseDone(), DisassocDone(), and DummyDone().
// We execute the respective code here to avoid freeing locks.
// Note: DummyDone() does nothing.
//
if (Conn->tc_flags & CONN_CLOSING) {
//
// This is the relevant CloseDone() code.
//
Rtn = Conn->tc_rtn; Context = Conn->tc_rtncontext; KeReleaseSpinLockFromDpcLevel( &Conn->tc_ConnBlock->cb_lock);
ExFreePool(Conn); (*Rtn) (Context, TDI_SUCCESS, 0);
} else if (Conn->tc_flags & CONN_DISACC) {
//
// This is the relevant DisassocDone() code.
//
Rtn = Conn->tc_rtn; Context = Conn->tc_rtncontext; Conn->tc_flags &= ~CONN_DISACC; Conn->tc_ao = NULL; Conn->tc_tcb = NULL; KeReleaseSpinLockFromDpcLevel( &Conn->tc_ConnBlock->cb_lock);
(*Rtn) (Context, TDI_SUCCESS, 0); } else { Conn->tc_ao = NULL; Conn->tc_tcb = NULL; KeReleaseSpinLockFromDpcLevel( &Conn->tc_ConnBlock->cb_lock);
} } else { Conn->tc_ao = NULL; Conn->tc_tcb = NULL; KeReleaseSpinLockFromDpcLevel(&Conn->tc_ConnBlock->cb_lock); } } else { Conn->tc_ao = NULL; KeReleaseSpinLockFromDpcLevel(&Conn->tc_ConnBlock->cb_lock); }
KeAcquireSpinLockAtDpcLevel(&DeletedAO->ao_lock); }
if (CurrentQ == &DeletedAO->ao_activeq) { CurrentQ = &DeletedAO->ao_idleq; } else if (CurrentQ == &DeletedAO->ao_idleq) { CurrentQ = &DeletedAO->ao_listenq; } else { ASSERT(CurrentQ == &DeletedAO->ao_listenq); break; } } #endif
//
// Release excess locks. Note we release the locks in a different order
// from which we acquired them, but must return to IRQ levels in the order
// we left them.
//
KeReleaseSpinLockFromDpcLevel(&AddrObjTableLock);
// We've removed him from the queues, and he's marked as invalid. Return
// pending requests with errors.
// We still hold the lock on the AddrObj, although this may not be
// neccessary.
while (!EMPTYQ(&DeletedAO->ao_rcvq)) { DGRcvReq *Rcv;
DEQUEUE(&DeletedAO->ao_rcvq, Rcv, DGRcvReq, drr_q); CHECK_STRUCT(Rcv, drr);
KeReleaseSpinLock(&DeletedAO->ao_lock, Irql0); (*Rcv->drr_rtn)(Rcv->drr_context, (uint) TDI_ADDR_DELETED, 0);
FreeDGRcvReq(Rcv);
KeAcquireSpinLock(&DeletedAO->ao_lock, &Irql0); }
// Now destroy any sends.
while (!EMPTYQ(&DeletedAO->ao_sendq)) { DGSendReq *Send;
DEQUEUE(&DeletedAO->ao_sendq, Send, DGSendReq, dsr_q); CHECK_STRUCT(Send, dsr);
KeReleaseSpinLock(&DeletedAO->ao_lock, Irql0); (*Send->dsr_rtn)(Send->dsr_context, (uint) TDI_ADDR_DELETED, 0);
KeAcquireSpinLock(&DGSendReqLock, &Irql0); FreeDGSendReq(Send); KeReleaseSpinLock(&DGSendReqLock, Irql0);
KeAcquireSpinLock(&DeletedAO->ao_lock, &Irql0); }
AddrSD = DeletedAO->ao_sd;
KeReleaseSpinLock(&DeletedAO->ao_lock, Irql0);
// Free any associated multicast addresses.
AMA = DeletedAO->ao_mcastlist; while (AMA != NULL) { AOMCastAddr *CurrentAMA;
// Remove the group address from the IP layer.
MLDDropMCastAddr(AMA->ama_if, &AMA->ama_addr);
CurrentAMA = AMA; AMA = AMA->ama_next; ExFreePool(CurrentAMA); }
if (DeletedAO->ao_iflist != NULL) { ExFreePool(DeletedAO->ao_iflist); }
if (AddrSD != NULL) { KeWaitForSingleObject(&AddrSDMutex, Executive, KernelMode, FALSE, NULL); ObDereferenceSecurityDescriptor(AddrSD, 1); KeReleaseMutex(&AddrSDMutex, FALSE); }
ExFreePool(DeletedAO);
#ifndef UDP_ONLY
// Now go down the TCB list, and destroy any we need to.
CurrentTCB = TCBHead; while (CurrentTCB != NULL) { TCB *NextTCB;
KeAcquireSpinLock(&CurrentTCB->tcb_lock, &Irql0); CurrentTCB->tcb_flags |= NEED_RST; // Make sure we send a RST.
NextTCB = CurrentTCB->tcb_aonext; TryToCloseTCB(CurrentTCB, TCB_CLOSE_ABORTED, Irql0); KeAcquireSpinLock(&CurrentTCB->tcb_lock, &Irql0); DerefTCB(CurrentTCB, Irql0); CurrentTCB = NextTCB; } #endif
}
//* GetAORequest - Get an AO request structure.
//
// A routine to allocate a request structure from our free list.
//
AORequest * // Returns: Ptr to request struct, or NULL if we couldn't get one.
GetAORequest() { AORequest *NewRequest;
NewRequest = ExAllocatePool(NonPagedPool, sizeof(AORequest)); if (NewRequest != NULL) { #if DBG
NewRequest->aor_sig = aor_signature; #endif
}
return NewRequest; }
//* FreeAORequest - Free an AO request structure.
//
// Called to free an AORequest structure.
//
void // Returns: Nothing.
FreeAORequest( AORequest *Request) // AORequest structure to be freed.
{ CHECK_STRUCT(Request, aor);
ExFreePool(Request); }
//* TDICloseAddress - Close an address.
//
// The user API to delete an address. Basically, we destroy the local address
// object if we can.
//
// This routine is interlocked with the AO busy bit - if the busy bit is set,
// we'll just flag the AO for later deletion.
//
TDI_STATUS // Returns: Status of attempt to delete the address -
// (either pending or success).
TdiCloseAddress( PTDI_REQUEST Request) // TDI_REQUEST structure for this request.
{ AddrObj *DeletingAO; KIRQL OldIrql;
DeletingAO = Request->Handle.AddressHandle;
CHECK_STRUCT(DeletingAO, ao);
KeAcquireSpinLock(&DeletingAO->ao_lock, &OldIrql);
if (!AO_BUSY(DeletingAO) && !(DeletingAO->ao_usecnt)) { SET_AO_BUSY(DeletingAO); SET_AO_INVALID(DeletingAO); // This address object is deleting.
KeReleaseSpinLock(&DeletingAO->ao_lock, OldIrql); DeleteAO(DeletingAO); return TDI_SUCCESS;
} else {
AORequest *NewRequest, *OldRequest; RequestCompleteRoutine CmpltRtn; PVOID ReqContext; TDI_STATUS Status;
// Check and see if we already have a delete in progress. If we don't
// allocate and link up a delete request structure.
if (!AO_REQUEST(DeletingAO, AO_DELETE)) {
OldRequest = DeletingAO->ao_request;
NewRequest = GetAORequest();
if (NewRequest != NULL) { // Got a request.
NewRequest->aor_rtn = Request->RequestNotifyObject; NewRequest->aor_context = Request->RequestContext; // Clear the option request, if there is one.
CLEAR_AO_REQUEST(DeletingAO, AO_OPTIONS);
SET_AO_REQUEST(DeletingAO, AO_DELETE); SET_AO_INVALID(DeletingAO); // Address object is deleting.
DeletingAO->ao_request = NewRequest; NewRequest->aor_next = NULL; KeReleaseSpinLock(&DeletingAO->ao_lock, OldIrql);
while (OldRequest != NULL) { AORequest *Temp;
CmpltRtn = OldRequest->aor_rtn; ReqContext = OldRequest->aor_context;
(*CmpltRtn)(ReqContext, (uint) TDI_ADDR_DELETED, 0); Temp = OldRequest; OldRequest = OldRequest->aor_next; FreeAORequest(Temp); }
return TDI_PENDING; } else Status = TDI_NO_RESOURCES; } else Status = TDI_ADDR_INVALID; // Delete already in progress.
KeReleaseSpinLock(&DeletingAO->ao_lock, OldIrql); return Status; } }
//* FindAOMCastAddr - Find a multicast address on an AddrObj.
//
// A utility routine to find a multicast address on an AddrObj. We also
// return a pointer to it's predecessor, for use in deleting.
//
// A loose comparison treats the unspecified interface (IFNo is 0)
// specially, selecting the first matching multicast address.
//
AOMCastAddr * // Returns: matching AMA structure, or NULL if there is none.
FindAOMCastAddr( AddrObj *AO, // AddrObj to search.
IPv6Addr *Addr, // MCast address to search for.
uint IFNo, // The interface number.
AOMCastAddr **PrevAMA, // Pointer to where to return predecessor.
BOOLEAN Loose) // Special case the unspecified interface.
{ AOMCastAddr *FoundAMA, *Temp;
Temp = CONTAINING_RECORD(&AO->ao_mcastlist, AOMCastAddr, ama_next); FoundAMA = AO->ao_mcastlist;
while (FoundAMA != NULL) { if (IP6_ADDR_EQUAL(Addr, &FoundAMA->ama_addr) && ((IFNo == FoundAMA->ama_if) || ((IFNo == 0) && Loose))) break; Temp = FoundAMA; FoundAMA = FoundAMA->ama_next; }
*PrevAMA = Temp; return FoundAMA; }
//* MCastAddrOnAO - Test to see if a multicast address on an AddrObj.
//
// A utility routine to test to see if a multicast address is on an AddrObj.
//
uint // Returns: TRUE if Addr is on AO.
MCastAddrOnAO( AddrObj *AO, // AddrObj to search.
IPv6Addr *Addr) // MCast address to search for.
{ AOMCastAddr *FoundAMA;
FoundAMA = AO->ao_mcastlist;
while (FoundAMA != NULL) { if (IP6_ADDR_EQUAL(Addr, &FoundAMA->ama_addr)) return(TRUE); FoundAMA = FoundAMA->ama_next; } return(FALSE); }
//* DoesAOAllowPacket - Test to see if an AO is allowed to receive a packet.
//
// A utility routine to test whether the interface list and protection level
// of an AddrObj will accept a packet that arrives on a given interface,
// from a given remote address.
//
int // Returns: TRUE if AO can accept packet.
DoesAOAllowPacket( AddrObj *AO, // AddrObj to test.
Interface *IF, // Interface on which the packet arrived.
IPv6Addr *RemoteAddr) // Remote address from which the packet arrived.
{ //
// See if an interface list was specified.
//
if ((AO->ao_iflist != NULL) && IP6_ADDR_EQUAL(&AO->ao_addr, &UnspecifiedAddr) && (FindIfIndexOnAO(AO, IF) == 0)) return FALSE;
//
// Only accept Teredo if the protection level is unrestricted.
//
if ((IF->Type == IF_TYPE_TUNNEL_TEREDO) && (AO->ao_protect != PROTECTION_LEVEL_UNRESTRICTED)) return FALSE;
//
// If the level is restricted, disallow global addresses which
// are not known to be within one of our sites. Note that we
// cannot use the IsGlobal() macro here, since we want v4-compatible
// addresses, etc., to be treated as global.
//
if ((AO->ao_protect == PROTECTION_LEVEL_RESTRICTED) && !IsSiteLocal(RemoteAddr) && !IsLinkLocal(RemoteAddr) && !IsLoopback(RemoteAddr) && (SitePrefixMatch(RemoteAddr) == 0)) return FALSE;
//
// TODO: Should eventually replace the simple firewall check here
// with hooks for ICF.
//
if ((IF->Flags & IF_FLAG_FIREWALL_ENABLED) && (AO->ao_dgsend != NULL) && !AO_SENTDATA(AO)) return FALSE; return TRUE; }
//* SetAOOptions - Set AddrObj options.
//
// The set options worker routine, called when we've validated the buffer
// and know that the AddrObj isn't busy.
//
TDI_STATUS // Returns: TDI_STATUS of attempt.
SetAOOptions( AddrObj *OptionAO, // AddrObj for which options are being set.
uint ID, uint Length, uchar *Options) // AOOption buffer of options.
{ IP_STATUS IPStatus; // Status of IP option set request.
KIRQL OldIrql; TDI_STATUS Status; AOMCastAddr *AMA, *PrevAMA;
ASSERT(AO_BUSY(OptionAO));
if (Length == 0) return TDI_BAD_OPTION;
if (ID == AO_OPTION_UNBIND) { KeAcquireSpinLock(&AddrObjTableLock, &OldIrql); RemoveAddrObj(OptionAO); KeReleaseSpinLock(&AddrObjTableLock, OldIrql); return TDI_SUCCESS; }
Status = TDI_SUCCESS; KeAcquireSpinLock(&OptionAO->ao_lock, &OldIrql);
switch (ID) {
case AO_OPTION_TTL: if (Length >= sizeof(int)) { int Hops = (int) *Options; if ((Hops >= -1) && (Hops <= 255)) { OptionAO->ao_ucast_hops = Hops; break; } } Status = TDI_BAD_OPTION; break;
case AO_OPTION_MCASTLOOP: if (Length >= sizeof(int)) { uint Loop = (uint) *Options; if (Loop <= TRUE) { OptionAO->ao_mcast_loop = Loop; break; } } Status = TDI_BAD_OPTION; break;
case AO_OPTION_MCASTTTL: if (Length >= sizeof(int)) { int Hops = (int) *Options; if ((Hops >= -1) && (Hops <= 255)) { OptionAO->ao_mcast_hops = Hops; break; } } Status = TDI_BAD_OPTION; break;
case AO_OPTION_MCASTIF: if (Length >= sizeof(uint)) { OptionAO->ao_mcast_if = (uint) *Options; } else Status = TDI_BAD_OPTION; break;
case AO_OPTION_ADD_MCAST: case AO_OPTION_DEL_MCAST: if (Length >= sizeof(IPV6_MREQ)) { IPV6_MREQ *Req = (IPV6_MREQ *)Options; BOOLEAN IsInterfaceUnspecified = (Req->ipv6mr_interface == 0);
//
// Look for this multicast address on this Address Object.
//
// NOTE: A loose comparison of the interface index provides
// the following behavior (when ipv6mr_interface is 0):
// IPV6_ADD_MEMBERSHIP fails if the specified multicast
// group has already been added to any interface.
// IPV6_DROP_MEMBERSHIP drops the first matching multicast
// group.
//
AMA = FindAOMCastAddr(OptionAO, &Req->ipv6mr_multiaddr, Req->ipv6mr_interface, &PrevAMA, TRUE);
if (ID == AO_OPTION_ADD_MCAST) { // This is an add request. Fail it if it's already there.
if (AMA != NULL) { // Address is already present on AO.
Status = TDI_BAD_OPTION; break; } AMA = ExAllocatePool(NonPagedPool, sizeof(AOMCastAddr)); if (AMA == NULL) { // Couldn't get the resource we need.
Status = TDI_NO_RESOURCES; break; }
// Add it to the list.
AMA->ama_next = OptionAO->ao_mcastlist; OptionAO->ao_mcastlist = AMA;
// Fill in the address and interface information.
AMA->ama_addr = Req->ipv6mr_multiaddr; AMA->ama_if = Req->ipv6mr_interface;
} else { // This is a delete request. Fail it if it's not there.
if (AMA == NULL) { // Address is not present on AO.
Status = TDI_BAD_OPTION; break; }
// Remove it from the list.
PrevAMA->ama_next = AMA->ama_next; ExFreePool(AMA); }
// Drop the AO lock since MLDAddMCastAddr/MLDDropMCastAddr
// assume that they are called with no locks held.
KeReleaseSpinLock(&OptionAO->ao_lock, OldIrql); if (ID == AO_OPTION_ADD_MCAST) { // If the interface is unspecified, MLDAddMCastAddr will
// try to pick a reasonable interface and then return
// the interface number that it picked.
IPStatus = MLDAddMCastAddr(&Req->ipv6mr_interface, &Req->ipv6mr_multiaddr); } else IPStatus = MLDDropMCastAddr(Req->ipv6mr_interface, &Req->ipv6mr_multiaddr); KeAcquireSpinLock(&OptionAO->ao_lock, &OldIrql);
// Since we dropped the AO lock, we have to search for our
// AMA again if we need it. In fact, it might even have
// been deleted!
if ((ID == AO_OPTION_ADD_MCAST) && ((IPStatus != TDI_SUCCESS) || IsInterfaceUnspecified)) { AMA = FindAOMCastAddr( OptionAO, &Req->ipv6mr_multiaddr, IsInterfaceUnspecified ? 0 : Req->ipv6mr_interface, &PrevAMA, FALSE); if (AMA != NULL) { if (IPStatus != TDI_SUCCESS) { // Some problem adding or deleting. If we were
// adding, we remove and free the one we just added.
PrevAMA->ama_next = AMA->ama_next; ExFreePool(AMA); } else { // Interface 0 was specified, assign AMA->ama_if
// to the interface selected by MLDAddMCastAddr.
// Hence, incoming multicast packets will only
// be accepted on this AMA if they arrive on the
// chosen interface.
AMA->ama_if = Req->ipv6mr_interface; } } }
if (IPStatus != TDI_SUCCESS) Status = (IPStatus == IP_NO_RESOURCES) ? TDI_NO_RESOURCES : TDI_ADDR_INVALID;
} else Status = TDI_BAD_OPTION; break;
case AO_OPTION_UDP_CKSUM_COVER: if (Length >= sizeof(ushort)) { ushort Value = *(ushort *)Options; if ((0 < Value) && (Value < sizeof(UDPHeader))) Status = TDI_BAD_OPTION; else OptionAO->ao_udp_cksum_cover = Value; } else Status = TDI_BAD_OPTION; break;
case AO_OPTION_IP_HDRINCL: if (Length >= sizeof(int)) { uint HdrIncl = (uint) *Options; if (HdrIncl <= TRUE) { if (HdrIncl) SET_AO_HDRINCL(OptionAO); else CLEAR_AO_HDRINCL(OptionAO); break; } } Status = TDI_BAD_OPTION; break;
case AO_OPTION_IFLIST:
//
// Determine whether the interface-list is being enabled or cleared.
// When enabled, an empty zero-terminated interface-list is set.
// When disabled, any existing interface-list is freed.
//
// In both cases, the 'ao_iflist' pointer in the object is replaced
// using an interlocked operation to allow us to check the field
// in the receive-path without first locking the address-object.
//
if (Options[0]) { if (OptionAO->ao_iflist) { Status = TDI_SUCCESS; } else if (!IP6_ADDR_EQUAL(&OptionAO->ao_addr, &UnspecifiedAddr)) { Status = TDI_INVALID_PARAMETER; } else { uint *IfList = ExAllocatePool(NonPagedPool, sizeof(uint)); if (IfList == NULL) { Status = TDI_NO_RESOURCES; } else { *IfList = 0; OptionAO->ao_iflist = IfList; Status = TDI_SUCCESS; } } } else { if (OptionAO->ao_iflist) { ExFreePool(OptionAO->ao_iflist); OptionAO->ao_iflist = NULL; } Status = TDI_SUCCESS; } break;
case AO_OPTION_ADD_IFLIST:
//
// An interface-index is being added to the object's interface-list
// so verify that an interface-list exists and, if not, fail.
// Otherwise, verify that the index specified is valid and, if so,
// verify that the index is not already in the interface list.
//
if (OptionAO->ao_iflist == NULL) { Status = TDI_INVALID_PARAMETER; } else { uint IfIndex = *(uint *)Options; Interface *IF = FindInterfaceFromIndex(IfIndex); if (IF == NULL) { Status = TDI_ADDR_INVALID; } else { uint i = 0; ReleaseIF(IF); while (OptionAO->ao_iflist[i] != 0 && OptionAO->ao_iflist[i] != IfIndex) { i++; } if (OptionAO->ao_iflist[i] == IfIndex) { Status = TDI_SUCCESS; } else {
//
// The index to be added is not already present.
// Allocate space for an expanded interface-list,
// copy the old interface-list, append the new index,
// and replace the old interface-list using an
// interlocked operation.
//
uint *IfList = ExAllocatePool(NonPagedPool, (i + 2) * sizeof(uint)); if (IfList == NULL) { Status = TDI_NO_RESOURCES; } else { RtlCopyMemory(IfList, OptionAO->ao_iflist, i * sizeof(uint)); IfList[i] = IfIndex; IfList[i + 1] = 0; ExFreePool(OptionAO->ao_iflist); OptionAO->ao_iflist = IfList; Status = TDI_SUCCESS; } } } } break;
case AO_OPTION_DEL_IFLIST:
//
// An index is being removed from the object's interface-list,
// so verify that an interface-list exists and, if not, fail.
// Otherwise, search the list for the index and, if not found, fail.
//
// N.B. We do not validate the index first in this case, to allow
// an index to be removed even after the corresponding interface
// is no longer present.
//
if (OptionAO->ao_iflist == NULL) { Status = TDI_INVALID_PARAMETER; } else { uint IfIndex = *(uint *) Options; if (IfIndex == 0) { Status = TDI_ADDR_INVALID; } else { uint j = (uint)-1; uint i = 0; while (OptionAO->ao_iflist[i] != 0) { if (OptionAO->ao_iflist[i] == IfIndex) { j = i; } i++; } if (j == (uint)-1) { Status = TDI_ADDR_INVALID; } else {
//
// We've found the index to be removed.
// Allocate a truncated interface-list, copy the old
// interface-list excluding the removed index, and
// replace the old interface-list using an interlocked
// operation.
//
uint *IfList = ExAllocatePool(NonPagedPool, i * sizeof(uint)); if (IfList == NULL) { Status = TDI_NO_RESOURCES; } else { i = 0; j = 0; while (OptionAO->ao_iflist[i] != 0) { if (OptionAO->ao_iflist[i] != IfIndex) { IfList[j++] = OptionAO->ao_iflist[i]; } i++; } IfList[j] = 0; ExFreePool(OptionAO->ao_iflist); OptionAO->ao_iflist = IfList; Status = TDI_SUCCESS; } } } } break;
case AO_OPTION_IP_PKTINFO: if (Options[0]) SET_AO_PKTINFO(OptionAO); else CLEAR_AO_PKTINFO(OptionAO); break;
case AO_OPTION_RCV_HOPLIMIT: if (Options[0]) SET_AO_RCV_HOPLIMIT(OptionAO); else CLEAR_AO_RCV_HOPLIMIT(OptionAO); break;
case AO_OPTION_PROTECT: if (Length >= sizeof(int)) { int Level = (int) *Options; if ((Level == PROTECTION_LEVEL_RESTRICTED) || (Level == PROTECTION_LEVEL_DEFAULT) || (Level == PROTECTION_LEVEL_UNRESTRICTED)) { OptionAO->ao_protect = Level; break; } } Status = TDI_BAD_OPTION; break;
default: Status = TDI_BAD_OPTION; break; }
KeReleaseSpinLock(&OptionAO->ao_lock, OldIrql);
return Status; }
//* SetAddrOptions - Set options on an address object.
//
// Called to set options on an address object. We validate the buffer,
// and if everything is OK we'll check the status of the AddrObj. If
// it's OK then we'll set them, otherwise we'll mark it for later use.
//
TDI_STATUS // Returns: TDI_STATUS of attempt.
SetAddrOptions( PTDI_REQUEST Request, // Request describing AddrObj for option set.
uint ID, // ID for option to be set.
uint OptLength, // Length of options.
void *Options) // Pointer to options.
{ AddrObj *OptionAO; TDI_STATUS Status; KIRQL OldIrql;
OptionAO = Request->Handle.AddressHandle;
CHECK_STRUCT(OptionAO, ao);
KeAcquireSpinLock(&OptionAO->ao_lock, &OldIrql);
if (AO_VALID(OptionAO)) { if (!AO_BUSY(OptionAO) && OptionAO->ao_usecnt == 0) { SET_AO_BUSY(OptionAO); KeReleaseSpinLock(&OptionAO->ao_lock, OldIrql);
Status = SetAOOptions(OptionAO, ID, OptLength, Options);
KeAcquireSpinLock(&OptionAO->ao_lock, &OldIrql); if (!AO_PENDING(OptionAO)) { CLEAR_AO_BUSY(OptionAO); KeReleaseSpinLock(&OptionAO->ao_lock, OldIrql); return Status; } else { KeReleaseSpinLock(&OptionAO->ao_lock, OldIrql); ProcessAORequests(OptionAO); return Status; } } else { AORequest *NewRequest, *OldRequest;
// The AddrObj is busy somehow. We need to get a request, and link
// him on the request list.
NewRequest = GetAORequest();
if (NewRequest != NULL) { // Got a request.
NewRequest->aor_rtn = Request->RequestNotifyObject; NewRequest->aor_context = Request->RequestContext; NewRequest->aor_id = ID; NewRequest->aor_length = OptLength; NewRequest->aor_buffer = Options; NewRequest->aor_next = NULL; // Set the option request.
SET_AO_REQUEST(OptionAO, AO_OPTIONS);
OldRequest = CONTAINING_RECORD(&OptionAO->ao_request, AORequest, aor_next);
while (OldRequest->aor_next != NULL) OldRequest = OldRequest->aor_next;
OldRequest->aor_next = NewRequest; KeReleaseSpinLock(&OptionAO->ao_lock, OldIrql);
return TDI_PENDING; } else Status = TDI_NO_RESOURCES; } } else Status = TDI_ADDR_INVALID;
KeReleaseSpinLock(&OptionAO->ao_lock, OldIrql); return Status; }
//* TDISetEvent - Set a handler for a particular event.
//
// This is the user API to set an event. It's pretty simple, we just
// grab the lock on the AddrObj and fill in the event.
//
// This routine never pends.
//
TDI_STATUS // Returns: TDI_SUCCESS if it works, an error if it doesn't.
TdiSetEvent( PVOID Handle, // Pointer to address object.
int Type, // Event being set.
PVOID Handler, // Handler to call for event.
PVOID Context) // Context to pass to event.
{ AddrObj *EventAO; KIRQL OldIrql; TDI_STATUS Status;
EventAO = (AddrObj *)Handle;
CHECK_STRUCT(EventAO, ao); if (!AO_VALID(EventAO)) return TDI_ADDR_INVALID;
KeAcquireSpinLock(&EventAO->ao_lock, &OldIrql);
Status = TDI_SUCCESS; switch (Type) {
case TDI_EVENT_CONNECT: EventAO->ao_connect = Handler; EventAO->ao_conncontext = Context; break; case TDI_EVENT_DISCONNECT: EventAO->ao_disconnect = Handler; EventAO->ao_disconncontext = Context; break; case TDI_EVENT_ERROR: EventAO->ao_error = Handler; EventAO->ao_errcontext = Context; break; case TDI_EVENT_RECEIVE: EventAO->ao_rcv = Handler; EventAO->ao_rcvcontext = Context; break; case TDI_EVENT_RECEIVE_DATAGRAM: EventAO->ao_rcvdg = Handler; EventAO->ao_rcvdgcontext = Context; break; case TDI_EVENT_RECEIVE_EXPEDITED: EventAO->ao_exprcv = Handler; EventAO->ao_exprcvcontext = Context; break;
case TDI_EVENT_ERROR_EX: EventAO->ao_errorex = Handler; EventAO->ao_errorexcontext = Context; break;
default: Status = TDI_BAD_EVENT_TYPE; break; }
KeReleaseSpinLock(&EventAO->ao_lock, OldIrql); return Status; }
//* ProcessAORequests - Process pending requests on an AddrObj.
//
// This is the delayed request processing routine, called when we've
// done something that used the busy bit. We examine the pending
// requests flags, and dispatch the requests appropriately.
//
void // Returns: Nothing.
ProcessAORequests( AddrObj *RequestAO) // AddrObj to be processed.
{ KIRQL OldIrql; AORequest *Request;
CHECK_STRUCT(RequestAO, ao); ASSERT(AO_BUSY(RequestAO)); ASSERT(RequestAO->ao_usecnt == 0);
KeAcquireSpinLock(&RequestAO->ao_lock, &OldIrql);
while (AO_PENDING(RequestAO)) { Request = RequestAO->ao_request;
if (AO_REQUEST(RequestAO, AO_DELETE)) { ASSERT(Request != NULL); ASSERT(!AO_REQUEST(RequestAO, AO_OPTIONS)); KeReleaseSpinLock(&RequestAO->ao_lock, OldIrql); DeleteAO(RequestAO); (*Request->aor_rtn)(Request->aor_context, TDI_SUCCESS, 0); FreeAORequest(Request); return; // Deleted him, so get out.
}
// Now handle options request.
while (AO_REQUEST(RequestAO, AO_OPTIONS)) { TDI_STATUS Status;
// Have an option request.
Request = RequestAO->ao_request; RequestAO->ao_request = Request->aor_next; if (RequestAO->ao_request == NULL) CLEAR_AO_REQUEST(RequestAO, AO_OPTIONS);
ASSERT(Request != NULL); KeReleaseSpinLock(&RequestAO->ao_lock, OldIrql);
Status = SetAOOptions(RequestAO, Request->aor_id, Request->aor_length, Request->aor_buffer); (*Request->aor_rtn)(Request->aor_context, Status, 0); FreeAORequest(Request);
KeAcquireSpinLock(&RequestAO->ao_lock, &OldIrql); }
// We've done options, now try sends.
if (AO_REQUEST(RequestAO, AO_SEND)) { DGSendProc SendProc; DGSendReq *SendReq;
// Need to send. Clear the busy flag, bump the send count, and
// get the send request.
if (!EMPTYQ(&RequestAO->ao_sendq)) { DEQUEUE(&RequestAO->ao_sendq, SendReq, DGSendReq, dsr_q); CLEAR_AO_BUSY(RequestAO); RequestAO->ao_usecnt++; SendProc = RequestAO->ao_dgsend; KeReleaseSpinLock(&RequestAO->ao_lock, OldIrql); (*SendProc)(RequestAO, SendReq); KeAcquireSpinLock(&RequestAO->ao_lock, &OldIrql); // If there aren't any other pending sends, set the busy bit.
if (!(--RequestAO->ao_usecnt)) SET_AO_BUSY(RequestAO); else break; // Still sending, so get out.
} else { // Had the send request set, but no send! Odd....
KdBreakPoint(); CLEAR_AO_REQUEST(RequestAO, AO_SEND); } } }
// We're done here.
CLEAR_AO_BUSY(RequestAO); KeReleaseSpinLock(&RequestAO->ao_lock, OldIrql); }
//* DelayDerefAO - Dereference an AddrObj, and schedule an event.
//
// Called when we are done with an address object, and need to
// derefrence it. We dec the usecount, and if it goes to 0 and
// if there are pending actions we'll schedule an event to deal
// with them.
//
void // Returns: Nothing.
DelayDerefAO( AddrObj *RequestAO) // AddrObj to be processed.
{ KIRQL OldIrql;
KeAcquireSpinLock(&RequestAO->ao_lock, &OldIrql);
RequestAO->ao_usecnt--;
if (!RequestAO->ao_usecnt && !AO_BUSY(RequestAO)) { if (AO_PENDING(RequestAO)) { SET_AO_BUSY(RequestAO); KeReleaseSpinLock(&RequestAO->ao_lock, OldIrql); ExQueueWorkItem(&RequestAO->ao_workitem, CriticalWorkQueue); return; } } KeReleaseSpinLock(&RequestAO->ao_lock, OldIrql); }
//* DerefAO - Derefrence an AddrObj.
//
// Called when we are done with an address object, and need to
// derefrence it. We dec the usecount, and if it goes to 0 and
// if there are pending actions we'll call the process AO handler.
//
void // Returns: Nothing.
DerefAO( AddrObj *RequestAO) // AddrObj to be processed.
{ KIRQL OldIrql;
KeAcquireSpinLock(&RequestAO->ao_lock, &OldIrql);
RequestAO->ao_usecnt--;
if (!RequestAO->ao_usecnt && !AO_BUSY(RequestAO)) { if (AO_PENDING(RequestAO)) { SET_AO_BUSY(RequestAO); KeReleaseSpinLock(&RequestAO->ao_lock, OldIrql); ProcessAORequests(RequestAO); return; } }
KeReleaseSpinLock(&RequestAO->ao_lock, OldIrql); }
#pragma BEGIN_INIT
//* InitAddr - Initialize the address object stuff.
//
// Called during init time to initalize the address object stuff.
//
int // Returns: True if we succeed, False if we fail.
InitAddr() { uint i;
KeInitializeSpinLock(&AddrObjTableLock); KeInitializeMutex(&AddrSDMutex, FALSE); if (MmIsThisAnNtAsSystem()) { #if defined(_WIN64)
AddrObjTableSize = DEFAULT_AO_TABLE_SIZE_AS64; #else
AddrObjTableSize = DEFAULT_AO_TABLE_SIZE_AS; #endif
} else { AddrObjTableSize = DEFAULT_AO_TABLE_SIZE_WS; }
AddrObjTable = ExAllocatePool(NonPagedPool, AddrObjTableSize * sizeof(AddrObj*)); if (AddrObjTable == NULL) { return FALSE; }
for (i = 0; i < AddrObjTableSize; i++) AddrObjTable[i] = NULL;
LastAO = NULL;
RtlInitializeBitMap(&PortBitmapTcp, PortBitmapBufferTcp, 1 << 16); RtlInitializeBitMap(&PortBitmapUdp, PortBitmapBufferUdp, 1 << 16); RtlClearAllBits(&PortBitmapTcp); RtlClearAllBits(&PortBitmapUdp);
return TRUE; } #pragma END_INIT
//* AddrUnload
//
// Cleanup and prepare the address management code for stack unload.
//
void AddrUnload(void) { ExFreePool(AddrObjTable); AddrObjTable = NULL; return; }
|