|
|
//------------------------------------------------------------------------------
// File: DMOBase.h
//
// Desc: A collection of DMO base classes.
//
// Copyright (c) 1999-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// Current hierarchy:
//
// IMediaObject
// |
// +-- C1in1outDMO - generic base class for DMOs with 1 in and 1 out
// | |
// | +-- FBRDMO - base class for fixed sample size, fixed bitrate DMOs
// | | |
// | | +-- CPCMDMO - base class for PCM audio DMOs
// | |
// | +-- C1for1DMO - base class for single sample per buffer 1-in/1-out DMOs
// | |
// | +-- C1for1QCDMO - adds IDMOQualityControl to C1for1DMO
// |
// +-- CGenericDMO - resonably generic base class for multi-input/output DMOs
//
#ifndef __DMOBASE_H_
#define __DMOBASE_H_
#include "dmo.h"
#include "assert.h"
#include "math.h"
//
// locking helper class
//
#ifdef DMO_NOATL
class CDMOAutoLock { public: CDMOAutoLock(CRITICAL_SECTION* pcs) : m_pcs(pcs) { EnterCriticalSection(m_pcs); } ~CDMOAutoLock() { LeaveCriticalSection(m_pcs); } private: CRITICAL_SECTION* m_pcs; }; #else
class CDMOAutoLock { public: CDMOAutoLock(CComAutoCriticalSection* pcs) : m_pcs(pcs) { m_pcs->Lock(); } ~CDMOAutoLock() { m_pcs->Unlock(); } private: CComAutoCriticalSection* m_pcs; }; #endif
//
// C1in1outDMO - generic base class for 1-input/1-output DMOs.
//
//
//
// C1in1outDMO implements all IMediaObject methods. The derived class
// customizes the DMO's behavior by overriding some or all of the following
// virtual functions:
//
// Main Streaming:
// AcceptInput // accept one new input buffer
// ProduceOutput // fill up one output buffer with new data
// AcceptingInput // check if DMO is ready for new input
// Other streaming:
// PrepareForStreaming // hook called after both types have been set
// Discontinuity // notify DMO of a discontinuity
// DoFlush // discard all data and start anew
// Mediatype negotiation:
// GetInputType // input type enumerator
// GetOutputType // output type enumerator
// CheckInputType // verifies proposed input type is acceptable
// CheckOutputType // verifies proposed output type is acceptable
// Buffer size negotiation:
// GetInputFlags // input data flow flags
// GetOutputFlags // output fata flow flags
// GetInputSizeInfo // input buffer size requirements
// GetOutputSizeInfo // output buffer size requirements
//
// This base class assumes that the derived class will not override any
// IMediaObject methods directly - the derived class should override the
// methods listed above instead.
//
//
//
// The base class provides a default implementation for each of the
// overridables listed above. However, to make a useful DMO the derived class
// probably needs to override at least the following two methods:
//
// HRESULT AcceptingInput();
// HRESULT AcceptInput(BYTE* pData,
// ULONG ulSize,
// DWORD dwFlags,
// REFERENCE_TIME rtTimestamp,
// REFERENCE_TIME rtTimelength,
// IMediaBuffer* pMediaBuffer);
// HRESULT ProduceOutput(BYTE *pData,
// ULONG ulAvail,
// ULONG* pulUsed,
// DWORD* pdwStatus,
// REFERENCE_TIME *prtTimestamp,
// REFERENCE_TIME *prtTimelength);
//
// All good DMOs should also override these (the default implementation
// simply accepts any mediatype, which in general is not good DMO behavior):
//
// HRESULT GetInputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT GetOutputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT CheckInputType(const DMO_MEDIA_TYPE *pmt);
// HRESULT CheckOutputType(const DMO_MEDIA_TYPE *pmt);
//
// DMOs that store data and/or state information may need to implement
//
// HRESULT PrepareForStreaming();
// HRESULT Discontinuity();
// HRESULT Flush();
//
// Finally, DMOs that make any buffer size assumptions will need to override
// these:
//
// HRESULT GetInputFlags(DWORD* pdwFlags);
// HRESULT GetOutputFlags(DWORD* pdwFlags);
// HRESULT GetInputSizeInfo(ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment);
// HRESULT GetOutputSizeInfo(ULONG *pulSize, ULONG *pulAlignment);
//
//
//
// The following functions are provided by this base class exclusively for use
// by the derived class. The derived class should call these to find out the
// currently set mediatype(s) whenever it needs to make a decision that
// depends on the mediatype used. Each of these returns NULL if the mediatype
// has not been set yet.
//
// DMO_MEDIA_TYPE *InputType();
// DMO_MEDIA_TYPE *OutputType().
//
#define PROLOGUE \
CDMOAutoLock l(&m_cs); \ if (ulStreamIndex >= 1) \ return DMO_E_INVALIDSTREAMINDEX
class C1in1outDMO : public IMediaObject { public: C1in1outDMO() : m_bInputTypeSet(FALSE), m_bOutputTypeSet(FALSE), m_bIncomplete(FALSE) { #ifdef DMO_NOATL
InitializeCriticalSection(&m_cs); #endif
} ~C1in1outDMO() {
FreeInputType(); FreeOutputType();
#ifdef DMO_NOATL
DeleteCriticalSection(&m_cs); #endif
}
public: //
// IMediaObject methods
//
STDMETHODIMP GetStreamCount(unsigned long *pulNumberOfInputStreams, unsigned long *pulNumberOfOutputStreams) { CDMOAutoLock l(&m_cs); if (pulNumberOfInputStreams == NULL || pulNumberOfOutputStreams == NULL) { return E_POINTER; } *pulNumberOfInputStreams = 1; *pulNumberOfOutputStreams = 1; return S_OK; } STDMETHODIMP GetInputStreamInfo(ULONG ulStreamIndex, DWORD *pdwFlags) { if( NULL == pdwFlags ) { return E_POINTER; }
PROLOGUE; return GetInputFlags(pdwFlags); } STDMETHODIMP GetOutputStreamInfo(ULONG ulStreamIndex, DWORD *pdwFlags) { if( NULL == pdwFlags ) { return E_POINTER; }
PROLOGUE; return GetOutputFlags(pdwFlags); } STDMETHODIMP GetInputType(ULONG ulStreamIndex, ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) { PROLOGUE; return GetInputType(ulTypeIndex, pmt); } STDMETHODIMP GetOutputType(ULONG ulStreamIndex, ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) { PROLOGUE; return GetOutputType(ulTypeIndex, pmt); } STDMETHODIMP GetInputCurrentType(ULONG ulStreamIndex, DMO_MEDIA_TYPE *pmt) { PROLOGUE;
if (m_bInputTypeSet) return MoCopyMediaType(pmt, &m_InputType); else return DMO_E_TYPE_NOT_SET; } STDMETHODIMP GetOutputCurrentType(ULONG ulStreamIndex, DMO_MEDIA_TYPE *pmt) { PROLOGUE;
if (m_bOutputTypeSet) return MoCopyMediaType(pmt, &m_OutputType); else return DMO_E_TYPE_NOT_SET; } STDMETHODIMP GetInputSizeInfo(ULONG ulStreamIndex, ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment) { if( (NULL == pulSize) || (NULL == pcbMaxLookahead) || (NULL == pulAlignment) ) { return E_POINTER; }
PROLOGUE;
if (!m_bInputTypeSet) return DMO_E_TYPE_NOT_SET; return GetInputSizeInfo(pulSize, pcbMaxLookahead, pulAlignment); } STDMETHODIMP GetOutputSizeInfo(ULONG ulStreamIndex, ULONG *pulSize, ULONG *pulAlignment) {
if( (NULL == pulSize) || (NULL == pulAlignment) ) { return E_POINTER; }
PROLOGUE;
if (!m_bOutputTypeSet) return DMO_E_TYPE_NOT_SET; return GetOutputSizeInfo(pulSize, pulAlignment); } STDMETHODIMP SetInputType(ULONG ulStreamIndex, const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) {
PROLOGUE;
HRESULT hr = ValidateSetTypeParameters(pmt, dwFlags); if (FAILED(hr)) { return hr; }
if (DMO_SET_TYPEF_CLEAR & dwFlags) { FreeInputType(); return NOERROR; } else { hr = CheckInputType(pmt); if (FAILED(hr)) return hr;
if (dwFlags & DMO_SET_TYPEF_TEST_ONLY) return NOERROR;
hr = AtomicCopyMediaType(pmt, &m_InputType, m_bInputTypeSet); if (FAILED(hr)) { return hr; }
m_bInputTypeSet = TRUE;
if (m_bOutputTypeSet) { hr = PrepareForStreaming(); if (FAILED(hr)) { FreeInputType(); return hr; } }
return NOERROR; } } STDMETHODIMP SetOutputType(ULONG ulStreamIndex, const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) { PROLOGUE;
HRESULT hr = ValidateSetTypeParameters(pmt, dwFlags); if (FAILED(hr)) { return hr; }
if (DMO_SET_TYPEF_CLEAR & dwFlags) { FreeOutputType(); return NOERROR; } else { hr = CheckOutputType(pmt); if (FAILED(hr)) return hr;
if (dwFlags & DMO_SET_TYPEF_TEST_ONLY) return NOERROR;
hr = AtomicCopyMediaType(pmt, &m_OutputType, m_bOutputTypeSet); if (FAILED(hr)) { return hr; }
m_bOutputTypeSet = TRUE;
if (m_bInputTypeSet) { hr = PrepareForStreaming(); if (FAILED(hr)) { FreeOutputType(); return hr; } }
return NOERROR; } } STDMETHODIMP GetInputStatus( ULONG ulStreamIndex, DWORD *pdwStatus ) {
if( NULL == pdwStatus ) { return E_POINTER; }
PROLOGUE;
*pdwStatus = 0; if (AcceptingInput() == S_OK) *pdwStatus |= DMO_INPUT_STATUSF_ACCEPT_DATA; return NOERROR;
} STDMETHODIMP GetInputMaxLatency(unsigned long ulStreamIndex, REFERENCE_TIME *prtLatency) { return E_NOTIMPL; } STDMETHODIMP SetInputMaxLatency(unsigned long ulStreamIndex, REFERENCE_TIME rtLatency) { return E_NOTIMPL; } STDMETHODIMP Discontinuity(ULONG ulStreamIndex) { PROLOGUE; return Discontinuity(); }
STDMETHODIMP Flush() { CDMOAutoLock l(&m_cs); DoFlush(); return NOERROR; } STDMETHODIMP AllocateStreamingResources() {return S_OK;} STDMETHODIMP FreeStreamingResources() {return S_OK;}
//
// Processing methods - public entry points
//
STDMETHODIMP ProcessInput( DWORD ulStreamIndex, IMediaBuffer *pBuffer, // [in], must not be NULL
DWORD dwFlags, // [in] - discontinuity, timestamp, etc.
REFERENCE_TIME rtTimestamp, // [in], valid if flag set
REFERENCE_TIME rtTimelength // [in], valid if flag set
) { PROLOGUE; if (!TypesSet()) { return DMO_E_TYPE_NOT_SET; } if (AcceptingInput() != S_OK) return DMO_E_NOTACCEPTING; if (!pBuffer) return E_POINTER;
// deal with the IMediaBuffer so the derived class doesn't have to
BYTE *pData; ULONG ulSize; HRESULT hr = pBuffer->GetBufferAndLength(&pData, &ulSize); if (FAILED(hr)) return hr; if (pData == NULL) ulSize = 0;
m_bIncomplete = TRUE; // new input means we may be able to produce output
return AcceptInput(pData, ulSize, dwFlags, rtTimestamp, rtTimelength, pBuffer); }
STDMETHODIMP ProcessOutput( DWORD dwReserved, DWORD ulOutputBufferCount, DMO_OUTPUT_DATA_BUFFER *pOutputBuffers, DWORD *pdwStatus) { HRESULT hr; CDMOAutoLock l(&m_cs);
if (pdwStatus == NULL) { return E_POINTER; }
*pdwStatus = 0;
if (ulOutputBufferCount != 1) return E_INVALIDARG;
if (!TypesSet()) { return DMO_E_TYPE_NOT_SET; }
pOutputBuffers[0].dwStatus = 0;
// deal with the IMediaBuffer so the derived class doesn't have to
BYTE *pOut; ULONG ulSize; ULONG ulAvail;
if (pOutputBuffers[0].pBuffer) { hr = pOutputBuffers[0].pBuffer->GetBufferAndLength(&pOut, &ulSize); if (FAILED(hr)) return hr; hr = pOutputBuffers[0].pBuffer->GetMaxLength(&ulAvail); if (FAILED(hr)) return hr;
if (ulSize) { // skip any already used portion of the buffer
if (ulSize > ulAvail) return E_INVALIDARG; ulAvail -= ulSize; pOut += ulSize; } } else { // no IMediaBuffer
//
// If (a) the output stream says it can operate without buffers, AND
// (b) the DISCARD flag was set in dwReserved,
// then call ProduceOutput with a NULL output buffer pointer.
//
// Otherwise just return the INCOMPLETE flag without any processing.
//
DWORD dwFlags; if (SUCCEEDED(GetOutputFlags(&dwFlags)) && ((dwFlags & DMO_OUTPUT_STREAMF_DISCARDABLE) || (dwFlags & DMO_OUTPUT_STREAMF_OPTIONAL) ) && (dwReserved & DMO_PROCESS_OUTPUT_DISCARD_WHEN_NO_BUFFER)) { // process, but discard the output
pOut = NULL; ulAvail = 0; } else { // just report the incomplete status without altering our state
if (m_bIncomplete) pOutputBuffers[0].dwStatus |= DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE; return NOERROR; } }
ULONG ulProduced = 0; hr = ProduceOutput(pOut, ulAvail, &ulProduced, &(pOutputBuffers[0].dwStatus), &(pOutputBuffers[0].rtTimestamp), &(pOutputBuffers[0].rtTimelength)); if (FAILED(hr)) return hr;
HRESULT hrProcess = hr; // remember this in case it's S_FALSE
// remember the DMO's incomplete status
if (pOutputBuffers[0].dwStatus & DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE) m_bIncomplete = TRUE; else m_bIncomplete = FALSE;
if (pOut) { // if using an output buffer, set the amount we used
if (ulProduced > ulAvail) return E_FAIL;
hr = pOutputBuffers[0].pBuffer->SetLength(ulSize + ulProduced); if (FAILED(hr)) return hr; }
return hrProcess; } #ifdef FIX_LOCK_NAME
STDMETHODIMP DMOLock(LONG lLock) #else
STDMETHODIMP Lock(LONG lLock) #endif
{ if (lLock) { #ifdef DMO_NOATL
EnterCriticalSection(&m_cs); #else
m_cs.Lock(); #endif
} else { #ifdef DMO_NOATL
LeaveCriticalSection(&m_cs); #else
m_cs.Unlock(); #endif
} return S_OK; }
protected: HRESULT AtomicCopyMediaType(const DMO_MEDIA_TYPE *pmtSource, DMO_MEDIA_TYPE *pmtDestination, BOOL bDestinationInitialized) {
// pmtDestination should always point to a valid DMO_MEDIA_TYPE structure.
assert(NULL != pmtDestination);
DMO_MEDIA_TYPE mtTempDestination;
// actually set the type
HRESULT hr = MoCopyMediaType(&mtTempDestination, pmtSource); if (FAILED(hr)) { return hr; }
// Free any previous mediatype
if (bDestinationInitialized) { MoFreeMediaType(pmtDestination); }
*pmtDestination = mtTempDestination;
return S_OK; }
//
// private methods for use by derived class
//
DMO_MEDIA_TYPE *InputType() { if (m_bInputTypeSet) return &m_InputType; else return NULL; } DMO_MEDIA_TYPE *OutputType() { if (m_bOutputTypeSet) return &m_OutputType; else return NULL; }
protected: //
// To be overriden by the derived class
//
virtual HRESULT GetInputFlags(DWORD* pdwFlags) { *pdwFlags = 0; // default implementation assumes no lookahead
return NOERROR; } virtual HRESULT GetOutputFlags(DWORD* pdwFlags) { *pdwFlags = 0; return NOERROR; }
virtual HRESULT GetInputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) { return DMO_E_NO_MORE_ITEMS; // default implementation exposes no types
} virtual HRESULT GetOutputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) { return DMO_E_NO_MORE_ITEMS; // default implementation exposes no types
} virtual HRESULT CheckInputType(const DMO_MEDIA_TYPE *pmt) { if ((pmt == NULL) || ((pmt->cbFormat > 0) && (pmt->pbFormat == NULL))) return E_POINTER; return S_OK; // default implementation accepts anything
} virtual HRESULT CheckOutputType(const DMO_MEDIA_TYPE *pmt) { if ((pmt == NULL) || ((pmt->cbFormat > 0) && (pmt->pbFormat == NULL))) return E_POINTER; return S_OK; // default implementation accepts anything
}
virtual HRESULT GetInputSizeInfo(ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment) { *pulSize = 1; // default implementation imposes no size requirements
*pcbMaxLookahead = 0; // default implementation assumes no lookahead
*pulAlignment = 1; // default implementation assumes no alignment
return NOERROR; } virtual HRESULT GetOutputSizeInfo(ULONG *pulSize, ULONG *pulAlignment) { *pulSize = 1; // default implementation imposes no size requirements
*pulAlignment = 1; // default implementation assumes no alignment
return NOERROR; }
virtual HRESULT PrepareForStreaming() { return NOERROR; } virtual HRESULT AcceptingInput() { return S_FALSE; } virtual HRESULT Discontinuity() { return NOERROR; } virtual HRESULT DoFlush() { return NOERROR; }
virtual HRESULT AcceptInput(BYTE* pData, ULONG ulSize, DWORD dwFlags, REFERENCE_TIME rtTimestamp, REFERENCE_TIME rtTimelength, IMediaBuffer* pMediaBuffer ) { m_bIncomplete = FALSE; return S_FALSE; } virtual HRESULT ProduceOutput(BYTE *pData, ULONG ulAvail, ULONG* pulUsed, DWORD* pdwStatus, REFERENCE_TIME *prtTimestamp, REFERENCE_TIME *prtTimelength ) { *pulUsed = 0; return S_FALSE; }
HRESULT ValidateSetTypeParameters(const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) { // Validate parameters.
if (!(DMO_SET_TYPEF_CLEAR & dwFlags)) { // The DMO specification states that pmt CANNOT be NULL if
// the DMO_SET_TYPEF_CLEAR flag is NOT set.
if (NULL == pmt) { return E_POINTER; } }
// The caller cannot set the DMO_SET_TYPEF_CLEAR flag and the
// DMO_SET_TYPEF_TEST_ONLY flag. The DMO specification prohibits
// this combination because the two flags are mutually exclusive.
if ((DMO_SET_TYPEF_CLEAR & dwFlags) && (DMO_SET_TYPEF_TEST_ONLY & dwFlags)) { return E_INVALIDARG; }
// Check for illegal flags.
if (~(DMO_SET_TYPEF_CLEAR | DMO_SET_TYPEF_TEST_ONLY) & dwFlags) { return E_INVALIDARG; }
return S_OK; }
bool TypesSet() { return m_bInputTypeSet && m_bOutputTypeSet; }
void FreeInputType() { if (m_bInputTypeSet) { MoFreeMediaType( &m_InputType ); m_bInputTypeSet = FALSE; } }
void FreeOutputType() { if (m_bOutputTypeSet) { MoFreeMediaType( &m_OutputType ); m_bOutputTypeSet = FALSE; } }
protected: // mediatype stuff
BOOL m_bInputTypeSet; BOOL m_bOutputTypeSet; DMO_MEDIA_TYPE m_InputType; DMO_MEDIA_TYPE m_OutputType;
BOOL m_bIncomplete; protected: #ifdef DMO_NOATL
CRITICAL_SECTION m_cs; #else
CComAutoCriticalSection m_cs; #endif
};
//
// C1for1DMO - base class for 1-input/1-output DMOs which
// - work on whole samples at a time, one sample per buffer
// - produce exactly one output sample for every input sample
// - don't need to accumulate more than 1 input sample before producing
// - don't produce any additional stuff at the end
// - the output sample corresponds in time to the input sample
//
// The derived class must implement:
// HRESULT Process(BYTE* pIn,
// ULONG ulBytesIn,
// BYTE* pOut,
// ULONG* pulProduced);
// HRESULT GetSampleSizes(ULONG* pulMaxInputSampleSize,
// ULONG* pulMaxOutputSampleSize);
//
//
// The derived class should implement:
// HRESULT GetInputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT GetOutputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT CheckInputType(const DMO_MEDIA_TYPE *pmt);
// HRESULT CheckOutputType(const DMO_MEDIA_TYPE *pmt);
//
// The derived class may implement if it needs to:
// HRESULT Init();
//
// The following methods are implemented by the base class. The derived class
// should call these to find out if the input/output type has been set and if
// so what it was set to.
// DMO_MEDIA_TYPE *InputType();
// DMO_MEDIA_TYPE *OutputType().
//
class C1for1DMO : public C1in1outDMO { public: C1for1DMO() : m_pBuffer(NULL) { } ~C1for1DMO() { if (m_pBuffer) m_pBuffer->Release(); }
protected: //
// Implement C1in1outDMO overridables
//
virtual HRESULT GetInputFlags(DWORD* pdwFlags) { *pdwFlags = DMO_INPUT_STREAMF_WHOLE_SAMPLES | DMO_INPUT_STREAMF_SINGLE_SAMPLE_PER_BUFFER; return NOERROR; } virtual HRESULT GetOutputFlags(DWORD* pdwFlags) { *pdwFlags = DMO_OUTPUT_STREAMF_WHOLE_SAMPLES | DMO_OUTPUT_STREAMF_SINGLE_SAMPLE_PER_BUFFER; return NOERROR; }
HRESULT GetInputSizeInfo(ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment) { HRESULT hr = GetSampleSizes(&m_ulMaxInputSize, &m_ulMaxOutputSize); if (FAILED(hr)) return hr;
*pulSize = m_ulMaxInputSize; *pcbMaxLookahead = 0; *pulAlignment = 1; return NOERROR; } HRESULT GetOutputSizeInfo(ULONG *pulSize, ULONG *pulAlignment) { HRESULT hr = GetSampleSizes(&m_ulMaxInputSize, &m_ulMaxOutputSize); if (FAILED(hr)) return hr;
*pulSize = m_ulMaxOutputSize; *pulAlignment = 1; return NOERROR; } HRESULT PrepareForStreaming() { HRESULT hr = GetSampleSizes(&m_ulMaxInputSize, &m_ulMaxOutputSize); if (FAILED(hr)) return hr;
return Init(); } HRESULT AcceptingInput() { return m_pBuffer ? S_FALSE : S_OK; // accept unless holding one already
} HRESULT AcceptInput(BYTE* pData, ULONG ulSize, DWORD dwFlags, REFERENCE_TIME rtTimestamp, REFERENCE_TIME rtTimelength, IMediaBuffer* pMediaBuffer ) { if (AcceptingInput() != S_OK) return E_FAIL; m_pData = pData; m_ulSize = ulSize; m_dwFlags = dwFlags; m_rtTimestamp = rtTimestamp; m_rtTimelength = rtTimelength; m_pBuffer = pMediaBuffer; pMediaBuffer->AddRef(); return NOERROR; } HRESULT DoFlush() { Discontinuity(); if (m_pBuffer) { m_pBuffer->Release(); m_pBuffer = NULL; } return NOERROR; } HRESULT ProduceOutput(BYTE *pOut, ULONG ulAvail, ULONG* pulUsed, DWORD* pdwStatus, REFERENCE_TIME *prtTimestamp, REFERENCE_TIME *prtTimelength ) { *pulUsed = 0; *pdwStatus = 0;
if (!m_pBuffer) return S_FALSE;
if (pOut) { if (ulAvail < m_ulMaxOutputSize) return E_INVALIDARG; }
HRESULT hr = Process(m_pData, m_ulSize, pOut, pulUsed);
m_pBuffer->Release(); m_pBuffer = NULL;
if (FAILED(hr)) return hr;
if (*pulUsed == 0) return S_FALSE;
if (m_dwFlags & DMO_INPUT_DATA_BUFFERF_SYNCPOINT) *pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_SYNCPOINT; if (m_dwFlags & DMO_INPUT_DATA_BUFFERF_TIME) *pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_TIME; if (m_dwFlags & DMO_INPUT_DATA_BUFFERF_TIMELENGTH) *pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_TIMELENGTH; *prtTimestamp = m_rtTimestamp; *prtTimelength = m_rtTimelength;
return hr; } protected: //
// To be implemented by derived class
//
virtual HRESULT Process(BYTE* pIn, ULONG ulBytesIn, BYTE* pOut, ULONG* pulProduced) = 0; virtual HRESULT GetSampleSizes(ULONG* pulMaxInputSampleSize, ULONG* pulMaxOutputSampleSize) = 0; virtual HRESULT Init() { return NOERROR; }
IMediaBuffer* m_pBuffer; BYTE* m_pData; ULONG m_ulSize; DWORD m_dwFlags; REFERENCE_TIME m_rtTimestamp; REFERENCE_TIME m_rtTimelength;
ULONG m_ulMaxOutputSize; ULONG m_ulMaxInputSize; };
//
// C1for1QCDMO - adds an IDMOQualityControl implementation to C1for1DMO. Just like
// C1for1DMO, this base class assumes that the DMO produces exactly one output sample
// for each input sample, etc. etc.
//
// A class that derives from C1for1QCDMO has access to / ability to override all
// the same methods as with C1for1DMO, except
// (1) A class derived from C1for1QCDMO should override QCProcess instead of
// Process because C1for1QCDMO::Process implements some code required for
// quality control. QCProcess has the same prototype as C1for1DMO::Process.
// (2) If a class derived from C1for1QCDMO overrides Init(), it should at some
// point call C1for1QCDMO::Init() to make sure C1for1QCDMO's quality control
// data members are properly initialized.
//
class C1for1QCDMO : public C1for1DMO, public IDMOQualityControl { public: //
// IDMOQualityControl
//
STDMETHODIMP SetNow(REFERENCE_TIME rtNow) { // Remember SetNow values even if quality control is not currently enabled
DWORD dwTicks = GetTickCount(); CDMOAutoLock l(&m_cs); m_rtNow = rtNow; m_dwNow = dwTicks; return NOERROR; } STDMETHODIMP SetStatus(DWORD dwFlags) { // Any point in grabbing the object lock here ?
if (dwFlags & DMO_QUALITY_STATUS_ENABLED) m_bQualityControlEnabled = TRUE; else m_bQualityControlEnabled = FALSE; return NOERROR; } STDMETHODIMP GetStatus(DWORD *pdwFlags) { // Any point in grabbing the object lock here ?
if (m_bQualityControlEnabled) *pdwFlags = DMO_QUALITY_STATUS_ENABLED; else *pdwFlags = 0; return NOERROR; }
protected: HRESULT Init() { m_bQualityControlEnabled = FALSE; m_rtProcess = 100000; // 10 ms - initial guess at processing time
return NOERROR; }
// Override Process to add quality control
HRESULT Process(BYTE* pIn,ULONG ulBytesIn,BYTE* pOut,ULONG* pulProduced) { // Skip the sample if it is likely to be late.
if (m_bQualityControlEnabled && (m_dwFlags & DMO_INPUT_DATA_BUFFERF_TIME) && // timestamp present
(m_rtNow + (GetTickCount() - m_dwNow) * 10000 + m_rtProcess > m_rtTimestamp + 0000000)) { *pulProduced = 0; return S_FALSE; }
DWORD dwBefore = GetTickCount(); HRESULT hr = QCProcess(m_pData, m_ulSize, pOut, pulProduced); DWORD dwAfter = GetTickCount();
// Make the new m_rtProcess a weighted average of the old m_rtProcess
// and the value we just got. 0.8 and 0.2 give a time constant of about 4,
// and it takes about 10 iterations to reach 90% - seems reasonable, but
// I don't know what the optimal value is.
m_rtProcess = (REFERENCE_TIME)(0.8 * m_rtProcess + 0.2 * (((REFERENCE_TIME)(dwAfter - dwBefore)) * 10000)); return hr; }
// To be implemented by derived class
virtual HRESULT QCProcess(BYTE* pIn, ULONG ulBytesIn, BYTE* pOut, ULONG* pulProduced) = 0;
private: // variables used by quality control code
BOOL m_bQualityControlEnabled; REFERENCE_TIME m_rtNow; DWORD m_dwNow; REFERENCE_TIME m_rtProcess; // average processing delay
};
//
// CFBRDMO - DMO base class for 'fixed bitrate' DMOs. More specifically,
// this base class assumes the following:
// - 1 input, 1 output;
// - both input and output consist of equally sized 'quanta';
// - input/output quantum sizes can be determined from mediatypes;
// - each output quantum can be generated independently (without looking at
// previous output quanta);
// - if multiple input quanta are needed to generate a particular output
// quantum ('window overhead'), then the range of input required has an upper
// bound derived from mediatypes on both sides (i.e., both 'lookahead'
// and 'input memory' are bounded).
//
// The derived class must implement the following virtual functions:
// HRESULT FBRProcess(DWORD cQuanta, BYTE *pIn, BYTE *pOut);
// HRESULT GetStreamingParams(
// DWORD *pdwInputQuantumSize, // in bytes
// DWORD *pdwOutputQuantumSize, // in bytes
// DWORD *pdwMaxLookahead, // in input quanta, 0 means no lookahead
// DWORD *pdwLookBehind,
// REFERENCE_TIME *prtQuantumDuration, // same for input and output quanta
// REFERENCE_TIME *prtDurationDenominator // optional, normally 1
// );
// The derived class should also implement the following:
// HRESULT GetInputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT GetOutputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT CheckInputType(const DMO_MEDIA_TYPE *pmt);
// HRESULT CheckOutputType(const DMO_MEDIA_TYPE *pmt);
// The derived class may need to implement the followng:
// HRESULT Init();
// HRESULT Discontinuity();
//
// The derived class may use these entry points into the base class to get
// the currently set mediatypes:
// DMO_MEDIA_TYPE *InputType();
// DMO_MEDIA_TYPE *OutputType().
//
// The sum of *pdwMaxLookahead and *pdwLoookbehind is the 'window overhead' of
// the algorithm (the window overhead is 0 if the algorithm only needs the
// current input sample).
//
// Because the non-zero window overhead case is more complicated, it is handled by a
// separate set of functions in this base class. The names of all non-zero
// window overhead functions have the 'NZWO' prefix. The names of the
// zero window overhead functions begin with 'ZWO'.
//
// A data copy on the input side is necessary in the non-zero window overhead case.
//
class CFBRDMO : public C1in1outDMO { public: CFBRDMO() : m_bParametersSet(FALSE), m_pMediaBuffer(NULL), m_pAllocAddr(NULL), m_bStreaming(FALSE) { } ~CFBRDMO() { /*
if (m_bStreaming) StopStreaming(); */ if (m_pAllocAddr) delete[] m_pAllocAddr; if (m_pMediaBuffer) m_pMediaBuffer->Release(); }
protected: //
// Implement C1in1outDMO overridables
//
HRESULT GetInputSizeInfo(ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment) { if (!(InputType() && OutputType())) return DMO_E_TYPE_NOT_SET; //
// For efficiency reasons we might like to be fed fairly large amounts
// of data at a time, but technically all we need is one quantum.
//
*pulSize = m_ulInputQuantumSize; *pcbMaxLookahead = 0; // this base class does not rely on HOLDS_BUFFERS
*pulAlignment = 1; return NOERROR; } HRESULT GetOutputSizeInfo(ULONG *pulSize, ULONG *pulAlignment) { if (!(InputType() && OutputType())) return DMO_E_TYPE_NOT_SET; *pulSize = m_ulOutputQuantumSize; *pulAlignment = 1; return NOERROR; }
virtual HRESULT Discontinuity() { m_bDiscontinuity = TRUE; return NOERROR; }
virtual HRESULT AcceptInput(BYTE* pData, ULONG ulSize, DWORD dwFlags, REFERENCE_TIME rtTimestamp, REFERENCE_TIME rtTimelength, IMediaBuffer* pBuffer ) { BOOL bTimestamp = (dwFlags & DMO_INPUT_DATA_BUFFERF_TIME) ? TRUE : FALSE;
if (m_ulWindowOverhead) return NZWOProcessInput(pBuffer, pData, ulSize, bTimestamp, rtTimestamp); else return ZWOProcessInput(pBuffer, pData, ulSize, bTimestamp, rtTimestamp); } virtual HRESULT ProduceOutput(BYTE *pOut, ULONG ulAvail, ULONG* pulUsed, DWORD* pdwStatus, REFERENCE_TIME *prtTimestamp, REFERENCE_TIME *prtTimelength ) { HRESULT hr; if (!m_bParametersSet) return DMO_E_TYPE_NOT_SET;
// call Discontinuity() if this is the first ProcessOutput() call
if (!m_bStreaming) { HRESULT hr = Discontinuity(); if (FAILED(hr)) return hr; m_bStreaming = TRUE; }
*pdwStatus = 0;
ULONG ulInputQuantaAvailable = InputQuantaAvailable(); if (!ulInputQuantaAvailable) return S_FALSE; // did not produce anything
ULONG ulOutputQuantaPossible = ulAvail / m_ulOutputQuantumSize; if (!ulOutputQuantaPossible) return E_INVALIDARG;
ULONG ulQuantaToProcess = min(ulOutputQuantaPossible, ulInputQuantaAvailable); assert(ulQuantaToProcess > 0);
BOOL bTimestamp; if (m_ulWindowOverhead) hr = NZWOProcessOutput(pOut, ulQuantaToProcess, &bTimestamp, prtTimestamp); else hr = ZWOProcessOutput(pOut, ulQuantaToProcess, &bTimestamp, prtTimestamp); if (FAILED(hr)) return hr;
*pulUsed = ulQuantaToProcess * m_ulOutputQuantumSize;
*pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_SYNCPOINT; if (bTimestamp) *pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_TIME;
// any data left ?
if (InputQuantaAvailable()) // yes - set incomplete
*pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE; else if (m_bDiscontinuity) // no - process any discontinuity
DoFlush();
return NOERROR; } HRESULT DoFlush() { Discontinuity();
// reset flags
m_bDiscontinuity = FALSE; m_bTimestamps = FALSE;
if (m_ulWindowOverhead) NZWODiscardData(); else ZWODiscardData();
return NOERROR; } HRESULT AcceptingInput() { if (!m_bParametersSet) // uninitialized
return S_FALSE;
BOOL bResult; if (m_ulWindowOverhead) bResult = NZWOQueryAccept(); else bResult = ZWOQueryAccept();
return bResult ? S_OK : S_FALSE; } // End C1in1out overridables implementation
private: //
// Common private code (window overhead or no window overhead)
//
// returns the number of input quanta available minus any window overhead
ULONG InputQuantaAvailable() { if (m_ulWindowOverhead) return NZWOAvail(); else return ZWOAvail(); }
// Private method to compute/allocate stuff once all types have been set.
HRESULT PrepareForStreaming () { m_bParametersSet = FALSE; // Now that both types are set, query the derived class for params
HRESULT hr; if (FAILED(hr = GetStreamingParams(&m_ulInputQuantumSize, &m_ulOutputQuantumSize, &m_ulLookahead, &m_ulLookbehind, &m_rtDurationNumerator, &m_rtDenominator))) return hr;
// m_ulOutputQuantumSize and m_ulInputQuantumSize should never be 0.
assert( (0 != m_ulInputQuantumSize) && (0 != m_ulOutputQuantumSize) );
if (!m_rtDenominator) { assert(!"bad object - duration denominator should not be 0 !"); return E_FAIL; } // Attempt to reduce the fraction. Probably the most complicated number
// we will ever see is 44100 = (3 * 7 * 2 * 5) ^ 2, so trying the first
// few numbers should suffice in most cases.
DWORD dwP[] = {2,3,5,7,11,13,17,19,23,29,31}; for (DWORD c = 0; c < sizeof(dwP) / sizeof(DWORD); c++) { while ((m_rtDurationNumerator % dwP[c] == 0) && (m_rtDenominator % dwP[c] == 0)) { m_rtDurationNumerator /= dwP[c]; m_rtDenominator /= dwP[c]; } }
// We cannot afford to have huge denominators, unfortunately, because
// we store timestamp numerators using 64 bits, so a large denominator
// could result in timestamp overflows. So if the denominator is still
// too large, reduce it anyway with loss of precision.
ULONG ulMax = 0x10000; // largest acceptable denominator value
if (m_rtDenominator >= ulMax) { double actual_ratio = (double)m_rtDurationNumerator * (double)m_rtDenominator; ULONG ulDenominator = 1; // Repeatedly increase the denominator until either the actual ratio
// can be represented precisely using the denominator, or the
// denominator gets too large.
do { double fractional_part = actual_ratio * (double)ulDenominator - floor(actual_ratio * (double)ulDenominator); if (fractional_part == 0) break; ULONG ulNewDenominator = (ULONG)floor(ulDenominator / fractional_part); if (ulNewDenominator >= ulMax) break; ulDenominator = ulNewDenominator; } while(1); m_rtDurationNumerator = (ULONG)floor(actual_ratio * ulDenominator); m_rtDenominator = ulDenominator; }
m_ulWindowOverhead = m_ulLookahead + m_ulLookbehind; if (!m_ulWindowOverhead) // No window overhead - the simple case
m_bParametersSet = TRUE; else // The complicated case with window overhead
AllocateCircularBuffer();
m_bTimestamps = FALSE; m_bDiscontinuity = FALSE;
if (m_bStreaming) { //StopStreaming();
m_bStreaming = FALSE; } hr = Init(); if( FAILED( hr ) ) { m_bParametersSet = FALSE; return hr; }
return m_bParametersSet ? NOERROR : E_FAIL; } // end common code
//
// zero window overhead case code
//
HRESULT ZWOProcessInput(IMediaBuffer* pBuffer, BYTE* pData, ULONG ulSize, BOOL bTimestamp, REFERENCE_TIME rtTimestamp) { assert(!m_pMediaBuffer);
m_bTimestamp = bTimestamp; m_rtTimestamp = rtTimestamp; m_pData = pData; m_ulData = ulSize; m_ulUsed = 0;
// make sure they gave us a meaningful amount of data
if (m_ulData < m_ulInputQuantumSize) return S_FALSE;
// save the buffer we were given
m_pMediaBuffer = pBuffer; pBuffer->AddRef(); return NOERROR; } HRESULT ZWOProcessOutput(BYTE* pOut, ULONG ulQuantaToProcess, BOOL* pbTimestamp, REFERENCE_TIME* prtTimestamp) { assert(m_ulUsed % m_ulInputQuantumSize == 0); HRESULT hr = FBRProcess(ulQuantaToProcess, m_pData + m_ulUsed, pOut); if (FAILED(hr)) return hr; ZWOConsume(ulQuantaToProcess);
if (m_bTimestamp) { // there was a timestamp on this input buffer
// m_rtTimestamp refers to the beginning of the input buffer.
// Extrapolate to the beginning of the area we just processed.
*prtTimestamp = m_rtTimestamp + (m_ulUsed % m_ulInputQuantumSize) * m_rtDurationNumerator / m_rtDenominator; *pbTimestamp = TRUE; } else if (m_bTimestamps) { // there was a timestamp earlier
// should we extrapolate from a previous timestamp ?
*pbTimestamp = FALSE; } else // no timestamps at all
*pbTimestamp = FALSE;
return NOERROR; } ULONG ZWOAvail() { if (m_pMediaBuffer) { assert(m_ulData - m_ulUsed >= m_ulInputQuantumSize); return (m_ulData - m_ulUsed) / m_ulInputQuantumSize; } else return 0; } void ZWOConsume(ULONG ulN) { // the zero window overhead version
assert(m_pMediaBuffer); m_ulUsed += ulN * m_ulInputQuantumSize; assert(m_ulData >= m_ulUsed); if (m_ulData - m_ulUsed < m_ulInputQuantumSize) { m_pMediaBuffer->Release(); m_pMediaBuffer = NULL; } } BOOL ZWOQueryAccept() { // Accept if and only if (IFF) the DMO is not already holding a buffer.
if (!m_pMediaBuffer) return TRUE; else return FALSE; } void ZWODiscardData() { if (m_pMediaBuffer) { m_pMediaBuffer->Release(); m_pMediaBuffer = NULL; } } // End zero window overhead case code
//
// Non zero window overhead case code.
//
HRESULT NZWOProcessInput(IMediaBuffer* pBuffer, BYTE* pData, ULONG ulSize, BOOL bTimestamp, REFERENCE_TIME rtTimestamp) { if (bTimestamp) { // process the timestamp
if (!m_bTimestamps) { // this is the first timestamp we've seen
// Just getting started - initialize the timestamp to refer to
// the first input quantum for which we will actually generate
// output (the first m_ulLookbehind quanta are pure lookbehind and
// generate no output).
m_rtTimestampNumerator = rtTimestamp * m_rtDenominator + m_ulLookbehind * m_rtDurationNumerator;
} else { // We are already streaming and just got a new timestamp. Use it
// to check if our stored timestamp has somehow drifted away from
// where it should be and adjust if it is far enough off.
ULONG ulInputQuantaAvailable = InputQuantaAvailable(); if (ulInputQuantaAvailable) { // ulInputQuantaAvailable is how far back in time the next
// quantum we would process is located relative the beginning
// of the new buffer we just received.
// Compute what the timestamp back there ought to be now.
REFERENCE_TIME rtTimestampNumerator; rtTimestampNumerator = m_rtDenominator * rtTimestamp - ulInputQuantaAvailable * m_rtDurationNumerator;
// Adjust the stored timestamp if it is off by more than half
// the duration of a quantum. Should also have a DbgLog here.
if ((m_rtTimestampNumerator >= rtTimestampNumerator + m_rtDurationNumerator / 2) || (m_rtTimestampNumerator <= rtTimestampNumerator - m_rtDurationNumerator / 2)) { m_rtTimestampNumerator = rtTimestampNumerator; } } else { // We must still be accumulating the initial window overhead.
// Too early to need an adjustment, one would hope.
} } m_bTimestamps = TRUE; }
if (BufferUsed() + ulSize > m_ulBufferAllocated) return E_FAIL; // need a max input size to prevent this
// append to our buffer
AppendData(pData, ulSize);
// are we ready to produce now ?
if (NZWOAvail()) return NOERROR; else return S_FALSE; // no output can be produced yet
} HRESULT NZWOProcessOutput(BYTE* pOut, ULONG ulQuantaToProcess, BOOL* pbTimestamp, REFERENCE_TIME* prtTimestamp) { //
// Handle any timestamps
//
if (m_bTimestamps) { // In window overhead mode the stored timestamp refers to the input
// data immediately after lookbehind, which corresponds to the
// begining of the output buffer by definition of FDRProcess.
*prtTimestamp = m_rtTimestampNumerator / m_rtDenominator; *pbTimestamp = TRUE;
} else *pbTimestamp = FALSE;
//
// Handle the data
//
HRESULT hr; ULONG ulInputNeeded = m_ulInputQuantumSize * (ulQuantaToProcess + m_ulWindowOverhead); assert(ulInputNeeded < BufferUsed()); if (m_ulDataHead + ulInputNeeded <= m_ulBufferAllocated) { // No wraparound, everything is easy
hr = FBRProcess(ulQuantaToProcess, m_pCircularBuffer + m_ulDataHead + m_ulLookbehind * m_ulInputQuantumSize, pOut); if (FAILED(hr)) return hr; NZWOConsume(ulQuantaToProcess); } else { // The data we want to send wraps around the end
// Q.: does it wrap around inside the window overhead area
// or inside the main data area ?
if (m_ulDataHead + m_ulWindowOverhead * m_ulInputQuantumSize < m_ulBufferAllocated) { // The wraparound occurs inside the main data area. Advance the
// window overhead up to the wraparound point by processing some data.
ULONG ulAdvance = m_ulBufferAllocated - (m_ulDataHead + m_ulWindowOverhead * m_ulInputQuantumSize); assert(ulAdvance % m_ulInputQuantumSize == 0); ulAdvance /= m_ulInputQuantumSize; // convert to quanta
assert(ulAdvance > 0); assert(ulAdvance < ulQuantaToProcess); hr = FBRProcess(ulAdvance, m_pCircularBuffer + m_ulDataHead + m_ulLookbehind * m_ulInputQuantumSize, pOut); if (FAILED(hr)) return hr; NZWOConsume(ulAdvance);
// Adjust stuff so that the code below can act
// as if this extra process call never happened.
pOut += m_ulOutputQuantumSize * ulAdvance; ulQuantaToProcess -= ulAdvance; assert(ulQuantaToProcess > 0);
// Now the wraparound point should be exactly on the boundary
// between window overhead and main data.
assert(m_ulDataHead + m_ulWindowOverhead * m_ulInputQuantumSize == m_ulBufferAllocated); } // wraparound in main data
// When we get here, the wraparound point occurs somewhere inside
// the window overhead area or right on the border between window overhead and
// main data.
assert(m_ulDataHead + m_ulWindowOverhead * m_ulInputQuantumSize >= m_ulBufferAllocated); ULONG ulLookaheadToCopy = m_ulBufferAllocated - m_ulDataHead;
// copy to the special area we reserved at the front
memcpy(m_pCircularBuffer - ulLookaheadToCopy, m_pCircularBuffer + m_ulDataHead, ulLookaheadToCopy);
// Now the block we are interested in is all in one piece
hr = FBRProcess(ulQuantaToProcess, m_pCircularBuffer - ulLookaheadToCopy + m_ulLookbehind * m_ulInputQuantumSize, pOut); if (FAILED(hr)) return hr; NZWOConsume(ulQuantaToProcess); } // data handling - wraparound case
return NOERROR; } void AllocateCircularBuffer() { // free any previously allocated input buffer
if (m_pAllocAddr) delete[] m_pAllocAddr;
// need a better way to decide this number
m_ulBufferAllocated = max(m_ulInputQuantumSize * 16, 65536L); m_ulDataHead = m_ulDataTail = 0;
// reserve room at the front for copying window overhead
ULONG ulPrefix = m_ulWindowOverhead * m_ulInputQuantumSize; m_pAllocAddr = new BYTE[m_ulBufferAllocated + ulPrefix]; if (!m_pAllocAddr) return; m_pCircularBuffer = m_pAllocAddr + ulPrefix;
m_bParametersSet = TRUE; } BOOL NZWOQueryAccept() { // We are using a temp input buffer. Is there room to append more ?
// The answer really depends on how much data they will try to feed
// us. Without knowing the maximum input buffer size, we will accept
// more if the input buffer is less than half full.
if (2 * BufferUsed() < m_ulBufferAllocated) return TRUE; else return FALSE; } ULONG NZWOAvail() { ULONG ulInputQuantaAvailable = BufferUsed() / m_ulInputQuantumSize; if (ulInputQuantaAvailable > m_ulWindowOverhead) return ulInputQuantaAvailable - m_ulWindowOverhead; else return 0; } void NZWOConsume(ULONG ulN) { // the window overhead version
assert(ulN * m_ulInputQuantumSize <= BufferUsed()); m_ulDataHead += ulN * m_ulInputQuantumSize; if (m_ulDataHead > m_ulBufferAllocated) //wraparound
m_ulDataHead -= m_ulBufferAllocated;
// Advance the timestamp.
// The same denominator is used for both timestamp and duration.
m_rtTimestampNumerator += ulN * m_rtDurationNumerator; } ULONG BufferUsed() { if (m_ulDataTail >= m_ulDataHead) return m_ulDataTail - m_ulDataHead; else return m_ulBufferAllocated - (m_ulDataHead - m_ulDataTail); } void AppendData(BYTE *pData, ULONG ulSize) { if (m_ulDataTail + ulSize <= m_ulBufferAllocated) { // no wraparound
memcpy(m_pCircularBuffer + m_ulDataTail, pData, ulSize); m_ulDataTail += ulSize; } else { // wraparound
memcpy(m_pCircularBuffer + m_ulDataTail, pData, m_ulBufferAllocated - m_ulDataTail); memcpy(m_pCircularBuffer, pData + m_ulBufferAllocated - m_ulDataTail, ulSize - (m_ulBufferAllocated - m_ulDataTail)); m_ulDataTail += ulSize; m_ulDataTail -= m_ulBufferAllocated; } } void NZWODiscardData() { m_ulDataHead = m_ulDataTail = 0; } // End window overhead case code
protected: //
// To be implemebted by the derived class
//
virtual HRESULT FBRProcess(DWORD cQuanta, BYTE *pIn, BYTE *pOut) = 0; virtual HRESULT GetStreamingParams( DWORD *pdwInputQuantumSize, // in bytes
DWORD *pdwOutputQuantumSize, // in bytes
DWORD *pdwMaxLookahead, // in input quanta, 0 means no lookahead
DWORD *pdwLookbehind, REFERENCE_TIME *prtQuantumDuration, // same for input and output quanta
REFERENCE_TIME *prtDurationDenominator // optional, normally 1
) = 0; virtual HRESULT Init() { return NOERROR; }
private:
BOOL m_bNewInput;
// streaming parameters
BOOL m_bParametersSet; ULONG m_ulInputQuantumSize; ULONG m_ulOutputQuantumSize; ULONG m_ulLookahead; ULONG m_ulLookbehind; ULONG m_ulWindowOverhead; REFERENCE_TIME m_rtDurationNumerator; REFERENCE_TIME m_rtDenominator;
// streaming state
BOOL m_bTimestamps; // we have seen at least one timestamp
BOOL m_bDiscontinuity; BOOL m_bStreaming;
// zero window overhead case input data
IMediaBuffer *m_pMediaBuffer; BYTE *m_pData; ULONG m_ulData; ULONG m_ulUsed; BOOL m_bTimestamp; // timestamp on current buffer
REFERENCE_TIME m_rtTimestamp;
// window overhead case input data
BYTE *m_pCircularBuffer; BYTE *m_pAllocAddr; ULONG m_ulBufferAllocated; ULONG m_ulDataHead; ULONG m_ulDataTail; REFERENCE_TIME m_rtTimestampNumerator; // uses the same denominator as duration
};
// CPCMDMO - base class for PCM audio transform filters.
// Helps non-converting PCM audio transforms with mediatype negotiation.
// Based on CFBRDMO - study that first.
//
// Derived class must implement:
// FBRProcess()
// Deriver class may implement:
// Discontinuity() // default implementaion does nothing
// Init() // default implementaion does nothing
// GetPCMParams() // default implementation proposes 44100/2/16
// CheckPCMParams() // default implementation accepts any 8/16 bit format
// GetWindowParams() // default implementation assumes no lookahead/lookbehind
//
// This class conveniently provides the following data members accessible
// by the derived class:
// ULONG m_ulSamplingRate
// ULONG m_cChannels
// BOOL m_b8bit
//
#include <mmreg.h>
#include <uuids.h>
class CPCMDMO : public CFBRDMO { protected: //
// implement pure virtual CFBRDMO methods
//
HRESULT GetInputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) { if (ulTypeIndex > 0) return DMO_E_NO_MORE_ITEMS; if (pmt != NULL) { HRESULT hr = GetType(pmt, OutputType()); if (FAILED(hr)) { return hr; } }
return S_OK; } HRESULT GetOutputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) { if (ulTypeIndex > 0) return DMO_E_NO_MORE_ITEMS; if (pmt != NULL) { HRESULT hr = GetType(pmt, InputType()); if (FAILED(hr)) { return hr; } }
return S_OK; } HRESULT CheckInputType(const DMO_MEDIA_TYPE *pmt) { return CheckType(pmt, OutputType()); } HRESULT CheckOutputType(const DMO_MEDIA_TYPE *pmt) { return CheckType(pmt, InputType()); } HRESULT Init() { return NOERROR; } HRESULT Discontinuity() { return NOERROR; } HRESULT GetStreamingParams( DWORD *pdwInputQuantumSize, // in bytes
DWORD *pdwOutputQuantumSize, // in bytes
DWORD *pdwMaxLookahead, // in input quanta, 0 means no lookahead
DWORD *pdwMaxLookbehind, REFERENCE_TIME *prtQuantumDuration, // same for input and output quanta
REFERENCE_TIME *prtDurationDenominator // optional, normally 1
) { // Sanity check: all of this should have been taken care of by base class
DMO_MEDIA_TYPE* pmtIn = InputType(); DMO_MEDIA_TYPE* pmtOut = OutputType(); if (!pmtIn || !pmtOut) return DMO_E_TYPE_NOT_SET; if (CheckType(pmtIn, NULL) || CheckType(pmtOut, pmtIn)) return DMO_E_TYPE_NOT_ACCEPTED;
WAVEFORMATEX *pWave = (WAVEFORMATEX*)pmtIn->pbFormat;
m_b8bit = (pWave->wBitsPerSample == 8); m_cChannels = pWave->nChannels; m_ulSamplingRate = pWave->nSamplesPerSec;
*pdwInputQuantumSize = pWave->nBlockAlign; *pdwOutputQuantumSize = pWave->nBlockAlign; *prtQuantumDuration = 10000000; // rt units per sec
*prtDurationDenominator = pWave->nSamplesPerSec;
GetWindowParams(pdwMaxLookahead, pdwMaxLookbehind); return NOERROR; }
protected: //
// Methods to be overridden by derived class
//
// We use this to get lookahead/lookbehind from the derived class
virtual void GetWindowParams(DWORD *pdwMaxLookahead, DWORD *pdwMaxLookbehind) { *pdwMaxLookahead = 0; *pdwMaxLookbehind = 0; } // derived class can override these if it has specific requirements
virtual void GetPCMParams(BOOL* pb8bit, DWORD* pcChannels, DWORD* pdwSamplesPerSec) { // These values are what the DMO will advertise in its media type.
// Specifying them here does not mean that this is the only acceptable
// combination - CheckPCMParams() is the ultimate authority on what we will
// accept.
*pb8bit = FALSE; *pcChannels = 2; *pdwSamplesPerSec = 44100; } virtual BOOL CheckPCMParams(BOOL b8bit, DWORD cChannels, DWORD dwSamplesPerSec) { // Default implementation accepts anything. Override if you have specific
// requirements WRT sampling rate, number of channels, or bit depth.
return TRUE; }
private: //
// private helpers
//
HRESULT GetType(DMO_MEDIA_TYPE* pmt, const DMO_MEDIA_TYPE *pmtOther) {
HRESULT hr;
// If the other type is set, enumerate that. Otherwise propose 44100/2/16.
if (pmtOther) { hr = MoCopyMediaType(pmt, pmtOther); if (FAILED(hr)) { return hr; } return NOERROR; }
hr = MoInitMediaType(pmt, sizeof(WAVEFORMATEX)); if (FAILED(hr)) return hr;
pmt->majortype = MEDIATYPE_Audio; pmt->subtype = MEDIASUBTYPE_PCM; pmt->formattype = FORMAT_WaveFormatEx;
WAVEFORMATEX* pWave = (WAVEFORMATEX*) pmt->pbFormat; pWave->wFormatTag = WAVE_FORMAT_PCM;
BOOL b8bit; DWORD cChannels; GetPCMParams(&b8bit, &cChannels, &(pWave->nSamplesPerSec)); (pWave->nChannels) = (unsigned short)cChannels; pWave->wBitsPerSample = b8bit ? 8 : 16; pWave->nBlockAlign = pWave->nChannels * pWave->wBitsPerSample / 8; pWave->nAvgBytesPerSec = pWave->nSamplesPerSec * pWave->nBlockAlign; pWave->cbSize = 0;
return NOERROR; } HRESULT CheckType(const DMO_MEDIA_TYPE *pmt, DMO_MEDIA_TYPE *pmtOther) {
if (NULL == pmt) { return E_POINTER; }
// verify that this is PCM with a WAVEFORMATEX format specifier
if ((pmt->majortype != MEDIATYPE_Audio) || (pmt->subtype != MEDIASUBTYPE_PCM) || (pmt->formattype != FORMAT_WaveFormatEx) || (pmt->cbFormat < sizeof(WAVEFORMATEX)) || (pmt->pbFormat == NULL)) return DMO_E_TYPE_NOT_ACCEPTED;
// If other type set, accept only if identical to that. Otherwise accept
// any standard PCM audio.
if (pmtOther) { if (memcmp(pmt->pbFormat, pmtOther->pbFormat, sizeof(WAVEFORMATEX))) return DMO_E_TYPE_NOT_ACCEPTED; } else { WAVEFORMATEX* pWave = (WAVEFORMATEX*)pmt->pbFormat; if ((pWave->wFormatTag != WAVE_FORMAT_PCM) || ((pWave->wBitsPerSample != 8) && (pWave->wBitsPerSample != 16)) || (pWave->nBlockAlign != pWave->nChannels * pWave->wBitsPerSample / 8) || (pWave->nAvgBytesPerSec != pWave->nSamplesPerSec * pWave->nBlockAlign) || !CheckPCMParams((pWave->wBitsPerSample == 8), pWave->nChannels, pWave->nSamplesPerSec)) return DMO_E_TYPE_NOT_ACCEPTED; } return NOERROR; }
protected: // format info - the derived class may look at these (but no modify)
ULONG m_ulSamplingRate; ULONG m_cChannels; BOOL m_b8bit; };
//
// CGenericDMO - generic DMO base class. This is currently the only base
// class for DMOs that have multiple inputs or multiple outputs.
//
// This base class tries to be reasonably generic. The derived class reports
// how many streams it supports and describes each stream by calling
// CreateInputStreams() and CreateOutputStreams(). Each of these functions
// takes an array of STREAMDESCRIPTOR structures, each of which poits to an
// array of FORMATENTRY structures.
//
// This base class uses CInputStream and COutputStream classes (both derived
// from CStream) to keep track of input and output stream. However, these
// objects are not visible to the derived class - the derived class only sees
// stream IDs.
//
// One limitation of the scheme use here is that the derived class cannot
// override the GetType/SetType methods individually for each stream. It must
// either (a) live with a static, finite set of types communicated via the
// STREAMDESCRIPTOR structure, or (b) override all IMediaObject type methods
// and handle type negotiation for all streams itself.
//
// Processing occurs when the base class calles DoProcess (overridden by the
// derived class). DoProcess receives an array of input buffer structs and
// an array of output buffer structs. The base class takes care of talking
// to IMediaBuffers, so the derived class only sees actual data pointers.
//
// flags used to communicate with the derived class
enum _INPUT_STATUS_FLAGS { INPUT_STATUSF_RESIDUAL // cannot be further processed w/o additional input
};
// These are used to pass buffers between this class and the derived class.
typedef struct _INPUTBUFFER { BYTE *pData; // [in] - if NULL, the rest are garbage
DWORD cbSize; // [in]
DWORD cbUsed; // [out]
DWORD dwFlags; // [in] - DMO_INPUT_DATA_BUFFERF_XXX
DWORD dwStatus; // [out] - INPUT_STATUSF_XXX from above
REFERENCE_TIME rtTimestamp; // [in]
REFERENCE_TIME rtTimelength; // [in]
} INPUTBUFFER, *PINPUTBUFFER; typedef struct _OUTPUTBUFFER { BYTE *pData; // [in]
DWORD cbSize; // [in]
DWORD cbUsed; // [out]
DWORD dwFlags; // [out] - DMO_OUTPUT_DATA_BUFFERF_XXX
REFERENCE_TIME rtTimestamp; // [out]
REFERENCE_TIME rtTimelength; // [out]
} OUTPUTBUFFER, *POUTPUTBUFFER;
// Used by derived class to describe the format supported by each stream
typedef struct _FORMATENTRY { const GUID *majortype; const GUID *subtype; const GUID *formattype; DWORD cbFormat; BYTE* pbFormat; } FORMATENTRY;
// These are used by the derived class to described its streams
typedef struct _INPUTSTREAMDESCRIPTOR { DWORD cFormats; FORMATENTRY *pFormats; DWORD dwMinBufferSize; BOOL bHoldsBuffers; DWORD dwMaxLookahead; // used if HOLDS_BUFFERS set
} INPUTSTREAMDESCRIPTOR; typedef struct _OUTPUTSTREAMDESCRIPTOR { DWORD cFormats; FORMATENTRY *pFormats; DWORD dwMinBufferSize; } OUTPUTSTREAMDESCRIPTOR;
// Common input/output stream stuff
class CStream { public: DMO_MEDIA_TYPE m_MediaType; BOOL m_bEOS; BOOL m_bTypeSet;
DWORD m_cFormats; FORMATENTRY *m_pFormats; DWORD m_dwMinBufferSize;
// Should really pass in a format type list
CStream() { MoInitMediaType(&m_MediaType, 0); m_bTypeSet = FALSE; Flush(); } ~CStream() { MoFreeMediaType(&m_MediaType); } HRESULT Flush() { m_bEOS = FALSE; return NOERROR; } HRESULT StreamInfo(unsigned long *pdwFlags) { if (pdwFlags == NULL) { return E_POINTER; } *pdwFlags = 0; return S_OK; } HRESULT GetType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) { if (ulTypeIndex >= m_cFormats) { return E_INVALIDARG; } // Just return our types
MoInitMediaType(pmt, m_pFormats[ulTypeIndex].cbFormat); pmt->majortype = *m_pFormats[ulTypeIndex].majortype; pmt->subtype = *m_pFormats[ulTypeIndex].subtype; pmt->formattype = *m_pFormats[ulTypeIndex].formattype; memcpy(pmt->pbFormat, m_pFormats[ulTypeIndex].pbFormat, m_pFormats[ulTypeIndex].cbFormat); return S_OK; } HRESULT GetCurrentType(DMO_MEDIA_TYPE *pmt) { if (NULL == pmt) { return E_POINTER; }
if (m_bTypeSet) { // check success
MoCopyMediaType(pmt, &(m_MediaType)); return S_OK; } else return DMO_E_TYPE_NOT_SET; } HRESULT SetType(const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) { // Need to check this
HRESULT hr = CheckType(pmt, 0); if (FAILED(hr)) { return hr; } if (dwFlags & DMO_SET_TYPEF_TEST_ONLY) { return NOERROR; // check konly
} // check success
MoCopyMediaType(&m_MediaType, pmt);
m_bTypeSet = TRUE;; return S_OK; } HRESULT CheckType(const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) { if (pmt == NULL) { return E_POINTER; } //if (dwFlags & ~DMO_SET_TYPEF_NOT_PARTIAL)
// return E_INVALIDARG;
// Default - check GUIDs
bool bMatched = false; for (DWORD i = 0; i < m_cFormats; i++) { const FORMATENTRY *pFormat = &(m_pFormats[i]); if (pmt->majortype == *(pFormat->majortype) && pmt->subtype == *(pFormat->subtype) && pmt->formattype == *(pFormat->formattype)) { bMatched = true; break; } }
if (bMatched) { return S_OK; } else { return DMO_E_INVALIDTYPE; } } HRESULT SizeInfo(ULONG *plSize, ULONG *plAlignment) { if (plSize == NULL || plAlignment == NULL) { return E_POINTER; }
*plAlignment = 1; *plSize = m_dwMinBufferSize; return S_OK; } };
// Input stream specific stuff
class CInputStream : public CStream { public: BOOL m_bHoldsBuffers; DWORD m_dwMaxLookahead; // used if HOLDS_BUFFERS set
// Current input sample
IMediaBuffer *m_pMediaBuffer; DWORD m_dwFlags; // discontinuity, etc.
REFERENCE_TIME m_rtTimestamp; REFERENCE_TIME m_rtTimelength; BYTE *m_pData; DWORD m_cbSize; DWORD m_cbUsed;
// residual
BYTE *m_pbResidual; DWORD m_cbResidual; DWORD m_cbResidualBuffer;
// temporary buffer for handling the residual
BYTE *m_pbTemp;
HRESULT Flush() { if (m_pMediaBuffer) { m_pMediaBuffer->Release(); m_pMediaBuffer = NULL; } return CStream::Flush(); } CInputStream() { m_pMediaBuffer = NULL; m_pbResidual = NULL; m_pbTemp = NULL; } ~CInputStream() { if (m_pMediaBuffer) m_pMediaBuffer->Release(); if (m_pbResidual) delete[] m_pbResidual; } HRESULT StreamInfo(DWORD *pdwFlags) { HRESULT hr = CStream::StreamInfo(pdwFlags); if (FAILED(hr)) return hr; if (m_bHoldsBuffers) *pdwFlags |= DMO_INPUT_STREAMF_HOLDS_BUFFERS; return NOERROR; } HRESULT Init(INPUTSTREAMDESCRIPTOR *pDescriptor) { m_cFormats = pDescriptor->cFormats; m_pFormats = pDescriptor->pFormats; m_dwMinBufferSize = pDescriptor->dwMinBufferSize; m_bHoldsBuffers = pDescriptor->bHoldsBuffers; m_dwMaxLookahead = pDescriptor->dwMaxLookahead;
// Just in case Init is called multiple times:
// delete any preexisting stuff.
if (m_pMediaBuffer) { m_pMediaBuffer->Release(); m_pMediaBuffer = NULL; } if (m_pbResidual) { delete[] m_pbResidual; m_pbResidual = NULL; }
m_cbResidual = 0; m_cbResidualBuffer = m_dwMinBufferSize * 2; // enough ?
m_pbResidual = new BYTE[m_cbResidualBuffer];
return NOERROR; } HRESULT InputStatus(DWORD *pdwStatus) { // objects that hold buffers must implement InputStatus themselves
assert(!m_bHoldsBuffers); *pdwStatus = 0; if (!m_pMediaBuffer) *pdwStatus |= DMO_INPUT_STATUSF_ACCEPT_DATA; return NOERROR; } HRESULT Deliver( IMediaBuffer *pBuffer, // [in], must not be NULL
DWORD dwFlags, // [in] - discontinuity, timestamp, etc.
REFERENCE_TIME rtTimestamp, // [in], valid if flag set
REFERENCE_TIME rtTimelength // [in], valid if flag set
) { if (!pBuffer) return E_POINTER; // objects that hold buffers must implement Deliver themselves
assert(!m_bHoldsBuffers); DWORD dwStatus = 0; InputStatus(&dwStatus); if (!(dwStatus & DMO_INPUT_STATUSF_ACCEPT_DATA)) return DMO_E_NOTACCEPTING; assert(!m_pMediaBuffer); // can't hold multiple buffers
//Deal with the IMediaBuffer
HRESULT hr; hr = pBuffer->GetBufferAndLength(&m_pData, &m_cbSize); if (FAILED(hr)) return hr;
if (!m_cbSize) // empty buffer
return S_FALSE; // no data
pBuffer->AddRef(); m_pMediaBuffer = pBuffer; m_dwFlags = dwFlags; m_rtTimestamp = rtTimestamp; m_rtTimelength = rtTimelength; m_cbUsed = 0; return NOERROR; }
//
// Fetch data from the currently held IMediaBuffer plus any residual
//
HRESULT PrepareInputBuffer(INPUTBUFFER *pBuffer) { // Q.: do we even have any data to give it ?
if (m_pMediaBuffer) { // Is there a residual we need to feed first ?
if (m_cbResidual) { // Yes, prepend the residual to the new input
// If we have used some of the input buffer by now, we
// should have also used up any residual with that.
assert(m_cbUsed == 0);
// compute how many bytes total we are going to send
pBuffer->cbSize = m_cbResidual + m_cbSize;
// Make sure we have at least dwMinBufferSize bytes of data.
// We really should - the input buffer alone ought to be at
// least that big.
assert(pBuffer->cbSize > m_dwMinBufferSize);
// Is the residual buffer big enough to hold the residual plus
// all of the new buffer ?
if (pBuffer->cbSize <= m_cbResidualBuffer) { // Yes - wonderful, we can use the residual buffer
memcpy(m_pbResidual + m_cbResidual, m_pData, m_cbSize); pBuffer->pData = m_pbResidual; } else { // No - allocate a sufficiently large temporary buffer.
// This is supposed to be a rare case.
m_pbTemp = new BYTE[pBuffer->cbSize]; if (m_pbTemp == NULL) return E_OUTOFMEMORY; // copy the residual
memcpy(m_pbTemp, m_pbResidual, m_cbResidual); // append the new buffer
memcpy(m_pbTemp + m_cbResidual, m_pData, m_cbSize);
// set the buffer pointer to our temp buffer
pBuffer->pData = m_pbTemp; }
// is this the correct way to handle timestamps &
// discontinuities when handling a residual ?
pBuffer->dwFlags = 0; } else { // no residual
pBuffer->pData = m_pData + m_cbUsed; pBuffer->cbSize = m_cbSize - m_cbUsed; pBuffer->dwFlags = m_dwFlags; pBuffer->rtTimestamp = m_rtTimestamp; pBuffer->rtTimelength= m_rtTimelength; } pBuffer->cbUsed = 0; // derived class should set this
pBuffer->dwStatus = 0; // derived class should set this
} else { pBuffer->pData = NULL; pBuffer->cbSize = 0; } return NOERROR; }
//
// Save any residual and release the IMediaBuffer as appropriate.
// Returns TRUE if there is enough data left to call ProcesInput again.
//
BOOL PostProcessInputBuffer(INPUTBUFFER *pBuffer) { BOOL bRet = FALSE; // did we even give this stream anything ?
if (m_pMediaBuffer) { // Yes, but did it eat any of it ?
if (pBuffer->cbUsed) { // Did we even get past the residual
if (pBuffer->cbUsed > m_cbResidual) { // Yes - reflect this in the current buffer's cbUsed.
m_cbUsed += (pBuffer->cbUsed - m_cbResidual); m_cbResidual = 0; } else { // No - just subtract from the residual.
// This is a rather silly case.
m_cbResidual -= pBuffer->cbUsed; memmove(m_pbResidual, m_pbResidual + pBuffer->cbUsed, m_cbResidual); } }
// Is there enough left to feed again the next time ?
if ((m_cbSize - m_cbUsed < m_dwMinBufferSize) || (pBuffer->dwStatus & INPUT_STATUSF_RESIDUAL)) { // No - copy the residual and release the buffer
memcpy(m_pbResidual, m_pData + m_cbUsed, m_cbSize - m_cbUsed); m_cbResidual = pBuffer->cbSize - pBuffer->cbUsed; m_pMediaBuffer->Release(); m_pMediaBuffer = NULL; } else { // Yes - need another Process call to eat remaining input
bRet = TRUE; }
// Free any temporary buffer we may have used - rare case
if (m_pbTemp) { delete[] m_pbTemp; m_pbTemp = NULL; } } return bRet; } HRESULT Discontinuity() { // implement
// m_bDiscontinuity = TRUE;
return NOERROR; } HRESULT SizeInfo(ULONG *pulSize, ULONG *pulMaxLookahead, ULONG *pulAlignment) { HRESULT hr = CStream::SizeInfo(pulSize, pulAlignment); if (FAILED(hr)) return hr;
if (m_bHoldsBuffers) *pulMaxLookahead = m_dwMaxLookahead; else *pulMaxLookahead = *pulSize; return NOERROR; } };
// Output stream specific stuff
class COutputStream : public CStream { public: BOOL m_bIncomplete; DWORD m_cbAlreadyUsed; // temp per-stream variable used during Process
HRESULT Init(OUTPUTSTREAMDESCRIPTOR *pDescriptor) { m_cFormats = pDescriptor->cFormats; m_pFormats = pDescriptor->pFormats; m_dwMinBufferSize = pDescriptor->dwMinBufferSize; return NOERROR; }
//
// Initialize the OUTPUTBUFFER struct with info from the IMediaBuffer
//
HRESULT PrepareOutputBuffer(OUTPUTBUFFER *pBuffer, IMediaBuffer *pMediaBuffer, BOOL bNewInput) { //
// See if the caller supplied an output buffer
//
if (pMediaBuffer == NULL) { // This is allowed to be NULL only if (1) the object did not set
// the INCOMPLETE flag for this stream during the last Process
// call, and (2) no new input data has been supplied to the object
// since the last Process call.
if (bNewInput) return E_POINTER; if (m_bIncomplete) return E_POINTER;
// ok - initialize assuming no buffer
pBuffer->cbSize = 0; pBuffer->pData = NULL; } else { // the IMediaBuffer is not NULL - deal with it
HRESULT hr; hr = pMediaBuffer->GetMaxLength(&pBuffer->cbSize); if (FAILED(hr)) return hr;
hr = pMediaBuffer->GetBufferAndLength( &(pBuffer->pData), &(m_cbAlreadyUsed)); if (FAILED(hr)) return hr;
// Check current size - should we even bother with this ?
if (m_cbAlreadyUsed) { if (m_cbAlreadyUsed >= pBuffer->cbSize) return E_INVALIDARG; // buffer already full ?!?
pBuffer->cbSize -= m_cbAlreadyUsed; pBuffer->pData += m_cbAlreadyUsed; } }
// It is really the derived class's job to set these, but we
// will be nice to it and initialize them anyway just in case.
pBuffer->cbUsed = 0; pBuffer->dwFlags = 0;
return NOERROR; }
//
// Copy the OUTPUTBUFFER back into the DMO_OUTPUT_DATA_BUFFER (yawn)
//
void PostProcessOutputBuffer(OUTPUTBUFFER *pBuffer, DMO_OUTPUT_DATA_BUFFER *pDMOBuffer, BOOL bForceIncomplete) { assert(pBuffer->cbUsed <= pBuffer->cbSize); if (pDMOBuffer->pBuffer) pDMOBuffer->pBuffer->SetLength(pBuffer->cbUsed + m_cbAlreadyUsed); pDMOBuffer->dwStatus = pBuffer->dwFlags; pDMOBuffer->rtTimestamp = pBuffer->rtTimestamp; pDMOBuffer->rtTimelength = pBuffer->rtTimelength;
// Even if the derived class did not set INCOMPLETE, we may need to
// set it anyway if some input buffer we are holding still has
// enough data to call Process() again.
if (bForceIncomplete) pDMOBuffer->dwStatus |= DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE;
// remember this output stream's INCOMPLETE state
if (pDMOBuffer->dwStatus & DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE) m_bIncomplete = TRUE; else m_bIncomplete = FALSE; } };
// Code that goes at the beginning of every IMediaObject method
#define INPUT_STREAM_PROLOGUE \
CDMOAutoLock l(&m_cs); \ if (ulInputStreamIndex >= m_nInputStreams) \ return DMO_E_INVALIDSTREAMINDEX; \ CInputStream *pStream = &m_pInputStreams[ulInputStreamIndex]
#define OUTPUT_STREAM_PROLOGUE \
CDMOAutoLock l(&m_cs); \ if (ulOutputStreamIndex >= m_nOutputStreams) \ return DMO_E_INVALIDSTREAMINDEX; \ COutputStream *pStream = &m_pOutputStreams[ulOutputStreamIndex]
class CGenericDMO : public IMediaObject { public: CGenericDMO() { #ifdef DMO_NOATL
InitializeCriticalSection(&m_cs); #endif
m_nInputStreams = 0; m_nOutputStreams = 0; } #ifdef DMO_NOATL
~CGenericDMO() { DeleteCriticalSection(&m_cs); } #endif
public: //
// Implement IMediaObject methods
//
STDMETHODIMP GetInputStreamInfo(ULONG ulInputStreamIndex, DWORD *pdwFlags) { INPUT_STREAM_PROLOGUE; return pStream->StreamInfo(pdwFlags); } STDMETHODIMP GetOutputStreamInfo(ULONG ulOutputStreamIndex, DWORD *pdwFlags) { OUTPUT_STREAM_PROLOGUE; return pStream->StreamInfo(pdwFlags); } STDMETHODIMP GetInputType(ULONG ulInputStreamIndex, ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) { INPUT_STREAM_PROLOGUE; return pStream->GetType(ulTypeIndex, pmt); } STDMETHODIMP GetOutputType(ULONG ulOutputStreamIndex, ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) { OUTPUT_STREAM_PROLOGUE; return pStream->GetType(ulTypeIndex, pmt); } STDMETHODIMP GetInputCurrentType(ULONG ulInputStreamIndex, DMO_MEDIA_TYPE *pmt) { INPUT_STREAM_PROLOGUE; return pStream->GetCurrentType(pmt); } STDMETHODIMP GetOutputCurrentType(ULONG ulOutputStreamIndex, DMO_MEDIA_TYPE *pmt) { OUTPUT_STREAM_PROLOGUE; return pStream->GetCurrentType(pmt); } STDMETHODIMP GetInputSizeInfo(ULONG ulInputStreamIndex, ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment) { INPUT_STREAM_PROLOGUE; return pStream->SizeInfo(pulSize, pcbMaxLookahead, pulAlignment); } STDMETHODIMP GetOutputSizeInfo(ULONG ulOutputStreamIndex, ULONG *pulSize, ULONG *pulAlignment) { OUTPUT_STREAM_PROLOGUE; return pStream->SizeInfo(pulSize, pulAlignment); } STDMETHODIMP SetInputType(ULONG ulInputStreamIndex, const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) { INPUT_STREAM_PROLOGUE; return pStream->SetType(pmt, dwFlags); } STDMETHODIMP SetOutputType(ULONG ulOutputStreamIndex, const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) { OUTPUT_STREAM_PROLOGUE; return pStream->SetType(pmt, dwFlags); } STDMETHODIMP GetInputStatus( ULONG ulInputStreamIndex, DWORD *pdwStatus ) { INPUT_STREAM_PROLOGUE; return pStream->InputStatus(pdwStatus); } STDMETHODIMP GetInputMaxLatency(unsigned long ulInputStreamIndex, REFERENCE_TIME *prtLatency) { // I don't know what to do with this right now.
// Punt to the derived class ?
return E_NOTIMPL; } STDMETHODIMP SetInputMaxLatency(unsigned long ulInputStreamIndex, REFERENCE_TIME rtLatency) { return E_NOTIMPL; } STDMETHODIMP ProcessInput( DWORD ulInputStreamIndex, IMediaBuffer *pBuffer, // [in], must not be NULL
DWORD dwFlags, // [in] - discontinuity, timestamp, etc.
REFERENCE_TIME rtTimestamp, // [in], valid if flag set
REFERENCE_TIME rtTimelength // [in], valid if flag set
) { INPUT_STREAM_PROLOGUE; return pStream->Deliver(pBuffer, dwFlags, rtTimestamp, rtTimelength); } STDMETHODIMP Discontinuity(ULONG ulInputStreamIndex) { INPUT_STREAM_PROLOGUE; return pStream->Discontinuity(); }
STDMETHODIMP Flush() { CDMOAutoLock l(&m_cs);
// Flush all the streams
ULONG i; for (i = 0; i < m_nInputStreams; i++) { m_pInputStreams[i].Flush(); } for (i = 0; i < m_nOutputStreams; i++) { m_pOutputStreams[i].Flush(); } return S_OK; }
STDMETHODIMP AllocateStreamingResources() {return S_OK;} STDMETHODIMP FreeStreamingResources() {return S_OK;}
STDMETHODIMP GetStreamCount(unsigned long *pulNumberOfInputStreams, unsigned long *pulNumberOfOutputStreams) { CDMOAutoLock l(&m_cs); if (pulNumberOfInputStreams == NULL || pulNumberOfOutputStreams == NULL) { return E_POINTER; } *pulNumberOfInputStreams = m_nInputStreams; *pulNumberOfOutputStreams = m_nOutputStreams; return S_OK; }
STDMETHODIMP ProcessOutput( DWORD dwReserved, DWORD ulOutputBufferCount, DMO_OUTPUT_DATA_BUFFER *pOutputBuffers, DWORD *pdwStatus) { CDMOAutoLock l(&m_cs); if (ulOutputBufferCount != m_nOutputStreams) return E_INVALIDARG;
HRESULT hr; DWORD c;
// Prepare the input buffers
for (c = 0; c < m_nInputStreams; c++) { // objects that hold buffers must implement Process themselves
assert(!m_pInputStreams[c].m_bHoldsBuffers); hr = m_pInputStreams[c].PrepareInputBuffer(&m_pInputBuffers[c]); if (FAILED(hr)) return hr; }
//
// Prepare the output buffers
//
for (c = 0; c < m_nOutputStreams; c++) { hr = m_pOutputStreams[c].PrepareOutputBuffer(&m_pOutputBuffers[c], pOutputBuffers[c].pBuffer, m_bNewInput); if (FAILED(hr)) return hr; }
hr = DoProcess(m_pInputBuffers,m_pOutputBuffers); if (FAILED(hr)) return hr; // don't just "return hr", do something !
// post-process input buffers
BOOL bSomeInputStillHasData = FALSE; for (c = 0; c < m_nInputStreams; c++) { if (m_pInputStreams[c].PostProcessInputBuffer(&m_pInputBuffers[c])) bSomeInputStillHasData = TRUE; }
// post-process output buffers
for (c = 0; c < m_nOutputStreams; c++) { m_pOutputStreams[c].PostProcessOutputBuffer(&m_pOutputBuffers[c], &pOutputBuffers[c], bSomeInputStillHasData); }
m_bNewInput = FALSE; return NOERROR; }
protected: //
// These are called by the derived class at initialization time
//
HRESULT CreateInputStreams(INPUTSTREAMDESCRIPTOR *pStreams, DWORD cStreams) { CDMOAutoLock l(&m_cs); if (pStreams == NULL) { return E_POINTER; }
m_pInputStreams = new CInputStream[cStreams];
if (m_pInputStreams == NULL) { return E_OUTOFMEMORY; }
DWORD c; for (c = 0; c < cStreams; c++) { HRESULT hr = m_pInputStreams[c].Init(&(pStreams[c])); if (FAILED(hr)) { delete[] m_pInputStreams; return hr; } }
m_pInputBuffers = new INPUTBUFFER[cStreams]; if (!m_pInputBuffers) { delete[] m_pInputStreams; return E_OUTOFMEMORY; }
m_nInputStreams = cStreams; return NOERROR; } HRESULT CreateOutputStreams(OUTPUTSTREAMDESCRIPTOR *pStreams, DWORD cStreams) { CDMOAutoLock l(&m_cs); if (pStreams == NULL) { return E_POINTER; }
m_pOutputStreams = new COutputStream[cStreams];
if (m_pOutputStreams == NULL) { return E_OUTOFMEMORY; }
DWORD c; for (c = 0; c < cStreams; c++) { HRESULT hr = m_pOutputStreams[c].Init(&(pStreams[c])); if (FAILED(hr)) { delete[] m_pOutputStreams; return hr; } } m_pOutputBuffers = new OUTPUTBUFFER[cStreams]; if (!m_pOutputBuffers) { delete[] m_pOutputStreams; return E_OUTOFMEMORY; }
m_nOutputStreams = cStreams; return NOERROR; }
virtual HRESULT DoProcess(INPUTBUFFER*, OUTPUTBUFFER *) = 0;
private:
ULONG m_nInputStreams; CInputStream* m_pInputStreams; ULONG m_nOutputStreams; COutputStream* m_pOutputStreams;
INPUTBUFFER* m_pInputBuffers; OUTPUTBUFFER* m_pOutputBuffers;
BOOL m_bNewInput; #ifdef DMO_NOATL
CRITICAL_SECTION m_cs; #else
CComAutoCriticalSection m_cs; #endif
};
#endif // __DMOBASE_H__
|