|
|
/*++ BUILD Version: 0004 // Increment this if a change has global effects
*/ //++
//
// Module Name:
//
// kxia64.h
//
// Abstract:
//
// This module contains the nongenerated part of the IA64 assembler
// header file. In general, it contains processor architecture constant
// information, however some assembler macros are also included.
//
// Author:
//
// bjl 12-Jun-95 (based on David N. Cutler (davec) 23-Mar-1990)
//
// Revision History:
//
//--
#define SHADOW_IRQL_IMPLEMENTATION 1
//
// N. B. Register aliases have been moved to ksia64.h (because we
// use assembler aliases not #define's)
//
// Register constants
// For setting non-rotating predicates (not used very much)
#define PS0 0x0001
#define PS1 0x0002
#define PS2 0x0004
#define PS3 0x0008
#define PS4 0x0010
#define PS5 0x0020
#define PRP 0x0080
#define PT0 0x0040
#define PT1 0x0100
#define PT2 0x0200
#define PT3 0x0400
#define PT4 0x0800
#define PT5 0x1000
#define PT6 0x2000
#define PT7 0x4000
#define PT8 0x8000
// For setting nomination register
#define NOM_BS0 0x0001
#define NOM_BS1 0x0002
#define NOM_BS2 0x0004
#define NOM_BS3 0x0008
#define NOM_BS4 0x0010
#define NOM_BS5 0x0020
#define NOM_BRP 0x0080
#define NOM_BT0 0x0040
#define NOM_BT1 0x0100
#define NOM_BT2 0x0200
#define NOM_BT3 0x0400
#define NOM_BT4 0x0800
#define NOM_BT5 0x1000
#define NOM_BT6 0x2000
#define NOM_BT7 0x4000
#define NOM_BT8 0x8000
//
//
// Define IA64 system registers.
//
// Define IA64 system register bit field offsets.
//
// Processor Status Register (PSR) Bit positions
// User / System mask
#define PSR_MBZ4 0
#define PSR_BE 1
#define PSR_UP 2
#define PSR_AC 3
#define PSR_MFL 4
#define PSR_MFH 5
// PSR bits 6-12 reserved (must be zero)
#define PSR_MBZ0 6
#define PSR_MBZ0_V 0x7fi64
// System only mask
#define PSR_IC 13
#define PSR_I 14
#define PSR_PK 15
#define PSR_MBZ1 16
#define PSR_MBZ1_V 0x1i64
#define PSR_DT 17
#define PSR_DFL 18
#define PSR_DFH 19
#define PSR_SP 20
#define PSR_PP 21
#define PSR_DI 22
#define PSR_SI 23
#define PSR_DB 24
#define PSR_LP 25
#define PSR_TB 26
#define PSR_RT 27
// PSR bits 28-31 reserved (must be zero)
#define PSR_MBZ2 28
#define PSR_MBZ2_V 0xfi64
// Neither mask
#define PSR_CPL 32
#define PSR_CPL_LEN 2
#define PSR_IS 34
#define PSR_MC 35
#define PSR_IT 36
#define PSR_ID 37
#define PSR_DA 38
#define PSR_DD 39
#define PSR_SS 40
#define PSR_RI 41
#define PSR_RI_LEN 2
#define PSR_ED 43
#define PSR_BN 44
#define PSR_IA 45
// PSR bits 46-63 reserved (must be zero)
#define PSR_MBZ3 46
#define PSR_MBZ3_V 0x3ffffi64
//
// Privilege levels
//
#define PL_KERNEL 0
#define PL_USER 3
//
// Instruction set (IS) bits
//
#define IS_EM 0
#define IS_IA 1
// Floating Point Status Register (FPSR) Bit positions
// Status Field 0 - Flags
#define FPSR_VD 0
#define FPSR_DD 1
#define FPSR_ZD 2
#define FPSR_OD 3
#define FPSR_UD 4
#define FPSR_ID 5
// Status Field 0 - Controls
#define FPSR_FTZ0 6
#define FPSR_WRE0 7
#define FPSR_PC0 8
#define FPSR_RC0 10
#define FPSR_TD0 12
// Status Field 0 - Flags
#define FPSR_V0 13
#define FPSR_D0 14
#define FPSR_Z0 15
#define FPSR_O0 16
#define FPSR_U0 17
#define FPSR_I0 18
// Status Field 1 - Controls
#define FPSR_FTZ1 19
#define FPSR_WRE1 20
#define FPSR_PC1 21
#define FPSR_RC1 23
#define FPSR_TD1 25
// Status Field 1 - Flags
#define FPSR_V1 26
#define FPSR_D1 27
#define FPSR_Z1 28
#define FPSR_O1 29
#define FPSR_U1 30
#define FPSR_I1 31
// Status Field 2 - Controls
#define FPSR_FTZ2 32
#define FPSR_WRE2 33
#define FPSR_PC2 34
#define FPSR_RC2 36
#define FPSR_TD2 38
// Status Field 2 - Flags
#define FPSR_V2 39
#define FPSR_D2 40
#define FPSR_Z2 41
#define FPSR_O2 42
#define FPSR_U2 43
#define FPSR_I2 44
// Status Field 3 - Controls
#define FPSR_FTZ3 45
#define FPSR_WRE3 46
#define FPSR_PC3 47
#define FPSR_RC3 49
#define FPSR_TD3 51
// Status Field 3 - Flags
#define FPSR_V3 52
#define FPSR_D3 53
#define FPSR_Z3 54
#define FPSR_O3 55
#define FPSR_U3 56
#define FPSR_I3 57
// FPSR bits 58-63 Reserved -- Must be zero
#define FPSR_MBZ0 58
#define FPSR_MBZ0_V 0x3fi64
//
// For setting up FPSR on kernel entry
//
// all FP exceptions masked
//
// rounding to nearest, 64-bit precision, wide range enabled for FPSR.fs1
//
// rounding to nearest, 53-bit precision, wide range disabled for FPSR.fs0
//
#define FPSR_FOR_KERNEL 0x9804C0270033F
//
// Define hardware Task Priority Register (TPR)
//
// TPR bit positions
// Bits 0 - 3 ignored
#define TPR_MIC 4
#define TPR_MIC_LEN 4
// Bits 8 - 15 reserved
// TPR.mmi is always 0 in NT
#define TPR_MMI 16
// Bits 17 - 63 ignored
//
// The current IRQL is maintained in the TPR.mic field. The
// shift count is the number of bits to shift right to extract the
// IRQL from the TPR. See the GET/SET_IRQL macros.
//
#define TPR_IRQL_SHIFT TPR_MIC
//
// To go from vector number <-> IRQL we just do a shift
//
#define VECTOR_IRQL_SHIFT TPR_IRQL_SHIFT
//
// Define hardware Interrupt Status Register (ISR)
//
// ISR bit positions
#define ISR_CODE 0
#define ISR_CODE_LEN 16
#define ISR_CODE_MASK 0xFFFF
#define ISR_NA_CODE_MASK 0xF
#define ISR_IA_VECTOR 16
#define ISR_IA_VECTOR_LEN 8
// ISR bits 24-31 reserved
#define ISR_MBZ0 24
#define ISR_MBZ0_V 0xff
#define ISR_X 32
#define ISR_W 33
#define ISR_R 34
#define ISR_NA 35
#define ISR_SP 36
#define ISR_RS 37
#define ISR_IR 38
#define ISR_NI 39
// ISR bit 40 reserved
#define ISR_MBZ1 40
#define ISR_EI 41
#define ISR_ED 43
// ISR bits 44-63 reserved
#define ISR_MBZ2 44
#define ISR_MBZ2_V 0xfffff
//
// ISR codes for Non-Access Instructions: ISR{3:0}
//
#define ISR_TPA 0 // tpa instruction
#define ISR_FC 1 // fc instruction
#define ISR_PROBE 2 // probe instruction
#define ISR_TAK 3 // tak instruction
#define ISR_LFETCH 4 // lfetch, lfetch.fault instruction
#define ISR_PROBE_FAULT 5 // probe.fault instruction
//
// ISR codes for General Exceptions: ISR{7:4}
//
#define ISR_ILLEGAL_OP 0 // Illegal operation fault
#define ISR_PRIV_OP 1 // Privileged operation fault
#define ISR_PRIV_REG 2 // Privileged register fault
#define ISR_RESVD_REG 3 // Reserved register/field fault
#define ISR_ILLEGAL_ISA 4 // Disabled instruction set transition fault
#define ISR_ILLEGAL_HAZARD 8 // Illegal hazard fault
//
// ISR codes for Nat Consumption Faults: ISR{7:4}
//
#define ISR_NAT_REG 1 // Nat Register Consumption fault
#define ISR_NAT_PAGE 2 // Nat Page Consumption fault
//
// For Traps ISR{3:0}
//
// FP trap
#define ISR_FP_TRAP 0
// Lower privilege transfer trap
#define ISR_LP_TRAP 1
// Taken branch trap
#define ISR_TB_TRAP 2
// Single step trap
#define ISR_SS_TRAP 3
// Unimplemented instruction address trap
#define ISR_UI_TRAP 4
//
// Define hardware Default Control Register (DCR)
//
// DCR bit positions
#define DCR_PP 0
#define DCR_BE 1
#define DCR_LC 2
// DCR bits 3-7 reserved
#define DCR_DM 8
#define DCR_DP 9
#define DCR_DK 10
#define DCR_DX 11
#define DCR_DR 12
#define DCR_DA 13
#define DCR_DD 14
#define DCR_DEFER_ALL 0x7f00
// DCR bits 16-63 reserved
#define DCR_MBZ1 2
#define DCR_MBZ1_V 0xffffffffffffi64
// Define hardware RSE Configuration Register
//
// RS Configuration (RSC) bit field positions
#define RSC_MODE 0
#define RSC_PL 2
#define RSC_BE 4
// RSC bits 5-15 reserved
#define RSC_MBZ0 5
#define RSC_MBZ0_V 0x3ff
#define RSC_LOADRS 16
#define RSC_LOADRS_LEN 14
// RSC bits 30-63 reserved
#define RSC_MBZ1 30
#define RSC_MBZ1_LEN 34
#define RSC_MBZ1_V 0x3ffffffffi64
// RSC modes
// Lazy
#define RSC_MODE_LY (0x0)
// Store intensive
#define RSC_MODE_SI (0x1)
// Load intensive
#define RSC_MODE_LI (0x2)
// Eager
#define RSC_MODE_EA (0x3)
// RSC Endian bit values
#define RSC_BE_LITTLE 0
#define RSC_BE_BIG 1
// RSC while in kernel: enabled, little endian, pl = 0, eager mode
#define RSC_KERNEL ((RSC_MODE_EA<<RSC_MODE) | (RSC_BE_LITTLE<<RSC_BE))
// RSE disabled: disabled, pl = 0, little endian, eager mode
#define RSC_KERNEL_DISABLED ((RSC_MODE_LY<<RSC_MODE) | (RSC_BE_LITTLE<<RSC_BE))
//
// Define Interruption Function State (IFS) Register
//
// IFS bit field positions
//
#define IFS_IFM 0
#define IFS_IFM_LEN 38
#define IFS_MBZ0 38
#define IFS_MBZ0_V 0x1ffffffi64
#define IFS_V 63
#define IFS_V_LEN 1
//
// IFS is valid when IFS_V = IFS_VALID
//
#define IFS_VALID 1
//
// define the width of each size field in PFS/IFS
//
#define PFS_PPL 62 // pfs.ppl bit location
#define PFS_EC_SHIFT 52
#define PFS_EC_SIZE 6
#define PFS_EC_MASK 0x3F
#define PFS_SIZE_SHIFT 7
#define PFS_SIZE_MASK 0x7F
#define NAT_BITS_PER_RNAT_REG 63
#define RNAT_ALIGNMENT (NAT_BITS_PER_RNAT_REG << 3)
//
// Define Region Register (RR)
//
// RR bit field positions
//
#define RR_VE 0
#define RR_MBZ0 1
#define RR_PS 2
#define RR_PS_LEN 6
#define RR_RID 8
#define RR_RID_LEN 24
#define RR_MBZ1 32
//
// indirect mov index for loading RR
//
#define RR_INDEX 61
#define RR_INDEX_LEN 3
//
// Define low order 8 bit's of RR. All RR's have same PS and VE
//
#define RR_PS_VE ( (PAGE_SHIFT<<RR_PS) | (1<<RR_VE) )
//
// Number of region registers used by NT
//
#define NT_RR_SIZE 4
//
// Total number of region registers
//
#define RR_SIZE 8
//
// Define Protection Key Register (PKR)
//
// PKR bit field positions
//
#define PKR_V 0
#define PKR_WD 1
#define PKR_RD 2
#define PKR_XD 3
#define PKR_MBZ0 4
#define PKR_KEY 8
#define PKR_KEY_LEN 24
#define PKR_MBZ1 32
//
// Define low order 8 bit's of PKR. All valid PKR's have same V, WD, RD, XD
//
#define PKR_VALID (1<<PKR_V)
//
// Number of protection key registers
//
#define PKRNUM 16
//
// Define Interrupt TLB Insertion Register
//
// ITIR bit field positions
//
#define ITIR_RV0 0
#define ITIR_PS 2
#define ITIR_KEY 8
#define ITIR_RV1 32
//
// The following definitions are obsolete but
// there are codes in ke/ia64 reference them.
//
// Define Interruption Translation Register (IDTR/IITR)
//
// IDTR/IITR bit field positions
//
#define IDTR_MBZ0 0
#define IDTR_PS 2
#define IDTR_KEY 8
#define IDTR_MBZ1 32
#define IDTR_IGN0 48
#define IDTR_PPN 56
#define IDTR_MBZ2 63
#define IITR_MBZ0 IDTR_MBZ0
#define IITR_PS IDTR_PS
#define IITR_KEY IDTR_KEY
#define IITR_MBZ1 IDTR_MBZ1
#define IITR_IGN0 IDTR_IGN0
#define IITR_PPN IDTR_PPN
#define IITR_MBZ2 IDTR_MBZ2
//
// ITIR bit field masks
#define IITR_PPN_MASK 0x7FFF000000000000
#define IITR_ATTRIBUTE_PPN_MASK 0x0003FFFFFFFFF000
//
// Define Translation Insertion Format (TR)
//
// TR bit field positions
//
#define TR_P 0
#define TR_RV0 1
#define TR_MA 2
#define TR_A 5
#define TR_D 6
#define TR_PL 7
#define TR_AR 9
#define TR_PPN 13 // must be same as PAGE_SHIFT
#define TR_RV1 50
#define TR_ED 52
#define TR_IGN0 53
//
// Macros for generating TR value
//
#define TR_VALUE(ed, ppn, ar, pl, d, a, ma, p) \
( ( ed << TR_ED ) | \ ( ppn & IITR_ATTRIBUTE_PPN_MASK) | \ ( ar << TR_AR ) | \ ( pl << TR_PL ) | \ ( d << TR_D ) | \ ( a << TR_A ) | \ ( ma << TR_MA ) | \ ( p << TR_P ) \ )
#define ITIR_VALUE(key, ps) \
( ( ps << ITIR_PS ) | \ ( key << ITIR_KEY ) \ )
//
// Platform related virtual address constants
//
#define VIRTUAL_IO_BASE 0xe0000000f0000000
//#define VIRTUAL_PAL_BASE 0xe0000000f4000000
#define VIRTUAL_PAL_BASE (KADDRESS_BASE + 0xE0000000)
//
// Page size definitions
//
#define PS_4K 0xC // 0xC=12, 2^12=4K
#define PS_8K 0xD // 0xD=13, 2^13=8K
#define PS_16K 0xE // 0xE=14, 2^14=16K
#define PS_64K 0x10 // 0x10=16, 2^16=64K
#define PS_256K 0x12 // 0x12=18, 2^18=256K
#define PS_1M 0x14 // 0x14=20, 2^20=1M
#define PS_4M 0x16 // 0x16=22, 2^22=4M
#define PS_16M 0x18 // 0x18=24, 2^24=16M
#define PS_64M 0x1a // 0x1a=26, 2^26=64M
#define PS_256M 0x1c // 0x1a=26, 2^26=64M
//
// Debug Registers definitions
//
//
// At least, 4 data and 4 instruction register pairs are implemented
// on all processor models.
//
#define NUMBER_OF_DEBUG_REGISTER_PAIRS 4
//
// For the break conditions (mask):
//
#define DR_MASK 0 // Mask
#define DR_MASK_LEN 56 // Mask length
#define DR_PLM0 56 // Enable privlege level 0
#define DR_PLM1 57 // Enable privlege level 1
#define DR_PLM2 58 // Enable privlege level 2
#define DR_PLM3 59 // Enable privlege level 3 (user)
#define DR_IG 60 // Ignore
#define DR_RW 62 // Read/Write
#define DR_RW_LEN 2 // R/W length
#define DR_X 63 // Execute
//
// Performance Monitor Registers definitions
//
//
// At least, 4 data and 4 instruction register pairs are implemented
// on all processor models.
//
#define NUMBER_OF_PERFMON_REGISTER_PAIRS 4
//
// Macro to generate mask value from bit position
// N.B. If this macro is used in a C expression and the result is a
// 64-bit, the "value" argument shoud be cast as "unsigned long long" to
// produce a 64-bit mask.
//
#define MASK_IA64(bp,value) (value << bp)
//
// Interrupt Vector Definitions
//
#define APC_VECTOR APC_LEVEL << VECTOR_IRQL_SHIFT
#define DISPATCH_VECTOR DISPATCH_LEVEL << VECTOR_IRQL_SHIFT
//
// Define interruption vector offsets
//
#define OFFSET_VECTOR_BREAK 0x2800 // Break instruction vector
#define OFFSET_VECTOR_EXT_INTERRUPT 0x2c00 // External interrupt vector
#define OFFSET_VECTOR_EXC_GENERAL 0x4400 // General exception vector
//
//
// Define IA64 page mask values.
//
#define PAGEMASK_4KB 0x0 // 4kb page
#define PAGEMASK_16KB 0x3 // 16kb page
#define PAGEMASK_64KB 0xf // 64kb page
#define PAGEMASK_256KB 0x3f // 256kb page
#define PAGEMASK_1MB 0xff // 1mb page
#define PAGEMASK_4MB 0x3ff // 4mb page
#define PAGEMASK_16MB 0xfff // 16mb page
//
// Define IA64 primary cache states.
//
#define PRIMARY_CACHE_INVALID 0x0 // primary cache invalid
#define PRIMARY_CACHE_SHARED 0x1 // primary cache shared (clean or dirty)
#define PRIMARY_CACHE_CLEAN_EXCLUSIVE 0x2 // primary cache clean exclusive
#define PRIMARY_CACHE_DIRTY_EXCLUSIVE 0x3 // primary cache dirty exclusive
//
// Page table constants
//
#define PS_SHIFT 2
#define PS_LEN 6
#define PTE_VALID_MASK 1
#define PTE_ACCESS_MASK 0x20
#define PTE_NOCACHE 0x10
#define PTE_CACHE_SHIFT 2
#define PTE_CACHE_LEN 3
#define PTE_LARGE_PAGE 54
#define PTE_PFN_SHIFT 8
#define PTE_PFN_LEN 24
#define PTE_ATTR_SHIFT 1
#define PTE_ATTR_LEN 5
#define PTE_PS 55
#define PTE_OFFSET_LEN 10
#define PDE_OFFSET_LEN 10
#define VFN_LEN 19
#define VFN_LEN64 24
#define TB_USER_MASK 0x180
#define PTE_DIRTY_MASK 0x40
#define PTE_WRITE_MASK 0x400
#define PTE_EXECUTE_MASK 0x200
#define PTE_CACHE_MASK 0x0
#define PTE_EXC_DEFER 0x10000000000000
#define VALID_KERNEL_PTE (PTE_VALID_MASK|PTE_ACCESS_MASK|PTE_WRITE_MASK|PTE_CACHE_MASK|PTE_DIRTY_MASK)
#define VALID_KERNEL_EXECUTE_PTE (PTE_VALID_MASK|PTE_ACCESS_MASK|PTE_EXECUTE_MASK|PTE_WRITE_MASK|PTE_CACHE_MASK|PTE_DIRTY_MASK|PTE_EXC_DEFER)
#define PTE_VALID 0
#define PTE_ACCESS 5
#define PTE_OWNER 7
#define PTE_WRITE 10
#define PTE_LP_CACHE_SHIFT 53
#define ATE_INDIRECT 62
#define ATE_MASK 0xFFFFFFFFFFFFF9DE
#define ATE_MASK0 0x621
#define PAGE4K_SHIFT 12
#define ALT4KB_BASE 0x6FC00000000
#define ALT4KB_END 0x6FC00800000
#define VRN_SHIFT 61
#define KSEG3_VRN 4
#define KSEG4_VRN 5
#define MAX_PHYSICAL_SHIFT 44
//
// Translation register usage
//
//
// In NTLDR
//
//
// Boot loader CONFIGFLAG definitions.
//
#define DISABLE_TAR_FIX 0
#define DISABLE_BTB_FIX 1
#define DISABLE_DATA_BP_FIX 2
#define DISABLE_DET_STALL_FIX 3
#define ENABLE_FULL_DISPERSAL 4
#define ENABLE_TB_BROADCAST 5
#define DISABLE_CPL_FIX 6
#define ENABLE_POWER_MANAGEMENT 7
#define DISABLE_IA32BR_FIX 8
#define DISABLE_L1_BYPASS 9
#define DISABLE_VHPT_WALKER 10
#define DISABLE_IA32RSB_FIX 11
#define DISABLE_INTERRUPTION_LOG 13
#define DISABLE_UNSAFE_FILL 14
#define DISABLE_STORE_UPDATE 15
#define ENABLE_HISTORY_BUFFER 16
#define BL_4M 0x00400000
#define BL_16M 0x01000000
#define BL_20M 0x01400000
#define BL_24M 0x01800000
#define BL_28M 0x01C00000
#define BL_32M 0x02000000
#define BL_36M 0x02400000
#define BL_40M 0x02800000
#define BL_48M 0x03000000
#define BL_64M 0x04000000
#define BL_80M 0x05000000
#define TR_INFO_TABLE_SIZE 10
#define BL_SAL_INDEX 0
#define BL_KERNEL_INDEX 1
#define BL_DRIVER0_INDEX 2 // freed during the phase 0 initialization
#define BL_DRIVER1_INDEX 3 // freed during the phase 0 initialization
#define BL_DECOMPRESS_INDEX 4 // freed before entering kernel
#define BL_IO_PORT_INDEX 5 // freed before entering kernel
#define BL_PAL_INDEX 6
#define BL_LOADER_INDEX 7 // freed before entering kernel
//
// In NTOSKRNL
//
#define DTR_KIPCR_INDEX 0
#define DTR_KERNEL_INDEX 1
#define DTR_DRIVER0_INDEX 2 // freed during the phase 0 initialization
#define DTR_KTBASE_INDEX 2
#define DTR_DRIVER1_INDEX 3 // freed during the phase 0 initialization
#define DTR_UTBASE_INDEX 3
#define DTR_VIDEO_INDEX 3 // not used
#define DTR_KIPCR2_INDEX 4 // freed in the phase 0 initialization
#define DTR_STBASE_INDEX 4
#define DTR_IO_PORT_INDEX 5
#define DTR_KTBASE_INDEX_TMP 6 // freed during the phase 0 initialization
#define DTR_HAL_INDEX 6
#define DTR_PAL_INDEX 6
#define DTR_UTBASE_INDEX_TMP 7 // freed during the phase 0 initialization
#define DTR_LOADER_INDEX 7 // freed during the phase 0 initialization
#define DTR_UTBASE_INDEX_TMP 7 // freed during the phase 0 initialization
#define ITR_EPC_INDEX 0
#define ITR_KERNEL_INDEX 1
#define ITR_DRIVER0_INDEX 2 // freed during the phase 0 initialization
#define ITR_DRIVER1_INDEX 3 // freed during the phase 0 initialization
#define ITR_HAL_INDEX 4
#define ITR_PAL_INDEX 4
#define ITR_LOADER_INDEX 7 // freed during the phase 0 initialization
#define MEM_4K 0x1000
#define MEM_8K 0x2000
#define MEM_16K 0x4000
#define MEM_64K 0x10000
#define MEM_256K 0x40000
#define MEM_1M 0x100000
#define MEM_4M 0x400000
#define MEM_16M 0x1000000
#define MEM_64M 0x4000000
#define MEM_256M 0x10000000
//
// Macro for translation memory size in bytes to page size in TR format
//
#define MEM_SIZE_TO_PS(MemSize, TrPageSize) \
if (MemSize <= MEM_4K) { \ TrPageSize = PS_4K; \ } else if (MemSize <= MEM_8K) { \ TrPageSize = PS_8K; \ } else if (MemSize <= MEM_16K) { \ TrPageSize = PS_16K; \ } else if (MemSize <= MEM_64K) { \ TrPageSize = PS_64K; \ } else if (MemSize <= MEM_256K) { \ TrPageSize = PS_256K; \ } else if (MemSize <= MEM_1M) { \ TrPageSize = PS_1M; \ } else if (MemSize <= MEM_4M) { \ TrPageSize = PS_4M; \ } else if (MemSize <= MEM_16M) { \ TrPageSize = PS_16M; \ } else if (MemSize <= MEM_64M) { \ TrPageSize = PS_64M; \ } else if (MemSize <= MEM_256M) { \ TrPageSize = PS_256M; \ }
//
// TLB forward progress queue
//
#define NUMBER_OF_FWP_ENTRIES 8
//
// Define the kernel base address
//
#define KERNEL_BASE KADDRESS_BASE+0x80000000
#define KERNEL_BASE2 KADDRESS_BASE+0x81000000
//
// Initial value of data TR's for kernel/user PCR
// ed ign res ppn ar pl d a ma p
// kernel: 0 000 0000 0x0 010 00 1 1 000 1
// user: 0 000 0000 0x0 000 11 1 1 000 1
//
#define PDR_TR_INITIAL TR_VALUE(0, 0, 2, 0, 1, 1, 0, 1)
#define KIPCR_TR_INITIAL TR_VALUE(0, 0, 2, 0, 1, 1, 0, 1)
#define USPCR_TR_INITIAL TR_VALUE(0, 0, 0, 3, 1, 1, 0, 1)
//
// Initial value of PTA (64-bits)
// base (region 0) res vf size res ve
// 0x00000000000 0 0 00000 1 000000 0 1
//
#define PTA_INITIAL 0x001
//
// Initial value of DCR (64-bits)
// res du dd da dr dx dk dp dm res lc be pp
// 0x000000000000 1 1 1 1 1 1 1 1 00000 1 0 1
//
#define DCR_INITIAL 0x0000000000007e05
//
// Initial value of PSR low (32-bits)
// res rt tb lp db si di pp sp dfh dfl dt rv pk i ic res mfh mfl ac up be res
// 0000 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0000 00 0 0 1 0 0 0
//
#define PSRL_INITIAL 0x086a2008
//
// Initial value of user PSR (64-bits)
// Bits 63-32
// res bn ed ri ss dd da id it mc is cpl
// 0000 0000 0000 0000 000 1 0 00 0 0 0 0 1 0 0 11
// Bits 31-0
// res rt tb lp db si di pp sp dfh dfl dt rv pk i ic res mfh mfl ac up be res
// 0000 1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0000 00 0 0 1 0 0 0
//
#define USER_PSR_INITIAL 0x00001013082a6008i64
//
// Initial value of user FPSR (64-bits)
//
// all FP exceptions masked
//
// rounding to nearest, 64-bit precisoin, wide range enabled for FPSR.fs1
//
// rounding to nearest, 53-bit precision, wide range disabled for FPSR.fs0
//
#define USER_FPSR_INITIAL 0x9804C0270033F
//
// Initial value of DCR (64-bits)
// res dd da dr dx dk dp dm res lc be pp
// 0x000000000000 1 1 1 1 1 1 1 00000 1 0 1
//
#define USER_DCR_INITIAL 0x0000000000007f05i64
//
// Initial value of user RSC (low 32-bits)
// Mode: Lazy. Little endian. User PL.
//
#define USER_RSC_INITIAL ((RSC_MODE_LY<<RSC_MODE) \
| (RSC_BE_LITTLE<<RSC_BE) \ | (0x3<<RSC_PL))
//
// Definitions that used by CSD and SSD
//
#define USER_CODE_DESCRIPTOR 0xCFBFFFFF00000000
#define USER_DATA_DESCRIPTOR 0xCF3FFFFF00000000
//
//
// IA64 Software conventions
//
// Bytes in stack scratch area
#define STACK_SCRATCH_AREA 16
//
// Constants for trap
//
// Bits to shift for computing interrupt routine funtion pointer: fp = base + irql<<INT_ROUTINE_SHIFT
#ifdef _WIN64
#define INT_ROUTINES_SHIFT 3
#else
#define INT_ROUTINES_SHIFT 2
#endif
//
//
// Define disable and restore interrupt macros.
// Note: Serialization is implicit for rsm
//
#define DISABLE_INTERRUPTS(reg) \
mov reg = psr ;\ rsm 1 << PSR_I
//
// Restore psr.i bit based on value of bit PSR_I in reg
// Enable does not do serialization, so interrupts may not be enabeld for
// a number of cycles after ssm.
//
#define RESTORE_INTERRUPTS(reg) \
tbit##.##nz pt0,pt1 = reg, PSR_I;; ;\ (pt0) ssm 1 << PSR_I ;\ (pt1) rsm 1 << PSR_I
//
// The FAST versions can be used when it is not necessary to save/restore
// the previous interrupt enable state.
//
#define FAST_DISABLE_INTERRUPTS \
rsm 1 << PSR_I
//
// FAST ENABLE does not do serialization -- we don't care if interrupt
// enable is not visible for few instructions.
//
#define FAST_ENABLE_INTERRUPTS \
ssm 1 << PSR_I
#define YIELD hint 0
//
//
// Define TB and cache parameters.
//
#define PCR_ENTRY 0 // TB entry numbers (2) for the PCR
#define PDR_ENTRY 2 // TB entry number (1) for the PDR
#define LARGE_ENTRY 3 // TB entry number (1) for large entry
#define DMA_ENTRY 4 // TB entry number (1) for DMA/InterruptSource
#define TB_ENTRY_SIZE (3 * 4) // size of TB entry
#define FIXED_BASE 0 // base index of fixed TB entries
#define FIXED_ENTRIES (DMA_ENTRY + 1) // number of fixed TB entries
//
// Define cache parameters
//
#define DCACHE_SIZE 4 * 1024 // size of data cache in bytes
#define ICACHE_SIZE 4 * 1024 // size of instruction cache in bytes
#define MINIMUM_CACHE_SIZE 4 * 1024 // minimum size of cache
#define MAXIMUM_CACHE_SIZE 128 * 1024 // maximum size fo cache
//
// RID and Sequence number limits.
// Start with 1 because 0 means not initialized.
// RID's are 24 bits.
//
#define KSEG3_RID 0x00000
#define START_GLOBAL_RID 0x00001
#define HAL_RID 0x00002
#define START_SESSION_RID 0x00003
#define START_PROCESS_RID 0x00004
//
// making the maximum RID to 18-bit, temp fix for Merced
//
#define MAXIMUM_RID 0x3FFFF
//
// Sequence numbers are 32 bits
// Start with 1 because 0 means not initialized.
//
#define START_SEQUENCE 1
#define MAXIMUM_SEQUENCE 0xFFFFFFFFFFFFFFFF
//
//
// Define subtitle macro
//
#define SBTTL(x)
//
// Define procedure entry macros
//
#define PROLOGUE_BEGIN .##prologue;
#define PROLOGUE_END .##body;
#define ALTERNATE_ENTRY(Name) \
.##global Name; \ .##type Name, @function; \ Name::
#define CPUBLIC_LEAF_ENTRY(Name,i) \
.##text; \ .##proc Name##@##i; \ Name##@##i::
#define LEAF_ENTRY(Name) \
.##text; \ .##global Name; \ .##proc Name; \ Name::
#define LEAF_SETUP(i,l,o,r) \
.##regstk i,l,o,r; \ alloc r31=ar##.##pfs,i,l,o,r
#define CPUBLIC_NESTED_ENTRY(Name,i) \
.##text; \ .##proc Name##@##i; \ .##unwentry; \ Name##@##i::
#define NESTED_ENTRY_EX(Name, Handler) \
.##text; \ .##global Name; \ .##proc Name; \ .##personality Handler; \ Name::
#define NESTED_ENTRY(Name) \
.##text; \ .##global Name; \ .##proc Name; \ Name::
// Note: use of NESTED_SETUP requires number of locals (l) >= 2
#define NESTED_SETUP(i,l,o,r) \
.##regstk i,l,o,r; \ .##prologue 0xC, loc0; \ alloc savedpfs=ar##.##pfs,i,l,o,r ;\ mov savedbrp=brp;
//
// Define procedure exit macros
//
#define LEAF_RETURN \
br##.##ret##.##sptk##.##few##.##clr brp
#define NESTED_RETURN \
mov ar##.##pfs = savedpfs; \ mov brp = savedbrp; \ br##.##ret##.##sptk##.##few##.##clr brp
#define LEAF_EXIT(Name) \
.##endp Name;
#define NESTED_EXIT(Name) \
.##endp Name;
//++
// Routine:
//
// LDPTR(rD, rPtr)
//
// Routine Description:
//
// load pointer value.
//
// Agruments:
//
// rD: destination register
// rPtr: register containing pointer
//
// Return Value:
//
// rD = load from address [rPtr]
//
// Notes:
//
// rPtr is unchanged
//
//--
#ifdef _WIN64
#define LDPTR(rD, rPtr) \
ld8 rD = [rPtr] #else
#define LDPTR(rD, rPtr) \
ld4 rD = [rPtr] ;\ ;; ;\ sxt4 rD = rD #endif
//++
// Routine:
//
// LDPTRINC(rD, rPtr, imm)
//
// Routine Description:
//
// load pointer value and update base.
//
// Agruments:
//
// rD: destination register
// rPtr: register containing pointer
// imm: number to be incremented to base
//
// Return Value:
//
// rD = load from address [rPtr] and rPtr += imm
//
// Notes:
//
//--
#ifdef _WIN64
#define LDPTRINC(rD, rPtr, imm) \
ld8 rD = [rPtr], imm #else
#define LDPTRINC(rD, rPtr, imm) \
ld4 rD = [rPtr], imm ;\ ;; ;\ sxt4 rD = rD #endif
//++
// Routine:
//
// PLDPTRINC(rP, rD, rPtr, imm)
//
// Routine Description:
//
// predicated load pointer value and update base.
//
// Agruments:
//
// rP: predicate register
// rD: destination register
// rPtr: register containing pointer
// imm: number to be incremented to base
//
// Return Value:
//
// if (rP) rD = load from address [rPtr] and rPtr += imm
//
// Notes:
//
//--
#ifdef _WIN64
#define PLDPTRINC(rP, rD, rPtr, imm) \
(rP) ld8 rD = [rPtr], imm #else
#define PLDPTRINC(rP, rD, rPtr, imm) \
(rP) ld4 rD = [rPtr], imm ;\ ;; ;\ (rP) sxt4 rD = rD #endif
//++
// Routine:
//
// PLDPTR(rP, rD, rPtr)
//
// Routine Description:
//
// predicated load pointer value.
//
// Agruments:
//
// rP: predicate register
// rD: destination register
// rPtr: register containing pointer
//
// Return Value:
//
// if (rP == 1) rD = load from address [rPtr], else NO-OP
//
// Notes:
//
// rPtr is unchanged
//
//--
#ifdef _WIN64
#define PLDPTR(rP, rD, rPtr) \
(rP) ld8 rD = [rPtr] #else
#define PLDPTR(rP, rD, rPtr) \
(rP) ld4 rD = [rPtr] ;\ ;; ;\ (rP) sxt4 rD = rD #endif
//++
// Routine:
//
// STPTR(rPtr, rS)
//
// Routine Description:
//
// store pointer value.
//
// Agruments:
//
// rPtr: register containing pointer
// rS : source pointer value
//
// Return Value:
//
// store [rPtr] = rS
//
// Notes:
//
// rPtr is unchanged
//
//--
#ifdef _WIN64
#define STPTR(rPtr, rS) \
st8 [rPtr] = rS #else
#define STPTR(rPtr, rS) \
st4 [rPtr] = rS #endif
//++
// Routine:
//
// PSTPTR(rP, rPtr, rS)
//
// Routine Description:
//
// predicated store pointer value.
//
// Agruments:
//
// rP: predicate register
// rPtr: register containing pointer
// rS : source pointer value
//
// Return Value:
//
// if (rP) store [rPtr] = rS
//
// Notes:
//
// rPtr is unchanged
//
//--
#ifdef _WIN64
#define PSTPTR(rP, rPtr, rS) \
(rP) st8 [rPtr] = rS #else
#define PSTPTR(rP, rPtr, rS) \
(rP) st4 [rPtr] = rS #endif
//++
// Routine:
//
// STPTRINC(rPtr, rS, imm)
//
// Routine Description:
//
// store pointer value.
//
// Agruments:
//
// rPtr: register containing pointer
// rS : source pointer value
// imm: number to be incremented to base
//
// Return Value:
//
// if (rP) store [rPtr] = rS, rPtr += imm
//
// Notes:
//
//--
#ifdef _WIN64
#define STPTRINC(rPtr, rS, imm) \
st8 [rPtr] = rS, imm #else
#define STPTRINC(rPtr, rS, imm) \
st4 [rPtr] = rS, imm #endif
//++
// Routine:
//
// ARGPTR(rPtr)
//
// Routine Description:
//
// sign extend the pointer argument for WIN32
//
// Agruments:
//
// rPtr: register containing pointer argument
//
// Return Value:
//
//
// Notes:
//
//
//
//--
#ifdef _WIN64
#define ARGPTR(rPtr)
#else
#define ARGPTR(rPtr) \
sxt4 rPtr = rPtr #endif
//
// Assembler spinlock macros
//
//++
// Routine:
//
// ACQUIRE_SPINLOCK(rpLock, rOwn, Loop)
//
// Routine Description:
//
// Acquire a spinlock. Waits for lock to become free
// by spinning on the cached lock value.
//
// Agruments:
//
// rpLock: pointer to the spinlock (64-bit)
// rOwn: value to store in lock to indicate owner
// Depending on call location, it could be:
// - rpLock
// - pointer to process
// - pointer to thread
// - pointer to PRCB
// Loop: unique name for loop label
//
// Return Value:
//
// None
//
// Notes:
//
// Uses temporaries: predicates pt0, pt1, pt2, and GR t22.
//--
#define ACQUIRE_SPINLOCK(rpLock, rOwn, Loop) \
cmp##.##eq pt0, pt1 = zero, zero ;\ cmp##.##eq pt2 = zero, zero ;\ ;; ;\ Loop: ;\ .pred.rel "mutex",pt0,pt1 ;\ (pt1) YIELD ;\ (pt0) xchg8 t22 = [rpLock], rOwn ;\ (pt1) ld8##.##nt1 t22 = [rpLock] ;\ ;; ;\ (pt0) cmp##.##ne pt2 = zero, t22 ;\ cmp##.##eq pt0, pt1 = zero, t22 ;\ (pt2) br##.##dpnt Loop
//++
// Routine:
//
// RELEASE_SPINLOCK(rpLock)
//
// Routine Description:
//
// Release a spinlock by setting lock to zero.
//
// Agruments:
//
// rpLock: pointer to the spinlock.
//
// Return Value:
//
// None
//
// Notes:
//
// Uses an ordered store to ensure previous memory accesses in
// critical section complete.
//--
#define RELEASE_SPINLOCK(rpLock) \
st8##.##rel [rpLock] = zero
//++
// Routine:
//
// PRELEASE_SPINLOCK(rpLock)
//
// Routine Description:
//
// Predicated release spinlock.
//
// Agruments:
//
// rpLock: pointer (swizzled) to the spinlock.
// spinlock itself is 32-bit.
//
// Return Value:
//
// None
//
// Notes:
//
// Uses an ordered store to ensure previous memory accesses in
// critical section complete.
//--
#define PRELEASE_SPINLOCK(px, rpLock) \
(px) st8##.##rel [rpLock] = zero
//
// Interrupt and IRQL macros
//
//++
// Routine:
//
// END_OF_INTERRUPT
//
// Routine Description:
//
// Hook to perform end-of-interrupt processing. Currently
// just writes to the EOI control register.
//
// Agruments:
//
// None
//
// Return Value:
//
// None
//
// Note:
//
// Writing EOI requires explicit data serialize. srlz must be preceded by
// stop bit.
//--
#define END_OF_INTERRUPT \
mov cr##.##eoi = zero ;\ ;; ;\ srlz##.##d /* Requires data srlz */
//++
// Routine:
//
// GET_IRQL(rOldIrql)
//
// Routine Description:
//
// Read the current IRQL by reading the TPR control register.
//
// Agruments:
//
// Register to contain the result.
//
// Return Value:
//
// rOldIrql: the current value of the IRQL.
//
//--
#ifndef SHADOW_IRQL_IMPLEMENTATION
#define GET_IRQL(rOldIrql) \
mov rOldIrql = cr##.##tpr ;;\ extr##.##u rOldIrql = rOldIrql, TPR_MIC, TPR_MIC_LEN
#else
#define GET_IRQL(rOldIrql) \
movl rOldIrql = KiPcr+PcCurrentIrql;; \ ld1 rOldIrql = [rOldIrql]
#endif
//++
// Routine:
//
// SET_IRQL(rNewIrql)
//
// Routine Description:
//
// Update the IRQL by writing the TPR control register.
// register t21 & t22 are used as a scratch
//
// Agruments:
//
// Register with the new IRQL value. Contains the unshifted
// IRQL value (0-15).
//
// Return Value:
//
// None.
//
// Notes:
//
// Writing TPR requires explicit data serialize. srlz must be preceded by
// stop bit.
//
//--
#ifndef SHADOW_IRQL_IMPLEMENTATION
#define SET_IRQL(rNewIrql) \
dep##.##z t22 = rNewIrql, TPR_MIC, TPR_MIC_LEN;; ;\ mov cr##.##tpr = t22;; ;\ srlz##.##d #else
#define SET_IRQL(rNewIrql) \
dep##.##z t22 = rNewIrql, TPR_MIC, TPR_MIC_LEN;; ;\ movl t21 = KiPcr+PcCurrentIrql;; ;\ mov cr##.##tpr = t22 ;\ st1 [t21] = rNewIrql
#endif
//++
// Routine:
//
// PSET_IRQL(pr, rNewIrql)
//
// Routine Description:
//
// Update the IRQL by writing the TPR control register, predicated
// on pr
// register t21 & t22 are used as a scratch
//
// Agruments:
//
// pr: predicate -- set irql if pr true.
//
// rNewIrql: Register with the new IRQL value. Contains the unshifted
// IRQL value (0-15).
//
// Return Value:
//
// None.
//
// Notes:
//
// Relies on TPR.mi always 0.
// Writing TPR requires explicit data serialize. srlz must be preceded by
// stop bit.
//--
#ifndef SHADOW_IRQL_IMPLEMENTATION
#define PSET_IRQL(pr, rNewIrql) \
dep##.##z t22 = rNewIrql, TPR_MIC, TPR_MIC_LEN;; ;\ (pr) mov cr##.##tpr = t22;; ;\ (pr) srlz##.##d
#else
#define PSET_IRQL(pr, rNewIrql) \
mov t21 = rNewIrql ;\ dep##.##z t22 = rNewIrql, TPR_MIC, TPR_MIC_LEN;; ;\ (pr) mov cr##.##tpr = t22 ;\ (pr) movl t22 = KiPcr+PcCurrentIrql;; ;\ (pr) st1 [t22] = t21
#endif
//++
// Routine:
//
// SWAP_IRQL(rNewIrql)
//
// Routine Description:
//
// get the current IRQL value and set the IRQL to the new value
// register t21 and t22 are used as a scratch
//
// Agruments:
//
// Register with the new IRQL value. Contains the unshifted
// IRQL value (0-15).
//
// Return Value:
//
// v0 - current IRQL
//
//--
#define SWAP_IRQL(rNewIrql) \
movl t22 = KiPcr+PcCurrentIrql;; ;\ ld1 v0 = [t22] ;\ dep##.##z t21 = rNewIrql, TPR_MIC, TPR_MIC_LEN;; ;\ mov cr##.##tpr = t21 ;\ st1 [t22] = rNewIrql
//++
// Routine:
//
// GET_IRQL_FOR_VECTOR(pGet,rIrql,rVector)
//
// Routine Description:
//
// Hook to get the IRQL associated with an interrupt vector.
// Currently just returns bit {7:4} of the 8-bit vector number.
//
// Agruments:
//
// pGet: Predicate: if true then get, else skip.
// rIrql: Register to contain the associated IRQL.
// rVector: Register containing the vector number.
//
// Return Value:
//
// rIrql: The IRQL value. A 4-bit value in bits {3:0}. All
// other bits are zero.
//
//--
#define GET_IRQL_FOR_VECTOR(pGet,rIrql,rVector) \
(pGet) shr rIrql = rVector, VECTOR_IRQL_SHIFT
//++
// Routine:
//
// GET_VECTOR_FOR_IRQL(pGet,rVector,rIrql)
//
// Routine Description:
//
// Hook to get the interrupt vector associated with an IRQL.
// Currently just returns IRQL << 4.
//
// Agruments:
//
// pGet: Predicate: if true then get, else skip.
// rVector: Register containing the associated vector number.
// rIrql: Register to containing the IRQL.
//
// Return Value:
//
// rVector: The vector value. An 8-bit value in bits {7:0}. All
// other bits are zero.
//
//--
#define GET_VECTOR_FOR_IRQL(pGet, rVector, rIrql) \
(pGet) shl rVector = rIrql, VECTOR_IRQL_SHIFT
// Routine:
//
// REQUEST_APC_INT(pReq)
// REQUEST_DISPATCH_INT(pReq)
//
// Routine Description:
//
// Request a software interrupt. Used to request
// APC and DPC interrupts.
//
// Agruments:
//
// pReq: Predicate: if true then do request, else skip
//
// Return Value:
//
// None
//
// Notes:
//
// Uses temporary registers t20, t21
//--
#define REQUEST_APC_INT(pReq) \
mov t20 = 1 ;\ movl t21 = KiPcr+PcApcInterrupt ;\ ;; ;\ (pReq) st1 [t21] = t20
#define REQUEST_DISPATCH_INT(pReq) \
mov t20 = 1 ;\ movl t21 = KiPcr+PcDispatchInterrupt ;\ ;; ;\ (pReq) st1 [t21] = t20
#ifdef __assembler
//++
// Routine:
//
// LOWER_IRQL(rNewIrql)
//
// Routine Description:
//
// Check for pending s/w interrupts and lower Irql
//
// Agruments:
//
// rNewIrql: interrupt request level
//
// Return Value:
//
// None
//
// Notes:
//
// Pending s/w interrupts are dispatched if new IRQL is low enough,
// even though interrupts are disabled
//--
#define LOWER_IRQL(rNewIrql) \
cmp##.##gtu pt0, pt1 = DISPATCH_LEVEL, rNewIrql ;\ movl t22 = KiPcr+PcSoftwareInterruptPending;; ;\ ld2 t22 = [t22] ;\ mov out0 = rNewIrql;; ;\ (pt0) cmp##.##ne pt0, pt1 = r0, t22 ;\ PSET_IRQL(pt1, rNewIrql) ;\ (pt0) br##.##call##.##spnt brp = KiCheckForSoftwareInterrupt
//++
//
// Routine:
//
// LEAF_LOWER_IRQL_AND_RETURN(rNewIrql)
//
// Routine Description:
//
// Check for pending s/w interrupts and lower Irql
//
// If a software interupt is in fact pending and would
// logically fire if IRQL is lowered to the new level,
// branch to code that will promote to a nested function
// and handle the interrupt, otherwise, lower IRQL and
// return from this leaf function.
//
// Agruments:
//
// rNewIrql: interrupt request level
//
// Return Value:
//
// None
//
// Notes:
//
// Pending s/w interrupts are dispatched if new IRQL is low enough,
// even though interrupts are disabled
//--
#define LEAF_LOWER_IRQL_AND_RETURN(rNewIrql) \
cmp##.##gtu pt0 = DISPATCH_LEVEL, rNewIrql ;\ movl t21 = KiPcr+PcSoftwareInterruptPending;; ;\ (pt0) rsm 1 << PSR_I ;\ (pt0) ld2 t21 = [t21] ;\ mov t22 = rNewIrql;; ;\ (pt0) cmp##.##ltu##.##unc pt1 = rNewIrql, t21 ;\ (pt1) br##.##spnt KiLowerIrqlSoftwareInterruptPending ;\ SET_IRQL(rNewIrql) ;\ ssm 1 << PSR_I ;\ br##.##ret##.##spnt##.##few##.##clr brp
#endif // __assembler
//*******
//*
//* The following macros are used in C runtime asm code
//*
//* beginSection - a macro for declaring and beginning a section
//* .sdata is used to create short data section, if it does not exist
//*
//* endSection - a macro for ending a previously declared section
//*
//*******
#define beginSection(SectName) .##section .CRT$##SectName, "a", "progbits"
#define endSection(SectName)
#define PublicFunction(Name) .##global Name; .##type Name,@function
// XIA Begin C Initializer Sections
// XIC Microsoft Reserved
// XIU User
// XIZ End C Initializer Sections
//
// XCA Begin C++ Constructor Sections
// XCC Compiler (MS)
// XCL Library
// XCU User
// XCZ End C++ Constructor Sections
//
// XPA Begin C Pre-Terminator Sections
// XPU User
// XPX Microsoft Reserved
// XPZ End C Pre-Terminator Sections
//
// XTA Begin C Pre-Terminator Sections
// XTU User
// XTX Microsoft Reserved
// XTZ End C Pre-Terminator Sections
//
|