|
|
/*******************************************************************************
* SPHelper.h * *------------* * Description: * This is the header file for core helper functions implementation. *------------------------------------------------------------------------------- * Copyright (c) Microsoft Corporation. All rights reserved. *******************************************************************************/ #ifndef SPHelper_h
#define SPHelper_h
#ifndef _INC_MALLOC
#include <malloc.h>
#endif
#ifndef _INC_CRTDBG
#include <crtdbg.h>
#endif
#ifndef __sapi_h__
#include <sapi.h>
#endif
#ifndef __sapiddk_h__
#include <sapiddk.h>
#endif
#ifndef SPError_h
#include <SPError.h>
#endif
#ifndef SPDebug_h
#include <SPDebug.h>
#endif
#ifndef _INC_LIMITS
#include <limits.h>
#endif
#ifndef _INC_MMSYSTEM
#include <mmsystem.h>
#endif
#ifndef __comcat_h__
#include <comcat.h>
#endif
#ifndef _INC_MMREG
#include <mmreg.h>
#endif
#ifndef __ATLBASE_H__
#include <atlbase.h>
#endif
//=== Constants ==============================================================
#define sp_countof(x) ((sizeof(x) / sizeof(*(x))))
/*** CSpDynamicString helper class
* */ class CSpDynamicString { public:
WCHAR * m_psz; CSpDynamicString() { m_psz = NULL; } CSpDynamicString(ULONG cchReserve) { m_psz = (WCHAR *)::CoTaskMemAlloc(cchReserve * sizeof(WCHAR)); } WCHAR * operator=(const CSpDynamicString& src) { if (m_psz != src.m_psz) { ::CoTaskMemFree(m_psz); m_psz = src.Copy(); } return m_psz; } WCHAR * operator=(const WCHAR * pSrc) { Clear(); if (pSrc) { ULONG cbNeeded = (wcslen(pSrc) + 1) * sizeof(WCHAR); m_psz = (WCHAR *)::CoTaskMemAlloc(cbNeeded); SPDBG_ASSERT(m_psz); if (m_psz) { memcpy(m_psz, pSrc, cbNeeded); } } return m_psz; }
WCHAR * operator=(const char * pSrc) { Clear(); if (pSrc) { ULONG cbNeeded = (lstrlenA(pSrc) + 1) * sizeof(WCHAR); m_psz = (WCHAR *)::CoTaskMemAlloc(cbNeeded); SPDBG_ASSERT(m_psz); if (m_psz) { ::MultiByteToWideChar(CP_ACP, 0, pSrc, -1, m_psz, cbNeeded/sizeof(WCHAR)); } } return m_psz; }
WCHAR * operator=(REFGUID rguid) { Clear(); ::StringFromCLSID(rguid, &m_psz); return m_psz; }
/*explicit*/ CSpDynamicString(const WCHAR * pSrc) { m_psz = NULL; operator=(pSrc); } /*explicit*/ CSpDynamicString(const char * pSrc) { m_psz = NULL; operator=(pSrc); } /*explicit*/ CSpDynamicString(const CSpDynamicString& src) { m_psz = src.Copy(); } /*explicit*/ CSpDynamicString(REFGUID rguid) { ::StringFromCLSID(rguid, &m_psz); }
~CSpDynamicString() { ::CoTaskMemFree(m_psz); } unsigned int Length() const { return (m_psz == NULL)? 0 : wcslen(m_psz); }
operator WCHAR * () const { return m_psz; } //The assert on operator& usually indicates a bug. If this is really
//what is needed, however, take the address of the m_psz member explicitly.
WCHAR ** operator&() { SPDBG_ASSERT(m_psz == NULL); return &m_psz; }
WCHAR * Append(const WCHAR * pszSrc) { if (pszSrc) { ULONG lenSrc = wcslen(pszSrc); if (lenSrc) { ULONG lenMe = Length(); WCHAR *pszNew = (WCHAR *)::CoTaskMemAlloc((lenMe + lenSrc + 1) * sizeof(WCHAR)); if (pszNew) { if (m_psz) // Could append to an empty string so check...
{ if (lenMe) { memcpy(pszNew, m_psz, lenMe * sizeof(WCHAR)); } ::CoTaskMemFree(m_psz); } memcpy(pszNew + lenMe, pszSrc, (lenSrc + 1) * sizeof(WCHAR)); m_psz = pszNew; } else { SPDBG_ASSERT(FALSE); } } } return m_psz; }
WCHAR * Append(const WCHAR * pszSrc, const ULONG lenSrc) { if (pszSrc && lenSrc) { ULONG lenMe = Length(); WCHAR *pszNew = (WCHAR *)::CoTaskMemAlloc((lenMe + lenSrc + 1) * sizeof(WCHAR)); if (pszNew) { if (m_psz) // Could append to an empty string so check...
{ if (lenMe) { memcpy(pszNew, m_psz, lenMe * sizeof(WCHAR)); } ::CoTaskMemFree(m_psz); } memcpy(pszNew + lenMe, pszSrc, lenSrc * sizeof(WCHAR)); *(pszNew + lenMe + lenSrc) = L'\0'; m_psz = pszNew; } else { SPDBG_ASSERT(FALSE); } } return m_psz; }
WCHAR * Append2(const WCHAR * pszSrc1, const WCHAR * pszSrc2) { ULONG lenSrc1 = pszSrc1 ? wcslen(pszSrc1) : 0; ULONG lenSrc2 = pszSrc2 ? wcslen(pszSrc2) : 0;
if (lenSrc1 || lenSrc2) { ULONG lenMe = Length(); WCHAR *pszNew = (WCHAR *)::CoTaskMemAlloc((lenMe + lenSrc1 + lenSrc2 + 1) * sizeof(WCHAR)); if (pszNew) { if (m_psz) // Could append to an empty string so check...
{ if (lenMe) { memcpy(pszNew, m_psz, lenMe * sizeof(WCHAR)); } ::CoTaskMemFree(m_psz); } // In both of these cases, we copy the trailing NULL so that we're sure it gets
// there (if lenSrc2 is 0 then we better copy it from pszSrc1).
if (lenSrc1) { memcpy(pszNew + lenMe, pszSrc1, (lenSrc1 + 1) * sizeof(WCHAR)); } if (lenSrc2) { memcpy(pszNew + lenMe + lenSrc1, pszSrc2, (lenSrc2 + 1) * sizeof(WCHAR)); } m_psz = pszNew; } else { SPDBG_ASSERT(FALSE); } } return m_psz; } WCHAR * Copy() const { if (m_psz) { CSpDynamicString szNew(m_psz); return szNew.Detach(); } return NULL; } CHAR * CopyToChar() const { if (m_psz) { CHAR* psz; ULONG cbNeeded = ::WideCharToMultiByte(CP_ACP, 0, m_psz, -1, NULL, NULL, NULL, NULL); psz = (CHAR *)::CoTaskMemAlloc(cbNeeded); SPDBG_ASSERT(psz); if (psz) { ::WideCharToMultiByte(CP_ACP, 0, m_psz, -1, psz, cbNeeded/sizeof(CHAR), NULL, NULL); } return psz; } return NULL; } void Attach(WCHAR * pszSrc) { SPDBG_ASSERT(m_psz == NULL); m_psz = pszSrc; } WCHAR * Detach() { WCHAR * s = m_psz; m_psz = NULL; return s; } void Clear() { ::CoTaskMemFree(m_psz); m_psz = NULL; } bool operator!() const { return (m_psz == NULL); } HRESULT CopyToBSTR(BSTR * pbstr) { if (m_psz) { *pbstr = ::SysAllocString(m_psz); if (*pbstr == NULL) { return E_OUTOFMEMORY; } } else { *pbstr = NULL; } return S_OK; } void TrimToSize(ULONG ulNumChars) { if (m_psz && ulNumChars < Length()) { m_psz[ulNumChars] = 0; } } WCHAR * Compact() { if (m_psz) { ULONG cch = wcslen(m_psz); m_psz = (WCHAR *)::CoTaskMemRealloc(m_psz, (cch + 1) * sizeof(WCHAR)); } return m_psz; } WCHAR * ClearAndGrowTo(ULONG cch) { if (m_psz) { Clear(); } m_psz = (WCHAR *)::CoTaskMemAlloc(cch * sizeof(WCHAR)); return m_psz; } WCHAR * LTrim() { if (m_psz) { WCHAR * pszRead = m_psz; while (iswspace(*pszRead)) { pszRead++; } if (pszRead != m_psz) { WCHAR * pszWrite = m_psz; while (*pszRead) { *pszWrite++ = *pszRead++; } *pszWrite = '\0'; } } return m_psz; } WCHAR * RTrim() { if (m_psz) { WCHAR * pszTail = m_psz + wcslen(m_psz); WCHAR * pszZeroTerm = pszTail; while (pszZeroTerm > m_psz && iswspace(pszZeroTerm[-1])) { pszZeroTerm--; } if (pszZeroTerm != pszTail) { *pszZeroTerm = '\0'; } } return m_psz; } WCHAR * TrimBoth() { RTrim(); return LTrim(); } };
//
// Simple inline function converts a ulong to a hex string.
//
inline void SpHexFromUlong(WCHAR * psz, ULONG ul) { const static WCHAR szHexChars[] = L"0123456789ABCDEF"; if (ul == 0) { psz[0] = L'0'; psz[1] = 0; } else { ULONG ulChars = 1; psz[0] = 0; while (ul) { memmove(psz + 1, psz, ulChars * sizeof(WCHAR)); psz[0] = szHexChars[ul % 16]; ul /= 16; ulChars++; } } }
//=== Token helpers
inline HRESULT SpGetTokenFromId( const WCHAR * pszTokenId, ISpObjectToken ** ppToken, BOOL fCreateIfNotExist = FALSE) { SPDBG_FUNC("SpGetTokenFromId"); HRESULT hr; CComPtr<ISpObjectToken> cpToken; hr = cpToken.CoCreateInstance(CLSID_SpObjectToken); if (SUCCEEDED(hr)) { hr = cpToken->SetId(NULL, pszTokenId, fCreateIfNotExist); } if (SUCCEEDED(hr)) { *ppToken = cpToken.Detach(); } if (hr != SPERR_NOT_FOUND) { SPDBG_REPORT_ON_FAIL(hr); }
return hr; }
inline HRESULT SpGetCategoryFromId( const WCHAR * pszCategoryId, ISpObjectTokenCategory ** ppCategory, BOOL fCreateIfNotExist = FALSE) { SPDBG_FUNC("SpGetCategoryFromId"); HRESULT hr; CComPtr<ISpObjectTokenCategory> cpTokenCategory; hr = cpTokenCategory.CoCreateInstance(CLSID_SpObjectTokenCategory); if (SUCCEEDED(hr)) { hr = cpTokenCategory->SetId(pszCategoryId, fCreateIfNotExist); } if (SUCCEEDED(hr)) { *ppCategory = cpTokenCategory.Detach(); } SPDBG_REPORT_ON_FAIL(hr); return hr; }
inline HRESULT SpGetDefaultTokenIdFromCategoryId( const WCHAR * pszCategoryId, WCHAR ** ppszTokenId) { SPDBG_FUNC("SpGetDefaultTokenFromCategoryId"); HRESULT hr;
CComPtr<ISpObjectTokenCategory> cpCategory; hr = SpGetCategoryFromId(pszCategoryId, &cpCategory); if (SUCCEEDED(hr)) { hr = cpCategory->GetDefaultTokenId(ppszTokenId); }
return hr; }
inline HRESULT SpSetDefaultTokenIdForCategoryId( const WCHAR * pszCategoryId, const WCHAR * pszTokenId) { SPDBG_FUNC("SpSetDefaultTokenIdForCategoryId"); HRESULT hr;
CComPtr<ISpObjectTokenCategory> cpCategory; hr = SpGetCategoryFromId(pszCategoryId, &cpCategory); if (SUCCEEDED(hr)) { hr = cpCategory->SetDefaultTokenId(pszTokenId); }
return hr; }
inline HRESULT SpGetDefaultTokenFromCategoryId( const WCHAR * pszCategoryId, ISpObjectToken ** ppToken, BOOL fCreateCategoryIfNotExist = TRUE) { SPDBG_FUNC("SpGetDefaultTokenFromCategoryId"); HRESULT hr;
CComPtr<ISpObjectTokenCategory> cpCategory; hr = SpGetCategoryFromId(pszCategoryId, &cpCategory, fCreateCategoryIfNotExist);
if (SUCCEEDED(hr)) { WCHAR * pszTokenId; hr = cpCategory->GetDefaultTokenId(&pszTokenId); if (SUCCEEDED(hr)) { hr = SpGetTokenFromId(pszTokenId, ppToken); ::CoTaskMemFree(pszTokenId); } }
return hr; }
inline HRESULT SpSetDefaultTokenForCategoryId( const WCHAR * pszCategoryId, ISpObjectToken * pToken) { SPDBG_FUNC("SpSetDefaultTokenForCategoryId"); HRESULT hr;
WCHAR * pszTokenId; hr = pToken->GetId(&pszTokenId);
if (SUCCEEDED(hr)) { hr = SpSetDefaultTokenIdForCategoryId(pszCategoryId, pszTokenId); ::CoTaskMemFree(pszTokenId); }
return hr; }
inline HRESULT SpSetCommonTokenData( ISpObjectToken * pToken, const CLSID * pclsid, const WCHAR * pszLangIndependentName, LANGID langid, const WCHAR * pszLangDependentName, ISpDataKey ** ppDataKeyAttribs) { SPDBG_FUNC("SpSetCommonTokenData"); HRESULT hr = S_OK; // Set the new token's CLSID (if specified)
if (SUCCEEDED(hr) && pclsid) { CSpDynamicString dstrClsid; hr = StringFromCLSID(*pclsid, &dstrClsid); if (SUCCEEDED(hr)) { hr = pToken->SetStringValue(SPTOKENVALUE_CLSID, dstrClsid); } }
// Set the token's lang independent name
if (SUCCEEDED(hr) && pszLangIndependentName) { hr = pToken->SetStringValue(NULL, pszLangIndependentName); }
// Set the token's lang dependent name
if (SUCCEEDED(hr) && pszLangDependentName) { USES_CONVERSION; TCHAR szLangId[10]; wsprintf(szLangId, _T("%x"), langid);
hr = pToken->SetStringValue(T2W(szLangId), pszLangDependentName); }
// Open the attributes key if requested
if (SUCCEEDED(hr) && ppDataKeyAttribs) { hr = pToken->CreateKey(L"Attributes", ppDataKeyAttribs); }
SPDBG_REPORT_ON_FAIL(hr); return hr; }
inline HRESULT SpCreateNewToken( const WCHAR * pszTokenId, ISpObjectToken ** ppToken) { SPDBG_FUNC("SpCreateNewToken"); HRESULT hr;
// Forcefully create the token
hr = SpGetTokenFromId(pszTokenId, ppToken, TRUE); SPDBG_REPORT_ON_FAIL(hr); return hr; }
inline HRESULT SpCreateNewToken( const WCHAR * pszCategoryId, const WCHAR * pszTokenKeyName, ISpObjectToken ** ppToken) { SPDBG_FUNC("SpCreateNewToken"); HRESULT hr;
// Forcefully create the category
CComPtr<ISpObjectTokenCategory> cpCategory; hr = SpGetCategoryFromId(pszCategoryId, &cpCategory, TRUE);
// Come up with a token key name if one wasn't specified
CSpDynamicString dstrTokenKeyName; if (SUCCEEDED(hr)) { if (pszTokenKeyName == NULL) { GUID guidTokenKeyName; hr = CoCreateGuid(&guidTokenKeyName);
if (SUCCEEDED(hr)) { hr = StringFromCLSID(guidTokenKeyName, &dstrTokenKeyName); }
if (SUCCEEDED(hr)) { pszTokenKeyName = dstrTokenKeyName; } } }
// Build the token id
CSpDynamicString dstrTokenId; if (SUCCEEDED(hr)) { dstrTokenId = pszCategoryId; dstrTokenId.Append2(L"\\Tokens\\", pszTokenKeyName); }
// Forcefully create the token
if (SUCCEEDED(hr)) { hr = SpGetTokenFromId(dstrTokenId, ppToken, TRUE); } SPDBG_REPORT_ON_FAIL(hr); return hr; }
inline HRESULT SpCreateNewTokenEx( const WCHAR * pszCategoryId, const WCHAR * pszTokenKeyName, const CLSID * pclsid, const WCHAR * pszLangIndependentName, LANGID langid, const WCHAR * pszLangDependentName, ISpObjectToken ** ppToken, ISpDataKey ** ppDataKeyAttribs) { SPDBG_FUNC("SpCreateNewTokenEx"); HRESULT hr;
// Create the new token
hr = SpCreateNewToken(pszCategoryId, pszTokenKeyName, ppToken);
// Now set the extra data
if (SUCCEEDED(hr)) { hr = SpSetCommonTokenData( *ppToken, pclsid, pszLangIndependentName, langid, pszLangDependentName, ppDataKeyAttribs); } SPDBG_REPORT_ON_FAIL(hr); return hr; }
inline HRESULT SpCreateNewTokenEx( const WCHAR * pszTokenId, const CLSID * pclsid, const WCHAR * pszLangIndependentName, LANGID langid, const WCHAR * pszLangDependentName, ISpObjectToken ** ppToken, ISpDataKey ** ppDataKeyAttribs) { SPDBG_FUNC("SpCreateNewTokenEx"); HRESULT hr;
// Create the new token
hr = SpCreateNewToken(pszTokenId, ppToken);
// Now set the extra data
if (SUCCEEDED(hr)) { hr = SpSetCommonTokenData( *ppToken, pclsid, pszLangIndependentName, langid, pszLangDependentName, ppDataKeyAttribs); } SPDBG_REPORT_ON_FAIL(hr); return hr; }
inline HRESULT SpEnumTokens( const WCHAR * pszCategoryId, const WCHAR * pszReqAttribs, const WCHAR * pszOptAttribs, IEnumSpObjectTokens ** ppEnum) { SPDBG_FUNC("SpEnumTokens"); HRESULT hr = S_OK; CComPtr<ISpObjectTokenCategory> cpCategory; hr = SpGetCategoryFromId(pszCategoryId, &cpCategory); if (SUCCEEDED(hr)) { hr = cpCategory->EnumTokens( pszReqAttribs, pszOptAttribs, ppEnum); } SPDBG_REPORT_ON_FAIL(hr); return hr; }
inline HRESULT SpFindBestToken( const WCHAR * pszCategoryId, const WCHAR * pszReqAttribs, const WCHAR * pszOptAttribs, ISpObjectToken **ppObjectToken) { SPDBG_FUNC("SpFindBestToken"); HRESULT hr = S_OK; const WCHAR *pszVendorPreferred = L"VendorPreferred"; const ulLenVendorPreferred = wcslen(pszVendorPreferred);
// append VendorPreferred to the end of pszOptAttribs to force this preference
ULONG ulLen = pszOptAttribs ? wcslen(pszOptAttribs) + ulLenVendorPreferred + 1 : ulLenVendorPreferred; WCHAR *pszOptAttribsVendorPref = (WCHAR*)_alloca((ulLen+1)*sizeof(WCHAR)); if (pszOptAttribsVendorPref) { if (pszOptAttribs) { wcscpy(pszOptAttribsVendorPref, pszOptAttribs); wcscat(pszOptAttribsVendorPref, L";"); wcscat(pszOptAttribsVendorPref, pszVendorPreferred); } else { wcscpy(pszOptAttribsVendorPref, pszVendorPreferred); } } else { hr = E_OUTOFMEMORY; }
CComPtr<IEnumSpObjectTokens> cpEnum; if (SUCCEEDED(hr)) { hr = SpEnumTokens(pszCategoryId, pszReqAttribs, pszOptAttribsVendorPref, &cpEnum); }
if (SUCCEEDED(hr)) { hr = cpEnum->Next(1, ppObjectToken, NULL); if (hr == S_FALSE) { *ppObjectToken = NULL; hr = SPERR_NOT_FOUND; } }
if (hr != SPERR_NOT_FOUND) { SPDBG_REPORT_ON_FAIL(hr); } return hr; }
template<class T> HRESULT SpCreateObjectFromToken(ISpObjectToken * pToken, T ** ppObject, IUnknown * pUnkOuter = NULL, DWORD dwClsCtxt = CLSCTX_ALL) { SPDBG_FUNC("SpCreateObjectFromToken"); HRESULT hr;
hr = pToken->CreateInstance(pUnkOuter, dwClsCtxt, __uuidof(T), (void **)ppObject); SPDBG_REPORT_ON_FAIL(hr); return hr; }
template<class T> HRESULT SpCreateObjectFromTokenId(const WCHAR * pszTokenId, T ** ppObject, IUnknown * pUnkOuter = NULL, DWORD dwClsCtxt = CLSCTX_ALL) { SPDBG_FUNC("SpCreateObjectFromTokenId"); ISpObjectToken * pToken; HRESULT hr = SpGetTokenFromId(pszTokenId, &pToken); if (SUCCEEDED(hr)) { hr = SpCreateObjectFromToken(pToken, ppObject, pUnkOuter, dwClsCtxt); pToken->Release(); }
SPDBG_REPORT_ON_FAIL(hr); return hr; }
template<class T> HRESULT SpCreateDefaultObjectFromCategoryId(const WCHAR * pszCategoryId, T ** ppObject, IUnknown * pUnkOuter = NULL, DWORD dwClsCtxt = CLSCTX_ALL) { SPDBG_FUNC("SpCreateObjectFromTokenId"); ISpObjectToken * pToken; HRESULT hr = SpGetDefaultTokenFromCategoryId(pszCategoryId, &pToken); if (SUCCEEDED(hr)) { hr = SpCreateObjectFromToken(pToken, ppObject, pUnkOuter, dwClsCtxt); pToken->Release(); }
SPDBG_REPORT_ON_FAIL(hr); return hr; }
template<class T> HRESULT SpCreateBestObject( const WCHAR * pszCategoryId, const WCHAR * pszReqAttribs, const WCHAR * pszOptAttribs, T ** ppObject, IUnknown * pUnkOuter = NULL, DWORD dwClsCtxt = CLSCTX_ALL) { SPDBG_FUNC("SpCreateBestObject"); HRESULT hr; CComPtr<ISpObjectToken> cpToken; hr = SpFindBestToken(pszCategoryId, pszReqAttribs, pszOptAttribs, &cpToken);
if (SUCCEEDED(hr)) { hr = SpCreateObjectFromToken(cpToken, ppObject, pUnkOuter, dwClsCtxt); }
if (hr != SPERR_NOT_FOUND) { SPDBG_REPORT_ON_FAIL(hr); }
return hr; }
inline HRESULT SpCreatePhoneConverter( LANGID LangID, const WCHAR * pszReqAttribs, const WCHAR * pszOptAttribs, ISpPhoneConverter ** ppPhoneConverter) { SPDBG_FUNC("SpCreatePhoneConverter"); HRESULT hr;
if (LangID == 0) { hr = E_INVALIDARG; } else { CSpDynamicString dstrReqAttribs; if (pszReqAttribs) { dstrReqAttribs = pszReqAttribs; dstrReqAttribs.Append(L";"); }
WCHAR szLang[MAX_PATH];
SpHexFromUlong(szLang, LangID);
WCHAR szLangCondition[MAX_PATH]; wcscpy(szLangCondition, L"Language="); wcscat(szLangCondition, szLang);
dstrReqAttribs.Append(szLangCondition);
hr = SpCreateBestObject(SPCAT_PHONECONVERTERS, dstrReqAttribs, pszOptAttribs, ppPhoneConverter); }
if (hr != SPERR_NOT_FOUND) { SPDBG_REPORT_ON_FAIL(hr); }
return hr; }
/****************************************************************************
* SpHrFromWin32 * *---------------* * Description: * This inline function works around a basic problem with the macro * HRESULT_FROM_WIN32. The macro forces the expresion in ( ) to be evaluated * two times. By using this inline function, the expression will only be * evaluated once. * * Returns: * HRESULT of converted Win32 error code * *****************************************************************************/
inline HRESULT SpHrFromWin32(DWORD dwErr) { return HRESULT_FROM_WIN32(dwErr); }
/****************************************************************************
* SpHrFromLastWin32Error * *------------------------* * Description: * This simple inline function is used to return a converted HRESULT * from the Win32 function ::GetLastError. Note that using HRESULT_FROM_WIN32 * will evaluate the error code twice so we don't want to use: * * HRESULT_FROM_WIN32(::GetLastError()) * * since that will call GetLastError twice. * On Win98 and WinMe ::GetLastError() returns 0 for some functions (see MSDN). * We therefore check for that and return E_FAIL. This function should only be * called in an error case since it will always return an error code! * * Returns: * HRESULT for ::GetLastError() * *****************************************************************************/
inline HRESULT SpHrFromLastWin32Error() { DWORD dw = ::GetLastError(); return (dw == 0) ? E_FAIL : SpHrFromWin32(dw); }
/****************************************************************************
* SpGetUserDefaultUILanguage * *----------------------------* * Description: * Returns the default user interface language, using a method * appropriate to the platform (Windows 9x, Windows NT, or Windows 2000) * * Returns: * Default UI language * *****************************************************************************/
inline LANGID SpGetUserDefaultUILanguage(void) { HRESULT hr = S_OK; LANGID wUILang = 0;
OSVERSIONINFO Osv ; Osv.dwOSVersionInfoSize = sizeof(Osv) ; if(!GetVersionEx(&Osv)) { hr = SpHrFromLastWin32Error(); } // Get the UI language by one of three methods, depending on the system
else if(Osv.dwPlatformId != VER_PLATFORM_WIN32_NT) { // Case 1: Running on Windows 9x. Get the system UI language from registry:
CHAR szData[32]; DWORD dwSize = sizeof(szData) ; HKEY hKey;
long lRet = RegOpenKeyEx( HKEY_USERS, _T(".Default\\Control Panel\\desktop\\ResourceLocale"), 0, KEY_READ, &hKey);
#ifdef _WIN32_WCE_BUG_10655
if (lRet == ERROR_INVALID_PARAMETER) { lRet = ERROR_FILE_NOT_FOUND; } #endif // _WIN32_WCE_BUG_10655
hr = SpHrFromWin32(lRet);
if (SUCCEEDED(hr)) { lRet = RegQueryValueEx( hKey, _T(""), NULL, NULL, (BYTE *)szData, &dwSize);
#ifdef _WIN32_WCE_BUG_10655
if(lRet == ERROR_INVALID_PARAMETER) { lRet = ERROR_FILE_NOT_FOUND; } #endif //_WIN32_WCE_BUG_10655
hr = SpHrFromWin32(lRet); ::RegCloseKey(hKey) ; } if (SUCCEEDED(hr)) { // Convert string to number
wUILang = (LANGID) strtol(szData, NULL, 16) ; } } else if (Osv.dwMajorVersion >= 5.0) { // Case 2: Running on Windows 2000 or later. Use GetUserDefaultUILanguage to find
// the user's prefered UI language
HMODULE hMKernel32 = ::LoadLibraryW(L"kernel32.dll") ; if (hMKernel32 == NULL) { hr = SpHrFromLastWin32Error(); } else {
LANGID (WINAPI *pfnGetUserDefaultUILanguage) () = (LANGID (WINAPI *)(void)) #ifdef _WIN32_WCE
GetProcAddress(hMKernel32, L"GetUserDefaultUILanguage") ; #else
GetProcAddress(hMKernel32, "GetUserDefaultUILanguage") ; #endif
if(NULL != pfnGetUserDefaultUILanguage) { wUILang = pfnGetUserDefaultUILanguage() ; } else { // GetProcAddress failed
hr = SpHrFromLastWin32Error(); } ::FreeLibrary(hMKernel32); } } else { // Case 3: Running on Windows NT 4.0 or earlier. Get UI language
// from locale of .default user in registry:
// HKEY_USERS\.DEFAULT\Control Panel\International\Locale
WCHAR szData[32] ; DWORD dwSize = sizeof(szData) ; HKEY hKey ;
LONG lRet = RegOpenKeyEx(HKEY_USERS, _T(".DEFAULT\\Control Panel\\International"), 0, KEY_READ, &hKey); #ifdef _WIN32_WCE_BUG_10655
if(lRet == ERROR_INVALID_PARAMETER) { lRet = ERROR_FILE_NOT_FOUND; } #endif //_WIN32_WCE_BUG_10655
hr = SpHrFromWin32(lRet);
if (SUCCEEDED(hr)) { lRet = RegQueryValueEx( hKey, _T("Locale"), NULL, NULL, (BYTE *)szData, &dwSize);
#ifdef _WIN32_WCE_BUG_10655
if(lRet == ERROR_INVALID_PARAMETER) { lRet = ERROR_FILE_NOT_FOUND; } #endif //_WIN32_WCE_BUG_10655
hr = SpHrFromWin32(lRet); ::RegCloseKey(hKey); }
if (SUCCEEDED(hr)) { // Convert string to number
wUILang = (LANGID) wcstol(szData, NULL, 16) ;
if(0x0401 == wUILang || // Arabic
0x040d == wUILang || // Hebrew
0x041e == wUILang // Thai
) { // Special case these to the English UI.
// These versions of Windows NT 4.0 were enabled only, i.e., the
// UI was English. However, the registry setting
// HKEY_USERS\.DEFAULT\Control Panel\International\Locale was set
// to the respective locale for application compatibility.
wUILang = MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US) ; } } }
return (wUILang ? wUILang : ::GetUserDefaultLangID()); // In failure case, try our best!
}
inline HRESULT SpGetDescription(ISpObjectToken * pObjToken, WCHAR ** ppszDescription, LANGID Language = SpGetUserDefaultUILanguage()) { WCHAR szLangId[10]; SpHexFromUlong(szLangId, Language); HRESULT hr = pObjToken->GetStringValue(szLangId, ppszDescription); if (hr == SPERR_NOT_FOUND) { hr = pObjToken->GetStringValue(NULL, ppszDescription); } return hr; }
inline HRESULT SpSetDescription(ISpObjectToken * pObjToken, const WCHAR * pszDescription, LANGID Language = SpGetUserDefaultUILanguage(), BOOL fSetLangIndependentId = TRUE) { WCHAR szLangId[10]; SpHexFromUlong(szLangId, Language); HRESULT hr = pObjToken->SetStringValue(szLangId, pszDescription); if (SUCCEEDED(hr) && fSetLangIndependentId) { hr = pObjToken->SetStringValue(NULL, pszDescription); } return hr; }
/****************************************************************************
* SpConvertStreamFormatEnum * *---------------------------* * Description: * This method converts the specified stream format into a wave format * structure. * *****************************************************************************/ inline HRESULT SpConvertStreamFormatEnum(SPSTREAMFORMAT eFormat, GUID * pFormatId, WAVEFORMATEX ** ppCoMemWaveFormatEx) { HRESULT hr = S_OK;
if(pFormatId==NULL || ::IsBadWritePtr(pFormatId, sizeof(*pFormatId)) || ppCoMemWaveFormatEx==NULL || ::IsBadWritePtr(ppCoMemWaveFormatEx, sizeof(*ppCoMemWaveFormatEx))) { return E_INVALIDARG; }
const GUID * pFmtGuid = &GUID_NULL; // Assume failure case
if( eFormat >= SPSF_8kHz8BitMono && eFormat <= SPSF_48kHz16BitStereo ) { WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc(sizeof(WAVEFORMATEX)); *ppCoMemWaveFormatEx = pwfex; if (pwfex) { DWORD dwIndex = eFormat - SPSF_8kHz8BitMono; BOOL bIsStereo = dwIndex & 0x1; BOOL bIs16 = dwIndex & 0x2; DWORD dwKHZ = (dwIndex & 0x3c) >> 2; static const DWORD adwKHZ[] = { 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000 }; pwfex->wFormatTag = WAVE_FORMAT_PCM; pwfex->nChannels = pwfex->nBlockAlign = (WORD)(bIsStereo ? 2 : 1); pwfex->nSamplesPerSec = adwKHZ[dwKHZ]; pwfex->wBitsPerSample = 8; if (bIs16) { pwfex->wBitsPerSample *= 2; pwfex->nBlockAlign *= 2; } pwfex->nAvgBytesPerSec = pwfex->nSamplesPerSec * pwfex->nBlockAlign; pwfex->cbSize = 0; pFmtGuid = &SPDFID_WaveFormatEx; } else { hr = E_OUTOFMEMORY; } } else if( eFormat == SPSF_TrueSpeech_8kHz1BitMono ) { int NumBytes = sizeof( WAVEFORMATEX ) + 32; WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc( NumBytes ); *ppCoMemWaveFormatEx = pwfex; if( pwfex ) { memset( pwfex, 0, NumBytes ); pwfex->wFormatTag = WAVE_FORMAT_DSPGROUP_TRUESPEECH; pwfex->nChannels = 1; pwfex->nSamplesPerSec = 8000; pwfex->nAvgBytesPerSec = 1067; pwfex->nBlockAlign = 32; pwfex->wBitsPerSample = 1; pwfex->cbSize = 32; BYTE* pExtra = ((BYTE*)pwfex) + sizeof( WAVEFORMATEX ); pExtra[0] = 1; pExtra[2] = 0xF0; pFmtGuid = &SPDFID_WaveFormatEx; } else { hr = E_OUTOFMEMORY; } } else if( (eFormat >= SPSF_CCITT_ALaw_8kHzMono ) && (eFormat <= SPSF_CCITT_ALaw_44kHzStereo ) ) { WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc( sizeof(WAVEFORMATEX) ); *ppCoMemWaveFormatEx = pwfex; if( pwfex ) { memset( pwfex, 0, sizeof(WAVEFORMATEX) ); DWORD dwIndex = eFormat - SPSF_CCITT_ALaw_8kHzMono; DWORD dwKHZ = dwIndex / 2; static const DWORD adwKHZ[] = { 8000, 11025, 22050, 44100 }; BOOL bIsStereo = dwIndex & 0x1; pwfex->wFormatTag = WAVE_FORMAT_ALAW; pwfex->nChannels = pwfex->nBlockAlign = (WORD)(bIsStereo ? 2 : 1); pwfex->nSamplesPerSec = adwKHZ[dwKHZ]; pwfex->wBitsPerSample = 8; pwfex->nAvgBytesPerSec = pwfex->nSamplesPerSec * pwfex->nBlockAlign; pwfex->cbSize = 0; pFmtGuid = &SPDFID_WaveFormatEx; } else { hr = E_OUTOFMEMORY; } } else if( (eFormat >= SPSF_CCITT_uLaw_8kHzMono ) && (eFormat <= SPSF_CCITT_uLaw_44kHzStereo ) ) { WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc( sizeof(WAVEFORMATEX) ); *ppCoMemWaveFormatEx = pwfex; if( pwfex ) { memset( pwfex, 0, sizeof(WAVEFORMATEX) ); DWORD dwIndex = eFormat - SPSF_CCITT_uLaw_8kHzMono; DWORD dwKHZ = dwIndex / 2; static const DWORD adwKHZ[] = { 8000, 11025, 22050, 44100 }; BOOL bIsStereo = dwIndex & 0x1; pwfex->wFormatTag = WAVE_FORMAT_MULAW; pwfex->nChannels = pwfex->nBlockAlign = (WORD)(bIsStereo ? 2 : 1); pwfex->nSamplesPerSec = adwKHZ[dwKHZ]; pwfex->wBitsPerSample = 8; pwfex->nAvgBytesPerSec = pwfex->nSamplesPerSec * pwfex->nBlockAlign; pwfex->cbSize = 0; pFmtGuid = &SPDFID_WaveFormatEx; } else { hr = E_OUTOFMEMORY; } } else if( (eFormat >= SPSF_ADPCM_8kHzMono ) && (eFormat <= SPSF_ADPCM_44kHzStereo ) ) { int NumBytes = sizeof( WAVEFORMATEX ) + 32; WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc( NumBytes ); *ppCoMemWaveFormatEx = pwfex; if( pwfex ) { //--- Some of these values seem odd. We used what the codec told us.
static const DWORD adwKHZ[] = { 8000, 11025, 22050, 44100 }; static const DWORD BytesPerSec[] = { 4096, 8192, 5644, 11289, 11155, 22311, 22179, 44359 }; static const DWORD BlockAlign[] = { 256, 256, 512, 1024 }; static const BYTE Extra811[32] = { 0xF4, 0x01, 0x07, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x40, 0x00, 0xF0, 0x00, 0x00, 0x00, 0xCC, 0x01, 0x30, 0xFF, 0x88, 0x01, 0x18, 0xFF };
static const BYTE Extra22[32] = { 0xF4, 0x03, 0x07, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x40, 0x00, 0xF0, 0x00, 0x00, 0x00, 0xCC, 0x01, 0x30, 0xFF, 0x88, 0x01, 0x18, 0xFF };
static const BYTE Extra44[32] = { 0xF4, 0x07, 0x07, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x40, 0x00, 0xF0, 0x00, 0x00, 0x00, 0xCC, 0x01, 0x30, 0xFF, 0x88, 0x01, 0x18, 0xFF };
static const BYTE* Extra[4] = { Extra811, Extra811, Extra22, Extra44 }; memset( pwfex, 0, NumBytes ); DWORD dwIndex = eFormat - SPSF_ADPCM_8kHzMono; DWORD dwKHZ = dwIndex / 2; BOOL bIsStereo = dwIndex & 0x1; pwfex->wFormatTag = WAVE_FORMAT_ADPCM; pwfex->nChannels = (WORD)(bIsStereo ? 2 : 1); pwfex->nSamplesPerSec = adwKHZ[dwKHZ]; pwfex->nAvgBytesPerSec = BytesPerSec[dwIndex]; pwfex->nBlockAlign = (WORD)(BlockAlign[dwKHZ] * pwfex->nChannels); pwfex->wBitsPerSample = 4; pwfex->cbSize = 32; BYTE* pExtra = ((BYTE*)pwfex) + sizeof( WAVEFORMATEX ); memcpy( pExtra, Extra[dwKHZ], 32 ); pFmtGuid = &SPDFID_WaveFormatEx; } else { hr = E_OUTOFMEMORY; } } else if( (eFormat >= SPSF_GSM610_8kHzMono ) && (eFormat <= SPSF_GSM610_44kHzMono ) ) { int NumBytes = sizeof( WAVEFORMATEX ) + 2; WAVEFORMATEX * pwfex = (WAVEFORMATEX *)::CoTaskMemAlloc( NumBytes ); *ppCoMemWaveFormatEx = pwfex; if( pwfex ) { //--- Some of these values seem odd. We used what the codec told us.
static const DWORD adwKHZ[] = { 8000, 11025, 22050, 44100 }; static const DWORD BytesPerSec[] = { 1625, 2239, 4478, 8957 }; memset( pwfex, 0, NumBytes ); DWORD dwIndex = eFormat - SPSF_GSM610_8kHzMono; pwfex->wFormatTag = WAVE_FORMAT_GSM610; pwfex->nChannels = 1; pwfex->nSamplesPerSec = adwKHZ[dwIndex]; pwfex->nAvgBytesPerSec = BytesPerSec[dwIndex]; pwfex->nBlockAlign = 65; pwfex->wBitsPerSample = 0; pwfex->cbSize = 2; BYTE* pExtra = ((BYTE*)pwfex) + sizeof( WAVEFORMATEX ); pExtra[0] = 0x40; pExtra[1] = 0x01; pFmtGuid = &SPDFID_WaveFormatEx; } else { hr = E_OUTOFMEMORY; } } else { *ppCoMemWaveFormatEx = NULL; switch (eFormat) { case SPSF_NoAssignedFormat: break; case SPSF_Text: pFmtGuid = &SPDFID_Text; break; default: hr = E_INVALIDARG; break; } } *pFormatId = *pFmtGuid; return hr; }
class CSpStreamFormat { public: GUID m_guidFormatId; WAVEFORMATEX * m_pCoMemWaveFormatEx;
static CoMemCopyWFEX(const WAVEFORMATEX * pSrc, WAVEFORMATEX ** ppCoMemWFEX) { ULONG cb = sizeof(WAVEFORMATEX) + pSrc->cbSize; *ppCoMemWFEX = (WAVEFORMATEX *)::CoTaskMemAlloc(cb); if (*ppCoMemWFEX) { memcpy(*ppCoMemWFEX, pSrc, cb); return S_OK; } else { return E_OUTOFMEMORY; } }
CSpStreamFormat() { m_guidFormatId = GUID_NULL; m_pCoMemWaveFormatEx = NULL; }
CSpStreamFormat(SPSTREAMFORMAT eFormat, HRESULT * phr) { *phr = SpConvertStreamFormatEnum(eFormat, &m_guidFormatId, &m_pCoMemWaveFormatEx); }
CSpStreamFormat(const WAVEFORMATEX * pWaveFormatEx, HRESULT * phr) { SPDBG_ASSERT(pWaveFormatEx); *phr = CoMemCopyWFEX(pWaveFormatEx, &m_pCoMemWaveFormatEx); m_guidFormatId = SUCCEEDED(*phr) ? SPDFID_WaveFormatEx : GUID_NULL; }
~CSpStreamFormat() { ::CoTaskMemFree(m_pCoMemWaveFormatEx); }
void Clear() { ::CoTaskMemFree(m_pCoMemWaveFormatEx); m_pCoMemWaveFormatEx = NULL; memset(&m_guidFormatId, 0, sizeof(m_guidFormatId)); }
const GUID & FormatId() const { return m_guidFormatId; }
const WAVEFORMATEX * WaveFormatExPtr() const { return m_pCoMemWaveFormatEx; }
HRESULT AssignFormat(SPSTREAMFORMAT eFormat) { ::CoTaskMemFree(m_pCoMemWaveFormatEx); return SpConvertStreamFormatEnum(eFormat, &m_guidFormatId, &m_pCoMemWaveFormatEx); }
HRESULT AssignFormat(ISpStreamFormat * pStream) { ::CoTaskMemFree(m_pCoMemWaveFormatEx); m_pCoMemWaveFormatEx = NULL; return pStream->GetFormat(&m_guidFormatId, &m_pCoMemWaveFormatEx); }
HRESULT AssignFormat(const WAVEFORMATEX * pWaveFormatEx) { ::CoTaskMemFree(m_pCoMemWaveFormatEx); HRESULT hr = CoMemCopyWFEX(pWaveFormatEx, &m_pCoMemWaveFormatEx); m_guidFormatId = SUCCEEDED(hr) ? SPDFID_WaveFormatEx : GUID_NULL; return hr; }
HRESULT AssignFormat(REFGUID rguidFormatId, const WAVEFORMATEX * pWaveFormatEx) { HRESULT hr = S_OK;
m_guidFormatId = rguidFormatId; ::CoTaskMemFree(m_pCoMemWaveFormatEx); m_pCoMemWaveFormatEx = NULL;
if (rguidFormatId == SPDFID_WaveFormatEx) { if (::IsBadReadPtr(pWaveFormatEx, sizeof(*pWaveFormatEx))) { hr = E_INVALIDARG; } else { hr = CoMemCopyWFEX(pWaveFormatEx, &m_pCoMemWaveFormatEx); }
if (FAILED(hr)) { m_guidFormatId = GUID_NULL; } }
return hr; }
BOOL IsEqual(REFGUID rguidFormatId, const WAVEFORMATEX * pwfex) const { if (rguidFormatId == m_guidFormatId) { if (m_pCoMemWaveFormatEx) { if (pwfex && pwfex->cbSize == m_pCoMemWaveFormatEx->cbSize && memcmp(m_pCoMemWaveFormatEx, pwfex, sizeof(WAVEFORMATEX) + pwfex->cbSize) == 0) { return TRUE; } } else { return (pwfex == NULL); } } return FALSE; }
HRESULT ParamValidateAssignFormat(REFGUID rguidFormatId, const WAVEFORMATEX * pWaveFormatEx, BOOL fRequireWaveFormat = FALSE) { if ((pWaveFormatEx && (::IsBadReadPtr(pWaveFormatEx, sizeof(*pWaveFormatEx)) || rguidFormatId != SPDFID_WaveFormatEx)) || (fRequireWaveFormat && pWaveFormatEx == NULL)) { return E_INVALIDARG; } return AssignFormat(rguidFormatId, pWaveFormatEx); }
SPSTREAMFORMAT ComputeFormatEnum() { if (m_guidFormatId == GUID_NULL) { return SPSF_NoAssignedFormat; } if (m_guidFormatId == SPDFID_Text) { return SPSF_Text; } if (m_guidFormatId != SPDFID_WaveFormatEx) { return SPSF_NonStandardFormat; } //
// It is a WAVEFORMATEX. Now determine which type it is and convert.
//
DWORD dwIndex = 0; switch (m_pCoMemWaveFormatEx->wFormatTag) { case WAVE_FORMAT_PCM: { switch (m_pCoMemWaveFormatEx->nChannels) { case 1: break; case 2: dwIndex |= 1; break; default: return SPSF_ExtendedAudioFormat; }
switch (m_pCoMemWaveFormatEx->wBitsPerSample) { case 8: break; case 16: dwIndex |= 2; break; default: return SPSF_ExtendedAudioFormat; }
switch (m_pCoMemWaveFormatEx->nSamplesPerSec) { case 48000: dwIndex += 4; // Fall through
case 44100: dwIndex += 4; // Fall through
case 32000: dwIndex += 4; // Fall through
case 24000: dwIndex += 4; // Fall through
case 22050: dwIndex += 4; // Fall through
case 16000: dwIndex += 4; // Fall through
case 12000: dwIndex += 4; // Fall through
case 11025: dwIndex += 4; // Fall through
case 8000: break; default: return SPSF_ExtendedAudioFormat; }
return static_cast<SPSTREAMFORMAT>(SPSF_8kHz8BitMono + dwIndex); }
case WAVE_FORMAT_DSPGROUP_TRUESPEECH: { return SPSF_TrueSpeech_8kHz1BitMono; }
case WAVE_FORMAT_ALAW: // fall through
case WAVE_FORMAT_MULAW: case WAVE_FORMAT_ADPCM: { switch (m_pCoMemWaveFormatEx->nChannels) { case 1: break; case 2: dwIndex |= 1; break; default: return SPSF_ExtendedAudioFormat; }
if(m_pCoMemWaveFormatEx->wFormatTag == WAVE_FORMAT_ADPCM) { if(m_pCoMemWaveFormatEx->wBitsPerSample != 4) { return SPSF_ExtendedAudioFormat; } } else if(m_pCoMemWaveFormatEx->wBitsPerSample != 8) { return SPSF_ExtendedAudioFormat; }
switch (m_pCoMemWaveFormatEx->nSamplesPerSec) { case 44100: dwIndex += 2; // Fall through
case 22050: dwIndex += 2; // Fall through
case 11025: dwIndex += 2; // Fall through
case 8000: break; default: return SPSF_ExtendedAudioFormat; }
switch( m_pCoMemWaveFormatEx->wFormatTag ) { case WAVE_FORMAT_ALAW: return static_cast<SPSTREAMFORMAT>(SPSF_CCITT_ALaw_8kHzMono + dwIndex); case WAVE_FORMAT_MULAW: return static_cast<SPSTREAMFORMAT>(SPSF_CCITT_uLaw_8kHzMono + dwIndex); case WAVE_FORMAT_ADPCM: return static_cast<SPSTREAMFORMAT>(SPSF_ADPCM_8kHzMono + dwIndex); } }
case WAVE_FORMAT_GSM610: { if( m_pCoMemWaveFormatEx->nChannels != 1 ) { return SPSF_ExtendedAudioFormat; }
switch (m_pCoMemWaveFormatEx->nSamplesPerSec) { case 44100: dwIndex = 3; break; case 22050: dwIndex = 2; break; case 11025: dwIndex = 1; break; case 8000: dwIndex = 0; break; default: return SPSF_ExtendedAudioFormat; }
return static_cast<SPSTREAMFORMAT>(SPSF_GSM610_8kHzMono + dwIndex); }
default: return SPSF_ExtendedAudioFormat; break; } }
void DetachTo(CSpStreamFormat & Other) { ::CoTaskMemFree(Other.m_pCoMemWaveFormatEx); Other.m_guidFormatId = m_guidFormatId; Other.m_pCoMemWaveFormatEx = m_pCoMemWaveFormatEx; m_pCoMemWaveFormatEx = NULL; memset(&m_guidFormatId, 0, sizeof(m_guidFormatId)); }
void DetachTo(GUID * pFormatId, WAVEFORMATEX ** ppCoMemWaveFormatEx) { *pFormatId = m_guidFormatId; *ppCoMemWaveFormatEx = m_pCoMemWaveFormatEx; m_pCoMemWaveFormatEx = NULL; memset(&m_guidFormatId, 0, sizeof(m_guidFormatId)); }
HRESULT CopyTo(GUID * pFormatId, WAVEFORMATEX ** ppCoMemWFEX) const { HRESULT hr = S_OK; *pFormatId = m_guidFormatId; if (m_pCoMemWaveFormatEx) { hr = CoMemCopyWFEX(m_pCoMemWaveFormatEx, ppCoMemWFEX); if (FAILED(hr)) { memset(pFormatId, 0, sizeof(*pFormatId)); } } else { *ppCoMemWFEX = NULL; } return hr; }
HRESULT CopyTo(CSpStreamFormat & Other) const { ::CoTaskMemFree(Other.m_pCoMemWaveFormatEx); return CopyTo(&Other.m_guidFormatId, &Other.m_pCoMemWaveFormatEx); } HRESULT AssignFormat(const CSpStreamFormat & Src) { return Src.CopyTo(*this); }
HRESULT ParamValidateCopyTo(GUID * pFormatId, WAVEFORMATEX ** ppCoMemWFEX) const { if (::IsBadWritePtr(pFormatId, sizeof(*pFormatId)) || ::IsBadWritePtr(ppCoMemWFEX, sizeof(*ppCoMemWFEX))) { return E_POINTER; } return CopyTo(pFormatId, ppCoMemWFEX); }
BOOL operator==(const CSpStreamFormat & Other) const { return IsEqual(Other.m_guidFormatId, Other.m_pCoMemWaveFormatEx); } BOOL operator!=(const CSpStreamFormat & Other) const { return !IsEqual(Other.m_guidFormatId, Other.m_pCoMemWaveFormatEx); }
ULONG SerializeSize() const { ULONG cb = sizeof(ULONG) + sizeof(m_guidFormatId); if (m_pCoMemWaveFormatEx) { cb += sizeof(WAVEFORMATEX) + m_pCoMemWaveFormatEx->cbSize + 3; // Add 3 to round up
cb -= cb % 4; // Round to DWORD
} return cb; }
ULONG Serialize(BYTE * pBuffer) const { ULONG cb = SerializeSize(); *((UNALIGNED ULONG *)pBuffer) = cb; pBuffer += sizeof(ULONG); *((UNALIGNED GUID *)pBuffer) = m_guidFormatId; if (m_pCoMemWaveFormatEx) { pBuffer += sizeof(m_guidFormatId); memcpy(pBuffer, m_pCoMemWaveFormatEx, sizeof(WAVEFORMATEX) + m_pCoMemWaveFormatEx->cbSize); } return cb; }
HRESULT Deserialize(const BYTE * pBuffer, ULONG * pcbUsed) { HRESULT hr = S_OK;
// check pointer to pBuffer for size value
if(IsBadReadPtr(pBuffer, sizeof(ULONG))) { return E_INVALIDARG; }
*pcbUsed = *((UNALIGNED ULONG *)pBuffer); // check complete pBuffer from start
if((*pcbUsed < sizeof(GUID) + sizeof(ULONG)) || IsBadReadPtr(pBuffer, *pcbUsed)) { return E_INVALIDARG; }
pBuffer += sizeof(ULONG);
::CoTaskMemFree(m_pCoMemWaveFormatEx); m_pCoMemWaveFormatEx = NULL;
// Misaligment exception is generated for SHx platform.
// Marking pointer as UNALIGNED does not help.
#ifndef _WIN32_WCE
m_guidFormatId = *((UNALIGNED GUID *)pBuffer); #else
memcpy(&m_guidFormatId, pBuffer, sizeof(GUID)); #endif
if (*pcbUsed > sizeof(GUID) + sizeof(ULONG)) { pBuffer += sizeof(m_guidFormatId); hr = CoMemCopyWFEX((const WAVEFORMATEX *)pBuffer, &m_pCoMemWaveFormatEx); if (FAILED(hr)) { m_guidFormatId = GUID_NULL; } }
return hr; }
};
// Return the default codepage given a LCID.
// Note some of the newer locales do not have associated Windows codepages. For these, we return UTF-8.
inline UINT SpCodePageFromLcid(LCID lcid) { char achCodePage[6];
return (0 != GetLocaleInfoA(lcid, LOCALE_IDEFAULTANSICODEPAGE, achCodePage, sizeof(achCodePage))) ? atoi(achCodePage) : 65001; }
inline HRESULT SPBindToFile( LPCWSTR pFileName, SPFILEMODE eMode, ISpStream ** ppStream, const GUID * pFormatId = NULL, const WAVEFORMATEX * pWaveFormatEx = NULL, ULONGLONG ullEventInterest = SPFEI_ALL_EVENTS) { HRESULT hr = ::CoCreateInstance(CLSID_SpStream, NULL, CLSCTX_ALL, __uuidof(*ppStream), (void **)ppStream); if (SUCCEEDED(hr)) { hr = (*ppStream)->BindToFile(pFileName, eMode, pFormatId, pWaveFormatEx, ullEventInterest); if (FAILED(hr)) { (*ppStream)->Release(); *ppStream = NULL; } } return hr; } /* SPBindToFile */
#ifndef _UNICODE
inline HRESULT SPBindToFile( const TCHAR * pFileName, SPFILEMODE eMode, ISpStream** ppStream, const GUID * pFormatId = NULL, const WAVEFORMATEX * pWaveFormatEx = NULL, ULONGLONG ullEventInterest = SPFEI_ALL_EVENTS) { WCHAR szWcharFileName[MAX_PATH]; ::MultiByteToWideChar(CP_ACP, 0, pFileName, -1, szWcharFileName, sp_countof(szWcharFileName)); return SPBindToFile(szWcharFileName, eMode, ppStream, pFormatId, pWaveFormatEx, ullEventInterest); } #endif
/****************************************************************************
* SpClearEvent * *--------------* * Description: * Helper function that can be used by clients that do not use the CSpEvent * class. * * Returns: * *****************************************************************************/
inline void SpClearEvent(SPEVENT * pe) { if( pe->elParamType != SPEI_UNDEFINED) { if( pe->elParamType == SPET_LPARAM_IS_POINTER || pe->elParamType == SPET_LPARAM_IS_STRING) { ::CoTaskMemFree((void *)pe->lParam); } else if (pe->elParamType == SPET_LPARAM_IS_TOKEN || pe->elParamType == SPET_LPARAM_IS_OBJECT) { ((IUnknown*)pe->lParam)->Release(); } } memset(pe, 0, sizeof(*pe)); }
/****************************************************************************
* SpInitEvent * *-------------* * Description: * * Returns: * *****************************************************************************/
inline void SpInitEvent(SPEVENT * pe) { memset(pe, 0, sizeof(*pe)); }
/****************************************************************************
* SpEventSerializeSize * *----------------------* * Description: * Computes the required size of a buffer to serialize an event. The caller * must specify which type of serialized event is desired -- either SPSERIALIZEDEVENT * or SPSERIALIZEDEVENT64. * * Returns: * Size in bytes required to seriailze the event. * ****************************************************************************/
// WCE compiler does not work propertly with template
#ifndef _WIN32_WCE
template <class T> inline ULONG SpEventSerializeSize(const SPEVENT * pEvent)
{ ULONG ulSize = sizeof(T);
#else
inline ULONG SpEventSerializeSize(const SPEVENT * pEvent, ULONG ulSize) { #endif //_WIN32_WCE
if( ( pEvent->elParamType == SPET_LPARAM_IS_POINTER ) && pEvent->lParam ) { ulSize += ULONG(pEvent->wParam); } else if ((pEvent->elParamType == SPET_LPARAM_IS_STRING) && pEvent->lParam != NULL) { ulSize += (wcslen((WCHAR*)pEvent->lParam) + 1) * sizeof( WCHAR ); } else if( pEvent->elParamType == SPET_LPARAM_IS_TOKEN ) { CSpDynamicString dstrObjectId; if( ((ISpObjectToken*)(pEvent->lParam))->GetId( &dstrObjectId ) == S_OK ) { ulSize += (dstrObjectId.Length() + 1) * sizeof( WCHAR ); } } // Round up to nearest DWORD
ulSize += 3; ulSize -= ulSize % 4; return ulSize; }
/****************************************************************************
* SpSerializedEventSize * *-----------------------* * Description: * Returns the size, in bytes, used by a serialized event. The caller can * pass a pointer to either a SPSERIAILZEDEVENT or SPSERIALIZEDEVENT64 structure. * * Returns: * Number of bytes used by serizlied event * ********************************************************************* RAL ***/
// WCE compiler does not work propertly with template
#ifndef _WIN32_WCE
template <class T> inline ULONG SpSerializedEventSize(const T * pSerEvent) { ULONG ulSize = sizeof(T);
if( ( pSerEvent->elParamType == SPET_LPARAM_IS_POINTER ) && pSerEvent->SerializedlParam ) { ulSize += ULONG(pSerEvent->SerializedwParam); } else if ((pSerEvent->elParamType == SPET_LPARAM_IS_STRING || pSerEvent->elParamType == SPET_LPARAM_IS_TOKEN) && pSerEvent->SerializedlParam != NULL) { ulSize += (wcslen((WCHAR*)(pSerEvent + 1)) + 1) * sizeof( WCHAR ); } // Round up to nearest DWORD
ulSize += 3; ulSize -= ulSize % 4; return ulSize; }
#else //_WIN32_WCE
inline ULONG SpSerializedEventSize(const SPSERIALIZEDEVENT * pSerEvent, ULONG ulSize) { if( ( pSerEvent->elParamType == SPET_LPARAM_IS_POINTER ) && pSerEvent->SerializedlParam ) { ulSize += ULONG(pSerEvent->SerializedwParam); } else if ((pSerEvent->elParamType == SPET_LPARAM_IS_STRING || pSerEvent->elParamType == SPET_LPARAM_IS_TOKEN) && pSerEvent->SerializedlParam != NULL) { ulSize += (wcslen((WCHAR*)(pSerEvent + 1)) + 1) * sizeof( WCHAR ); } // Round up to nearest DWORD
ulSize += 3; ulSize -= ulSize % 4; return ulSize; }
inline ULONG SpSerializedEventSize(const SPSERIALIZEDEVENT64 * pSerEvent, ULONG ulSize) { if( ( pSerEvent->elParamType == SPET_LPARAM_IS_POINTER ) && pSerEvent->SerializedlParam ) { ulSize += ULONG(pSerEvent->SerializedwParam); } else if ((pSerEvent->elParamType == SPET_LPARAM_IS_STRING || pSerEvent->elParamType == SPET_LPARAM_IS_TOKEN) && pSerEvent->SerializedlParam != NULL) { ulSize += (wcslen((WCHAR*)(pSerEvent + 1)) + 1) * sizeof( WCHAR ); } // Round up to nearest DWORD
ulSize += 3; ulSize -= ulSize % 4; return ulSize; }
#endif //_WIN32_WCE
/*** CSpEvent helper class
* */ class CSpEvent : public SPEVENT { public: CSpEvent() { SpInitEvent(this); } ~CSpEvent() { SpClearEvent(this); } // If you need to take the address of a CSpEvent that is not const, use the AddrOf() method
// which will do debug checking of parameters. If you encounter this problem when calling
// GetEvents from an event source, you may want to use the GetFrom() method of this class.
const SPEVENT * operator&() { return this; } CSpEvent * AddrOf() { // Note: This method does not ASSERT since we assume the caller knows what they are doing.
return this; } void Clear() { SpClearEvent(this); } HRESULT CopyTo(SPEVENT * pDestEvent) const { memcpy(pDestEvent, this, sizeof(*pDestEvent)); if ((elParamType == SPET_LPARAM_IS_POINTER) && lParam) { SPDBG_ASSERT(wParam && (wParam < 0x100000)); // this is too big!
pDestEvent->lParam = (LPARAM)::CoTaskMemAlloc(wParam); if (pDestEvent->lParam) { memcpy((void *)pDestEvent->lParam, (void *)lParam, wParam); } else { pDestEvent->eEventId = SPEI_UNDEFINED; return E_OUTOFMEMORY; } } else if (elParamType == SPET_LPARAM_IS_STRING && lParam != NULL) { pDestEvent->lParam = (LPARAM)::CoTaskMemAlloc((wcslen((WCHAR*)lParam) + 1) * sizeof(WCHAR)); if (pDestEvent->lParam) { wcscpy((WCHAR*)pDestEvent->lParam, (WCHAR*)lParam); } else { pDestEvent->eEventId = SPEI_UNDEFINED; return E_OUTOFMEMORY; } } else if (elParamType == SPET_LPARAM_IS_TOKEN || elParamType == SPET_LPARAM_IS_OBJECT) { ((IUnknown*)lParam)->AddRef(); } return S_OK; }
HRESULT GetFrom(ISpEventSource * pEventSrc) { SpClearEvent(this); return pEventSrc->GetEvents(1, this, NULL); } HRESULT CopyFrom(const SPEVENT * pSrcEvent) { SpClearEvent(this); return static_cast<const CSpEvent *>(pSrcEvent)->CopyTo(this); } void Detach(SPEVENT * pDestEvent = NULL) { if (pDestEvent) { memcpy(pDestEvent, this, sizeof(*pDestEvent)); } memset(this, 0, sizeof(*this)); }
template <class T> ULONG SerializeSize() const { return SpEventSerializeSize<T>(this); }
// Call this method with either SPSERIALIZEDEVENT or SPSERIALIZEDEVENT64
template <class T> void Serialize(T * pSerEvent) const { SPDBG_ASSERT(elParamType != SPET_LPARAM_IS_OBJECT); pSerEvent->eEventId = this->eEventId; pSerEvent->elParamType = this->elParamType; pSerEvent->ulStreamNum = this->ulStreamNum; pSerEvent->ullAudioStreamOffset = this->ullAudioStreamOffset; pSerEvent->SerializedwParam = static_cast<ULONG>(this->wParam); pSerEvent->SerializedlParam = static_cast<LONG>(this->lParam); if (lParam) { switch(elParamType) { case SPET_LPARAM_IS_POINTER: memcpy(pSerEvent + 1, (void *)lParam, wParam); pSerEvent->SerializedlParam = sizeof(T); break;
case SPET_LPARAM_IS_STRING: wcscpy((WCHAR *)(pSerEvent + 1), (WCHAR*)lParam); pSerEvent->SerializedlParam = sizeof(T); break;
case SPET_LPARAM_IS_TOKEN: { CSpDynamicString dstrObjectId; if( SUCCEEDED( ((ISpObjectToken*)lParam)->GetId( &dstrObjectId ) ) ) { pSerEvent->SerializedwParam = (dstrObjectId.Length() + 1) * sizeof( WCHAR );; memcpy( pSerEvent + 1, (void *)dstrObjectId.m_psz, static_cast<ULONG>(pSerEvent->SerializedwParam) ); } pSerEvent->SerializedlParam = sizeof(T); } break;
default: break; } } }
template <class T> HRESULT Serialize(T ** ppCoMemSerEvent, ULONG * pcbSerEvent) const { // WCE compiler does not work propertly with template
#ifndef _WIN32_WCE
*pcbSerEvent = SpEventSerializeSize<T>(this); #else
*pcbSerEvent = SpEventSerializeSize(this, sizeof(** ppCoMemSerEvent)); #endif
*ppCoMemSerEvent = (T *)::CoTaskMemAlloc(*pcbSerEvent); if (*ppCoMemSerEvent) { Serialize(*ppCoMemSerEvent); return S_OK; } else { *pcbSerEvent = 0; return E_OUTOFMEMORY; } }
// Call this method with either SPSERIALIZEDEVENT or SPSERIALIZEDEVENT64
template <class T> HRESULT Deserialize(const T * pSerEvent, ULONG * pcbUsed = NULL) { Clear(); HRESULT hr = S_OK; const UNALIGNED T * pTemp = pSerEvent; this->eEventId = pTemp->eEventId; this->elParamType = pTemp->elParamType; this->ulStreamNum = pTemp->ulStreamNum; this->ullAudioStreamOffset = pTemp->ullAudioStreamOffset; this->wParam = static_cast<WPARAM>(pTemp->SerializedwParam); this->lParam = static_cast<LPARAM>(pTemp->SerializedlParam); if (pTemp->SerializedlParam) { ULONG cbAlloc = 0; switch (pTemp->elParamType) { case SPET_LPARAM_IS_POINTER: cbAlloc = static_cast<ULONG>(wParam); break;
case SPET_LPARAM_IS_STRING: cbAlloc = sizeof(WCHAR) * (1 + wcslen((const WCHAR *)(pTemp + 1))); break;
case SPET_LPARAM_IS_TOKEN: { ULONG ulDataOffset = ULONG(lParam); hr = SpGetTokenFromId( (const WCHAR*)(pTemp + 1), (ISpObjectToken **)&lParam ); wParam = 0; } break; } if (cbAlloc) { void * pvBuff = ::CoTaskMemAlloc(cbAlloc); this->lParam = (LPARAM)pvBuff; if (pvBuff) { memcpy(pvBuff, pTemp + 1, cbAlloc); } else { hr = E_OUTOFMEMORY; } } }
if( SUCCEEDED( hr ) && pcbUsed ) { // WCE compiler does not work propertly with template
#ifndef _WIN32_WCE
*pcbUsed = SpEventSerializeSize<T>(this); #else
*pcbUsed = SpEventSerializeSize(this, sizeof(*pTemp)); #endif
} return hr; }
//
// Helpers for access to events. Performs run-time checks in debug and casts
// data to the appropriate types
//
SPPHONEID Phoneme() const { SPDBG_ASSERT(eEventId == SPEI_PHONEME); return (SPPHONEID)LOWORD(lParam); } SPVISEMES Viseme() const { SPDBG_ASSERT(eEventId == SPEI_VISEME); return (SPVISEMES)LOWORD(lParam); } ULONG InputWordPos() const { SPDBG_ASSERT(eEventId == SPEI_WORD_BOUNDARY); return ULONG(lParam); } ULONG InputWordLen() const { SPDBG_ASSERT(eEventId == SPEI_WORD_BOUNDARY); return ULONG(wParam); } ULONG InputSentPos() const { SPDBG_ASSERT(eEventId == SPEI_SENTENCE_BOUNDARY); return ULONG(lParam); } ULONG InputSentLen() const { SPDBG_ASSERT(eEventId == SPEI_SENTENCE_BOUNDARY); return ULONG(wParam); } ISpObjectToken * ObjectToken() const { SPDBG_ASSERT(elParamType == SPET_LPARAM_IS_TOKEN); return (ISpObjectToken *)lParam; } ISpObjectToken * VoiceToken() const // More explicit check than ObjectToken()
{ SPDBG_ASSERT(eEventId == SPEI_VOICE_CHANGE); return ObjectToken(); } BOOL PersistVoiceChange() const { SPDBG_ASSERT(eEventId == SPEI_VOICE_CHANGE); return (BOOL)wParam; } IUnknown * Object() const { SPDBG_ASSERT(elParamType == SPET_LPARAM_IS_OBJECT); return (IUnknown*)lParam; } ISpRecoResult * RecoResult() const { SPDBG_ASSERT(eEventId == SPEI_RECOGNITION || eEventId == SPEI_FALSE_RECOGNITION || eEventId == SPEI_HYPOTHESIS); return (ISpRecoResult *)Object(); } BOOL IsPaused() { SPDBG_ASSERT(eEventId == SPEI_RECOGNITION || eEventId == SPEI_SR_BOOKMARK); return (BOOL)(wParam & SPREF_AutoPause); } BOOL IsEmulated() { SPDBG_ASSERT(eEventId == SPEI_RECOGNITION); return (BOOL)(wParam & SPREF_Emulated); } const WCHAR * String() const { SPDBG_ASSERT(elParamType == SPET_LPARAM_IS_STRING); return (const WCHAR*)lParam; } const WCHAR * BookmarkName() const { SPDBG_ASSERT(eEventId == SPEI_TTS_BOOKMARK); return String(); } const WCHAR * RequestTypeOfUI() const { SPDBG_ASSERT(eEventId == SPEI_REQUEST_UI); return String(); } SPRECOSTATE RecoState() const { SPDBG_ASSERT(eEventId == SPEI_RECO_STATE_CHANGE); return static_cast<SPRECOSTATE>(wParam); } const WCHAR * PropertyName() const { SPDBG_ASSERT((eEventId == SPEI_PROPERTY_NUM_CHANGE && elParamType == SPET_LPARAM_IS_STRING) || (eEventId == SPEI_PROPERTY_STRING_CHANGE && elParamType == SPET_LPARAM_IS_POINTER)); // Note: Don't use String() method here since in the case of string attributes, the elParamType
// field specifies LPARAM_IS_POINTER, but the attribute name IS the first string in this buffer
return (const WCHAR*)lParam; } const LONG PropertyNumValue() const { SPDBG_ASSERT(eEventId == SPEI_PROPERTY_NUM_CHANGE); return static_cast<LONG>(wParam); } const WCHAR * PropertyStringValue() const { // Search for the first NULL and return pointer to the char past it.
SPDBG_ASSERT(eEventId == SPEI_PROPERTY_STRING_CHANGE); for (const WCHAR * psz = (const WCHAR *)lParam; *psz; psz++) {} return psz + 1; } SPINTERFERENCE Interference() const { SPDBG_ASSERT(eEventId == SPEI_INTERFERENCE); return static_cast<SPINTERFERENCE>(lParam); } HRESULT EndStreamResult() const { SPDBG_ASSERT(eEventId == SPEI_END_SR_STREAM); return static_cast<HRESULT>(lParam); } BOOL InputStreamReleased() const { SPDBG_ASSERT(eEventId == SPEI_END_SR_STREAM); return (wParam & SPESF_STREAM_RELEASED) ? TRUE : FALSE; } };
class CSpPhrasePtr { public: SPPHRASE * m_pPhrase; CSpPhrasePtr() : m_pPhrase(NULL) {} CSpPhrasePtr(ISpPhrase * pPhraseObj, HRESULT * phr) { *phr = pPhraseObj->GetPhrase(&m_pPhrase); } ~CSpPhrasePtr() { ::CoTaskMemFree(m_pPhrase); } //The assert on operator& usually indicates a bug. If this is really
//what is needed, however, take the address of the m_pPhrase member explicitly.
SPPHRASE ** operator&() { SPDBG_ASSERT(m_pPhrase == NULL); return &m_pPhrase; } operator SPPHRASE *() const { return m_pPhrase; } SPPHRASE & operator*() const { SPDBG_ASSERT(m_pPhrase); return *m_pPhrase; } SPPHRASE * operator->() const { return m_pPhrase; } bool operator!() const { return (m_pPhrase == NULL); } void Clear() { if (m_pPhrase) { ::CoTaskMemFree(m_pPhrase); m_pPhrase = NULL; } } HRESULT GetFrom(ISpPhrase * pPhraseObj) { Clear(); return pPhraseObj->GetPhrase(&m_pPhrase); } };
template <class T> class CSpCoTaskMemPtr { public: T * m_pT; CSpCoTaskMemPtr() : m_pT(NULL) {} CSpCoTaskMemPtr(void * pv) : m_pT((T *)pv) {} CSpCoTaskMemPtr(ULONG cElements, HRESULT * phr) { m_pT = (T *)::CoTaskMemAlloc(cElements * sizeof(T)); *phr = m_pT ? S_OK : E_OUTOFMEMORY; } ~CSpCoTaskMemPtr() { ::CoTaskMemFree(m_pT); } void Clear() { if (m_pT) { ::CoTaskMemFree(m_pT); m_pT = NULL; } } HRESULT Alloc(ULONG cArrayElements = 1) { m_pT = (T *)::CoTaskMemRealloc(m_pT, sizeof(T) * cArrayElements); SPDBG_ASSERT(m_pT); return (m_pT ? S_OK : E_OUTOFMEMORY); } void Attach(void * pv) { Clear(); m_pT = (T *)pv; } T * Detatch() { T * pT = m_pT; m_pT = NULL; return pT; } //The assert on operator& usually indicates a bug. If this is really
//what is needed, however, take the address of the m_pT member explicitly.
T ** operator&() { SPDBG_ASSERT(m_pT == NULL); return &m_pT; } T * operator->() { SPDBG_ASSERT(m_pT != NULL); return m_pT; } operator T *() { return m_pT; } bool operator!() const { return (m_pT == NULL); } };
/**** Helper function used to create a new phrase object from an array of
test words. Each word in the string is converted to a phrase element. This is useful to create a phrase to pass to the EmulateRecognition method. The method can convert standard words as well as words with the "/display_text/lexical_form/pronounciation;" word format. You can also specify the DisplayAttributes for each element if desired. If prgDispAttribs is NULL then the DisplayAttribs for each element default to SPAF_ONE_TRAILING_SPACE. ****/ inline HRESULT CreatePhraseFromWordArray(const WCHAR ** ppWords, ULONG cWords, SPDISPLYATTRIBUTES * prgDispAttribs, ISpPhraseBuilder **ppResultPhrase, LANGID LangId = 0, CComPtr<ISpPhoneConverter> cpPhoneConv = NULL) { SPDBG_FUNC("CreatePhraseFromWordArray"); HRESULT hr = S_OK;
if ( cWords == 0 || ppWords == NULL || ::IsBadReadPtr(ppWords, sizeof(*ppWords) * cWords ) ) { return E_INVALIDARG; }
if ( prgDispAttribs != NULL && ::IsBadReadPtr(prgDispAttribs, sizeof(*prgDispAttribs) * cWords ) ) { return E_INVALIDARG; }
ULONG cTotalChars = 0; ULONG i; WCHAR** pStringPtrArray = (WCHAR**)::CoTaskMemAlloc( cWords * sizeof(WCHAR *)); if ( !pStringPtrArray ) { return E_OUTOFMEMORY; } for (i = 0; i < cWords; i++) { cTotalChars += wcslen(ppWords[i])+1; }
CSpDynamicString dsText(cTotalChars); if(dsText.m_psz == NULL) { ::CoTaskMemFree(pStringPtrArray); return E_OUTOFMEMORY; } CSpDynamicString dsPhoneId(cTotalChars); if(dsPhoneId.m_psz == NULL) { ::CoTaskMemFree(pStringPtrArray); return E_OUTOFMEMORY; } SPPHONEID* pphoneId = dsPhoneId;
SPPHRASE Phrase; memset(&Phrase, 0, sizeof(Phrase)); Phrase.cbSize = sizeof(Phrase);
if(LangId == 0) { LangId = SpGetUserDefaultUILanguage(); }
if(cpPhoneConv == NULL) { hr = SpCreatePhoneConverter(LangId, NULL, NULL, &cpPhoneConv); if(FAILED(hr)) { ::CoTaskMemFree(pStringPtrArray); return hr; } }
SPPHRASEELEMENT *pPhraseElement = new SPPHRASEELEMENT[cWords]; if(pPhraseElement == NULL) { ::CoTaskMemFree(pStringPtrArray); return E_OUTOFMEMORY; } memset(pPhraseElement, 0, sizeof(SPPHRASEELEMENT) * cWords); // !!!
WCHAR * pText = dsText; for (i = 0; SUCCEEDED(hr) && i < cWords; i++) { WCHAR *p = pText; pStringPtrArray[i] = pText; wcscpy( pText, ppWords[i] ); pText += wcslen( p ) + 1;
if (*p == L'/') { //This is a compound word
WCHAR* pszFirstPart = ++p; WCHAR* pszSecondPart = NULL; WCHAR* pszThirdPart = NULL;
while (*p && *p != L'/') { p++; } if (*p == L'/') { //It means we stop at the second '/'
*p = L'\0'; pszSecondPart = ++p; while (*p && *p != L'/') { p++; } if (*p == L'/') { //It means we stop at the third '/'
*p = L'\0'; pszThirdPart = ++p; } }
pPhraseElement[i].pszDisplayText = pszFirstPart; pPhraseElement[i].pszLexicalForm = pszSecondPart ? pszSecondPart : pszFirstPart;
if ( pszThirdPart) { hr = cpPhoneConv->PhoneToId(pszThirdPart, pphoneId); if (SUCCEEDED(hr)) { pPhraseElement[i].pszPronunciation = pphoneId; pphoneId += wcslen(pphoneId) + 1; } } } else { //It is the simple format, only have one form, use it for everything.
pPhraseElement[i].pszDisplayText = NULL; pPhraseElement[i].pszLexicalForm = p; pPhraseElement[i].pszPronunciation = NULL; }
pPhraseElement[i].bDisplayAttributes = (BYTE)(prgDispAttribs ? prgDispAttribs[i] : SPAF_ONE_TRAILING_SPACE); pPhraseElement[i].RequiredConfidence = SP_NORMAL_CONFIDENCE; pPhraseElement[i].ActualConfidence = SP_NORMAL_CONFIDENCE; }
Phrase.Rule.ulCountOfElements = cWords; Phrase.pElements = pPhraseElement; Phrase.LangID = LangId;
CComPtr<ISpPhraseBuilder> cpPhrase; if (SUCCEEDED(hr)) { hr = cpPhrase.CoCreateInstance(CLSID_SpPhraseBuilder); }
if (SUCCEEDED(hr)) { hr = cpPhrase->InitFromPhrase(&Phrase); } if (SUCCEEDED(hr)) { *ppResultPhrase = cpPhrase.Detach(); }
delete pPhraseElement; ::CoTaskMemFree(pStringPtrArray);
return hr; }
/**** Helper function used to create a new phrase object from a
test string. Each word in the string is converted to a phrase element. This is useful to create a phrase to pass to the EmulateRecognition method. The method can convert standard words as well as words with the "/display_text/lexical_form/pronounciation;" word format ****/ inline HRESULT CreatePhraseFromText(const WCHAR *pszOriginalText, ISpPhraseBuilder **ppResultPhrase, LANGID LangId = 0, CComPtr<ISpPhoneConverter> cpPhoneConv = NULL) { SPDBG_FUNC("CreatePhraseFromText"); HRESULT hr = S_OK;
//We first trim the input text
CSpDynamicString dsText(pszOriginalText); if(dsText.m_psz == NULL) { return E_OUTOFMEMORY; } dsText.TrimBoth();
ULONG cWords = 0; BOOL fInCompoundword = FALSE;
// Set first array pointer (if *p).
WCHAR *p = dsText; while (*p) { if( iswspace(*p) && !fInCompoundword) { cWords++; *p++ = L'\0'; while (*p && iswspace(*p)) { *p++ = L'\0'; } // Add new array pointer. Use vector.
} else if (*p == L'/' && !fInCompoundword) { fInCompoundword = TRUE; } else if (*p == L';' && fInCompoundword) { fInCompoundword = FALSE; *p++ = L'\0'; // Add new array element.
} else { p++; } }
cWords++;
WCHAR** pStringPtrArray = (WCHAR**)::CoTaskMemAlloc( cWords * sizeof(WCHAR *)); if ( !pStringPtrArray ) { hr = E_OUTOFMEMORY; }
if ( SUCCEEDED( hr ) ) { p = dsText; for (ULONG i=0; i<cWords; i++) { pStringPtrArray[i] = p; p += wcslen(p)+1; }
hr = CreatePhraseFromWordArray((const WCHAR **)pStringPtrArray, cWords, NULL, ppResultPhrase, LangId, cpPhoneConv);
::CoTaskMemFree(pStringPtrArray); } return hr; }
#endif /* This must be the last line in the file */
|