|
|
/*++
Copyright (c) 1995 Microsoft Corporation
Module Name:
symbolsp.c
Abstract:
This function implements a generic simple symbol handler.
Author:
Wesley Witt (wesw) 1-Sep-1994
Environment:
User Mode
--*/
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <ntldr.h>
#include "private.h"
#include "symbols.h"
#include "globals.h"
#include "tlhelp32.h"
#include "fecache.hpp"
typedef BOOL (WINAPI *PMODULE32)(HANDLE, LPMODULEENTRY32); typedef HANDLE (WINAPI *PCREATE32SNAPSHOT)(DWORD, DWORD);
typedef ULONG (NTAPI *PRTLQUERYPROCESSDEBUGINFORMATION)(HANDLE,ULONG,PRTL_DEBUG_INFORMATION); typedef PRTL_DEBUG_INFORMATION (NTAPI *PRTLCREATEQUERYDEBUGBUFFER)(ULONG,BOOLEAN); typedef NTSTATUS (NTAPI *PRTLDESTROYQUERYDEBUGBUFFER)(PRTL_DEBUG_INFORMATION); typedef NTSTATUS (NTAPI *PNTQUERYSYSTEMINFORMATION)(SYSTEM_INFORMATION_CLASS,PVOID,ULONG,PULONG); typedef ULONG (NTAPI *PRTLNTSTATUSTODOSERROR)(NTSTATUS); //typedef NTSTATUS (NTAPI *PNTQUERYINFORMATIONPROCESS)(UINT_PTR,PROCESSINFOCLASS,UINT_PTR,ULONG,UINT_PTR);
typedef NTSTATUS (NTAPI *PNTQUERYINFORMATIONPROCESS)(HANDLE,PROCESSINFOCLASS,PVOID,ULONG,PULONG);
DWORD_PTR Win95GetProcessModules(HANDLE, PGET_MODULE ,PVOID); DWORD_PTR NTGetProcessModules(HANDLE, PGET_MODULE ,PVOID); DWORD64 miGetModuleBase(HANDLE hProcess, DWORD64 Address);
// private version of qsort used to avoid compat problems on NT4 and win2k.
// code is published from base\crts
extern void __cdecl dbg_qsort(void *, size_t, size_t, int (__cdecl *) (const void *, const void *));
typedef struct _SYMBOL_INFO_LOOKUP { ULONG Segment; ULONG64 Offset; PCHAR NamePtr; SYMBOL_INFO SymInfo; } SYMBOL_INFO_LOOKUP;
//
// Get the address form section no and offset in a PE file
//
ULONG GetAddressFromOffset( PMODULE_ENTRY mi, ULONG section, ULONG64 Offset, PULONG64 pAddress ) { ULONG Bias; #ifdef DO_NB09
*pAddress = mi->BaseOfDll + Offset; return true; #endif
if (section > mi->NumSections || !pAddress || !section || !mi ) { // Invalid !!
return false; }
*pAddress = mi->BaseOfDll + mi->OriginalSectionHdrs[section-1].VirtualAddress + Offset; *pAddress = ConvertOmapFromSrc( mi, *pAddress, &Bias ); if (*pAddress) { *pAddress += Bias; } return true; }
/*
* GetSymbolInfo * This extracts useful information from a CV SYMBOl record into a generic * SYMBOL_ENTRY structure. * * */ ULONG GetSymbolInfo( PMODULE_ENTRY me, PCHAR pRawSym, SYMBOL_INFO_LOOKUP *pSymEntry ) { PCHAR SymbolInfo = pRawSym; ULONG symIndex, typeIndex=0, segmentNum=0; ULONG64 Offset=0, Address=0, Value=0; // ULONG Register=0, bpRel=0, BaseReg=0;
BOOL HasAddr=false, HasValue=false; PSYMBOL_INFO pSymInfo = &pSymEntry->SymInfo;
if ((pRawSym != NULL) && (pSymEntry != NULL)) {
SymbolInfo = (PCHAR) pRawSym; typeIndex = 0; symIndex = ((SYMTYPE *) (pRawSym))->rectyp; ZeroMemory(pSymEntry, sizeof(SYMBOL_INFO));
pSymInfo->ModBase = me->BaseOfDll;
#define ExtractSymName(from) (pSymEntry->NamePtr = ((PCHAR) from) + 1); pSymInfo->NameLen = (UCHAR) *((PUCHAR) from);
switch (symIndex) { case S_COMPILE : // 0x0001 Compile flags symbol
case S_REGISTER_16t : { // 0x0002 Register variable
break; } case S_CONSTANT_16t : { // 0x0003 constant symbol
DWORD len=4; CONSTSYM_16t *constSym;
constSym = (CONSTSYM_16t *) SymbolInfo; typeIndex = constSym->typind; // GetNumericValue((PCHAR)&constSym->value, &Value, &len);
pSymInfo->Flags |= SYMFLAG_VALUEPRESENT; pSymInfo->Value = Value; ExtractSymName((constSym->name + len)); break; } case S_UDT_16t : { // 0x0004 User defined type
UDTSYM_16t *udtSym;
udtSym = (UDTSYM_16t *) SymbolInfo; typeIndex = udtSym->typind; ExtractSymName(udtSym->name); break; } case S_SSEARCH : // 0x0005 Start Search
case S_END : // 0x0006 Block, procedure, "with" or thunk end
case S_SKIP : // 0x0007 Reserve symbol space in $$Symbols table
case S_CVRESERVE : // 0x0008 Reserved symbol for CV internal use
case S_OBJNAME : // 0x0009 path to object file name
case S_ENDARG : // 0x000a end of argument/return list
case S_COBOLUDT_16t : // 0x000b special UDT for cobol that does not symbol pack
case S_MANYREG_16t : // 0x000c multiple register variable
case S_RETURN : // 0x000d return description symbol
case S_ENTRYTHIS : // 0x000e description of this pointer on entry
break;
case S_BPREL16 : // 0x0100 BP-relative
case S_LDATA16 : // 0x0101 Module-local symbol
case S_GDATA16 : // 0x0102 Global data symbol
case S_PUB16 : // 0x0103 a public symbol
case S_LPROC16 : // 0x0104 Local procedure start
case S_GPROC16 : // 0x0105 Global procedure start
case S_THUNK16 : // 0x0106 Thunk Start
case S_BLOCK16 : // 0x0107 block start
case S_WITH16 : // 0x0108 with start
case S_LABEL16 : // 0x0109 code label
case S_CEXMODEL16 : // 0x010a change execution model
case S_VFTABLE16 : // 0x010b address of virtual function table
case S_REGREL16 : // 0x010c register relative address
case S_BPREL32_16t : { // 0x0200 BP-relative
DATASYM16 *pData;
pData = (DATASYM16 *) SymbolInfo; typeIndex = pData->typind; Offset = pData->off; segmentNum = pData->seg; HasAddr = true; ExtractSymName(pData->name); break; }
case S_LDATA32_16t :// 0x0201 Module-local symbol
case S_GDATA32_16t :// 0x0202 Global data symbol
case S_PUB32_16t : { // 0x0203 a public symbol (CV internal reserved)
DATASYM32_16t *pData;
pData = (DATASYM32_16t *) SymbolInfo; typeIndex = pData->typind; Offset = pData->off; segmentNum = pData->seg; HasAddr = true; ExtractSymName(pData->name); break; } case S_LPROC32_16t : // 0x0204 Local procedure start
case S_GPROC32_16t : { // 0x0205 Global procedure start
PROCSYM32_16t *procSym;
procSym = (PROCSYM32_16t *)SymbolInfo; // CONTEXT-SENSITIVE
// Offset = procSym->off; segmentNum = procSym->seg;
typeIndex = procSym->typind; ExtractSymName(procSym->name); break; } case S_THUNK32 : // 0x0206 Thunk Start
case S_BLOCK32 : // 0x0207 block start
case S_WITH32 : // 0x0208 with start
case S_LABEL32 : // 0x0209 code label
case S_CEXMODEL32 : // 0x020a change execution model
case S_VFTABLE32_16t : // 0x020b address of virtual function table
case S_REGREL32_16t : // 0x020c register relative address
case S_LTHREAD32_16t : // 0x020d local thread storage
case S_GTHREAD32_16t : // 0x020e global thread storage
case S_SLINK32 : // 0x020f static link for MIPS EH implementation
case S_LPROCMIPS_16t : // 0x0300 Local procedure start
case S_GPROCMIPS_16t : { // 0x0301 Global procedure start
break; }
case S_PROCREF : { // 0x0400 Reference to a procedure
// typeIndex = ((PDWORD) symReturned) + 3;
break; } case S_DATAREF : // 0x0401 Reference to data
case S_ALIGN : // 0x0402 Used for page alignment of symbols
case S_LPROCREF : // 0x0403 Local Reference to a procedure
// sym records with 32-bit types embedded instead of 16-bit
// all have 0x1000 bit set for easy identification
// only do the 32-bit target versions since we don't really
// care about 16-bit ones anymore.
case S_TI16_MAX : // 0x1000,
break;
case S_REGISTER : { // 0x1001 Register variable
REGSYM *regSym;
regSym = (REGSYM *)SymbolInfo; typeIndex = regSym->typind; pSymInfo->Flags = SYMFLAG_REGISTER; pSymInfo->Register = (DWORD)regSym->reg; ExtractSymName(regSym->name); break; }
case S_CONSTANT : { // 0x1002 constant symbol
CONSTSYM *constSym; DWORD len=4, val;
constSym = (CONSTSYM *) SymbolInfo; // GetNumericValue((PCHAR)&constSym->value, &Value, &len);
pSymInfo->Flags |= SYMFLAG_VALUEPRESENT; pSymInfo->Value = Value; typeIndex = constSym->typind; ExtractSymName((constSym->name+len)); break; } case S_UDT : { // 0x1003 User defined type
UDTSYM *udtSym;
udtSym = (UDTSYM *) SymbolInfo; typeIndex = udtSym->typind; ExtractSymName(udtSym->name); break; }
case S_COBOLUDT : // 0x1004 special UDT for cobol that does not symbol pack
break;
case S_MANYREG : // 0x1005 multiple register variable
break;
case S_BPREL32 : { // 0x1006 BP-relative
BPRELSYM32 *bprelSym;
bprelSym = (BPRELSYM32 *)SymbolInfo; typeIndex = bprelSym->typind; pSymInfo->Flags = SYMFLAG_FRAMEREL; pSymInfo->Address = bprelSym->off; ExtractSymName(bprelSym->name); break; }
case S_LDATA32 : // 0x1007 Module-local symbol
case S_GDATA32 : // 0x1008 Global data symbol
case S_PUB32 : { // 0x1009 a public symbol (CV internal reserved)
DATASYM32 *dataSym;
dataSym = (DATASYM32 *)SymbolInfo; HasAddr = true; Offset = dataSym->off; segmentNum = dataSym->seg; typeIndex = dataSym->typind; //(PDWORD) symReturned;
ExtractSymName(dataSym->name);
break; } case S_LPROC32 : // 0x100a Local procedure start
case S_GPROC32 : { // 0x100b Global procedure start
PROCSYM32 *procSym;
procSym = (PROCSYM32 *) SymbolInfo; // CONTEXT-SENSITIVE
HasAddr = true; Offset = procSym->off; segmentNum = procSym->seg; typeIndex = procSym->typind; ExtractSymName(procSym->name); break; }
case S_VFTABLE32 : // 0x100c address of virtual function table
break;
case S_REGREL32 : { // 0x100d register relative address
REGREL32 *regrelSym;
regrelSym = (REGREL32 *)SymbolInfo; typeIndex = regrelSym->typind; pSymInfo->Flags = SYMFLAG_REGREL; pSymInfo->Address = regrelSym->off; pSymInfo->Register = (DWORD)regrelSym->reg; ExtractSymName(regrelSym->name); break; }
case S_LTHREAD32 : // 0x100e local thread storage
case S_GTHREAD32 : // 0x100f global thread storage
case S_LPROCMIPS : // 0x1010 Local procedure start
case S_GPROCMIPS : // 0x1011 Global procedure start
case S_FRAMEPROC : // 0x1012 extra frame and proc information
case S_COMPILE2 : // 0x1013 extended compile flags and info
case S_MANYREG2 : // 0x1014 multiple register variable
case S_LPROCIA64 : // 0x1015 Local procedure start (IA64)
case S_GPROCIA64 : // 0x1016 Global procedure start (IA64)
case S_RECTYPE_MAX : default: return false; } /* switch */
if (HasAddr && GetAddressFromOffset(me, segmentNum, Offset, &Address)) { pSymInfo->Address = Address; }
pSymInfo->TypeIndex = typeIndex; pSymEntry->Offset = Offset; pSymEntry->Segment = segmentNum;
} else { return false; }
return true; }
/*
* cvExtractSymbolInfo * This extracts useful information from a CV SYMBOl record into a generic * SYMBOL_ENTRY structure. * * */ ULONG cvExtractSymbolInfo( PMODULE_ENTRY me, PCHAR pRawSym, PSYMBOL_ENTRY pSymEntry, BOOL fCopyName ) { SYMBOL_INFO_LOOKUP SymInfoLookup={0}; ULONG reg;
pSymEntry->Size = 0; pSymEntry->Flags = 0; pSymEntry->Address = 0; if (fCopyName) *pSymEntry->Name = 0; else pSymEntry->Name = 0; pSymEntry->NameLength = 0; pSymEntry->Segment = 0; pSymEntry->Offset = 0; pSymEntry->TypeIndex = 0; pSymEntry->ModBase = 0;
if (GetSymbolInfo(me, pRawSym, &SymInfoLookup)) { LARGE_INTEGER li; pSymEntry->NameLength = SymInfoLookup.SymInfo.NameLen; pSymEntry->TypeIndex = SymInfoLookup.SymInfo.TypeIndex; pSymEntry->Offset = SymInfoLookup.Offset; pSymEntry->Segment = SymInfoLookup.Segment; pSymEntry->ModBase = me->BaseOfDll; // NOTE: this was implented as a mask - but used differently
switch (SymInfoLookup.SymInfo.Flags) { case SYMFLAG_REGISTER: pSymEntry->Flags = SYMFLAG_REGISTER; pSymEntry->Address = SymInfoLookup.SymInfo.Register; break;
case SYMFLAG_REGREL: // DBGHELP_HACK - HiPart of Addr = RegId , LowPart = Pffset
pSymEntry->Flags = SYMFLAG_REGREL; li.LowPart = (ULONG) SymInfoLookup.SymInfo.Address; li.HighPart = SymInfoLookup.SymInfo.Register; pSymEntry->Segment = SymInfoLookup.SymInfo.Register; pSymEntry->Address = li.QuadPart; break;
case SYMFLAG_FRAMEREL: pSymEntry->Flags = SYMFLAG_FRAMEREL; pSymEntry->Address = SymInfoLookup.SymInfo.Address; break;
case SYMFLAG_VALUEPRESENT: default: pSymEntry->Address = SymInfoLookup.SymInfo.Address; break; } if (fCopyName) { if (!pSymEntry->Name) return false; *pSymEntry->Name = 0; strncpy(pSymEntry->Name, SymInfoLookup.NamePtr ? SymInfoLookup.NamePtr : "", SymInfoLookup.SymInfo.NameLen); // SECURITY: Don't know size of output buffer.
} else { pSymEntry->Name = SymInfoLookup.NamePtr; } return true; }
return false; }
DWORD_PTR NTGetPID( HANDLE hProcess ) { HMODULE hModule; PNTQUERYINFORMATIONPROCESS NtQueryInformationProcess; PROCESS_BASIC_INFORMATION pi; NTSTATUS status;
hModule = GetModuleHandle( "ntdll.dll" ); if (!hModule) { return ERROR_MOD_NOT_FOUND; }
NtQueryInformationProcess = (PNTQUERYINFORMATIONPROCESS)GetProcAddress( hModule, "NtQueryInformationProcess" );
if (!NtQueryInformationProcess) { return ERROR_INVALID_FUNCTION; }
// When running with the AppVerifier this will throw
// a bad-handle exception when hProcess isn't actually
// a process handle. As that's an expected case, protect
// against it.
__try { status = NtQueryInformationProcess(hProcess, ProcessBasicInformation, &pi, sizeof(pi), NULL);
if (!NT_SUCCESS(status)) pi.UniqueProcessId = 0; } __except(EXCEPTION_EXECUTE_HANDLER) { pi.UniqueProcessId = 0; }
return pi.UniqueProcessId; }
//
// the block bounded by the #ifdef _X86_ statement
// contains the code for getting the PID from an
// HPROCESS when running under Win9X
//
#ifdef _X86_
#define HANDLE_INVALID ((HANDLE)0xFFFFFFFF)
#define HANDLE_CURRENT_PROCESS ((HANDLE)0x7FFFFFFF)
#define HANDLE_CURRENT_THREAD ((HANDLE)0xFFFFFFFE)
#define MAX_HANDLE_VALUE ((HANDLE)0x00FFFFFF)
// Thread Information Block.
typedef struct _TIB {
DWORD unknown[12]; DWORD_PTR ppdb;
} TIB, *PTIB;
// Task Data Block
typedef struct _TDB {
DWORD unknown[2]; TIB tib;
} TDB, *PTDB;
typedef struct _OBJ {
BYTE typObj; // object type
BYTE objFlags; // object flags
WORD cntUses; // count of this objects usage
} OBJ, *POBJ;
typedef struct _HTE {
DWORD flFlags; POBJ pobj;
} HTE, *PHTE;
typedef struct _HTB {
DWORD chteMax; HTE rghte[1];
} HTB, *PHTB;
typedef struct _W9XPDB {
DWORD unknown[17]; PHTB phtbHandles;
} W9XPDB, *PW9XPDB;
#pragma warning(disable:4035)
_inline struct _TIB * GetCurrentTib(void) { _asm mov eax, fs:[0x18] }
// stuff needed to convert local handle
#define IHTETOHANDLESHIFT 2
#define GLOBALHANDLEMASK (0x453a4d3cLU)
#define IHTEFROMHANDLE(hnd) ((hnd) == HANDLE_INVALID ? (DWORD)(hnd) : (((DWORD)(hnd)) >> IHTETOHANDLESHIFT))
#define IHTEISGLOBAL(ihte) \
(((ihte) >> (32 - 8 - IHTETOHANDLESHIFT)) == (((DWORD)GLOBALHANDLEMASK) >> 24))
#define IS_WIN32_PREDEFINED_HANDLE(hnd) \
((hnd == HANDLE_CURRENT_PROCESS)||(hnd == HANDLE_CURRENT_THREAD)||(hnd == HANDLE_INVALID))
DWORD GetWin9xObsfucator( VOID ) /*++
Routine Description:
GetWin9xObsfucator()
Arguments:
none
Return Value:
Obsfucator key used by Windows9x to hide Process and Thread Id's
Notes:
The code has only been tested on Windows98SE and Millennium.
--*/ { DWORD ppdb = 0; // W9XPDB = Process Data Block
DWORD processId = (DWORD) GetCurrentProcessId();
// get PDB pointer
ppdb = GetCurrentTib()->ppdb;
return ppdb ^ processId; }
DWORD_PTR GetPtrFromHandle( IN HANDLE Handle ) /*++
Routine Description:
GetPtrFromHandle()
Arguments:
Handle - handle from Process handle table
Return Value:
Real Pointer to object
Notes:
The code has only been tested on Windows98SE and Millennium.
--*/ { DWORD_PTR ptr = 0; DWORD ihte = 0; PW9XPDB ppdb = 0;
ppdb = (PW9XPDB) GetCurrentTib()->ppdb;
// check for pre-defined handle values.
if (Handle == HANDLE_CURRENT_PROCESS) { ptr = (DWORD_PTR) ppdb; } else if (Handle == HANDLE_CURRENT_THREAD) { ptr = (DWORD_PTR) CONTAINING_RECORD(GetCurrentTib(), TDB, tib); } else if (Handle == HANDLE_INVALID) { ptr = 0; } else { // not a special handle, we can perform our magic.
ihte = IHTEFROMHANDLE(Handle);
// if we have a global handle, it is only meaningful in the context
// of the kernel process's handle table...we don't currently deal with
// this type of handle
if (!(IHTEISGLOBAL(ihte))) { ptr = (DWORD_PTR) ppdb->phtbHandles->rghte[ihte].pobj; } }
return ptr; }
DWORD_PTR Win9xGetPID( IN HANDLE hProcess ) /*++
Routine Description:
Win9xGetPid()
Arguments:
hProcess - Process handle
Return Value:
Process Id
Notes:
The code has only been tested on Windows98SE and Millennium.
--*/ { static DWORD dwObsfucator = 0;
// check to see that we have a predefined handle or an index into
// our local handle table.
if (IS_WIN32_PREDEFINED_HANDLE(hProcess) || (hProcess < MAX_HANDLE_VALUE)) { if (!dwObsfucator) { dwObsfucator = GetWin9xObsfucator(); assert(dwObsfucator != 0); } return dwObsfucator ^ GetPtrFromHandle(hProcess); }
// don't know what we have here
return 0; }
#endif // _X86_
DWORD_PTR GetPID( HANDLE hProcess ) { OSVERSIONINFO VerInfo;
if (hProcess == GetCurrentProcess()) return GetCurrentProcessId();
VerInfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); GetVersionEx(&VerInfo); if (VerInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) { return NTGetPID(hProcess); } else { #ifdef _X86_
return Win9xGetPID(hProcess); #else
return 0; #endif
} }
PMODULE_ENTRY GetModFromAddr( PPROCESS_ENTRY pe, IN DWORD64 addr ) { PMODULE_ENTRY mi = NULL;
__try { mi = GetModuleForPC(pe, addr, false); if (!mi) { SetLastError(ERROR_MOD_NOT_FOUND); return NULL; }
if (!LoadSymbols(pe->hProcess, mi, 0)) { SetLastError(ERROR_MOD_NOT_FOUND); return NULL; }
} __except (EXCEPTION_EXECUTE_HANDLER) {
ImagepSetLastErrorFromStatus(GetExceptionCode()); return NULL; }
return mi; }
DWORD GetProcessModules( HANDLE hProcess, PGET_MODULE cbGetModule, PVOID Context ) { #ifdef _X86_
OSVERSIONINFO VerInfo;
VerInfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); GetVersionEx(&VerInfo); if (VerInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) { return NTGetProcessModules(hProcess, cbGetModule, Context); } else { return Win95GetProcessModules(hProcess, cbGetModule, Context); } }
DWORD Win95GetProcessModules( HANDLE hProcess, PGET_MODULE cbGetModule, PVOID Context ) { MODULEENTRY32 mi; PMODULE32 pModule32Next, pModule32First; PCREATE32SNAPSHOT pCreateToolhelp32Snapshot; HANDLE hSnapshot; HMODULE hToolHelp; DWORD pid;
// get the PID:
// this hack supports old bug workaround, in which callers were passing
// a pid, because an hprocess didn't work on W9X.
pid = GetPID(hProcess); if (!pid) pid = (DWORD)hProcess;
// get the module list from toolhelp apis
hToolHelp = GetModuleHandle("kernel32.dll"); if (!hToolHelp) return ERROR_MOD_NOT_FOUND;
pModule32Next = (PMODULE32)GetProcAddress(hToolHelp, "Module32Next"); pModule32First = (PMODULE32)GetProcAddress(hToolHelp, "Module32First"); pCreateToolhelp32Snapshot = (PCREATE32SNAPSHOT)GetProcAddress(hToolHelp, "CreateToolhelp32Snapshot"); if (!pModule32Next || !pModule32First || !pCreateToolhelp32Snapshot) return ERROR_MOD_NOT_FOUND;
hSnapshot = pCreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid); if (hSnapshot == (HANDLE)-1) { return ERROR_MOD_NOT_FOUND; }
mi.dwSize = sizeof(MODULEENTRY32);
if (pModule32First(hSnapshot, &mi)) { do { if (!cbGetModule( hProcess, mi.szModule, (DWORD) mi.modBaseAddr, mi.modBaseSize, Context)) { break; }
} while ( pModule32Next(hSnapshot, &mi) ); }
CloseHandle(hSnapshot);
return(ERROR_SUCCESS); }
DWORD NTGetProcessModules( HANDLE hProcess, PGET_MODULE cbGetModule, PVOID Context ) {
#endif // _X86_
PRTLQUERYPROCESSDEBUGINFORMATION RtlQueryProcessDebugInformation; PRTLCREATEQUERYDEBUGBUFFER RtlCreateQueryDebugBuffer; PRTLDESTROYQUERYDEBUGBUFFER RtlDestroyQueryDebugBuffer; HMODULE hModule; NTSTATUS Status; PRTL_DEBUG_INFORMATION Buffer; ULONG i; DWORD_PTR ProcessId;
hModule = GetModuleHandle( "ntdll.dll" ); if (!hModule) { return ERROR_MOD_NOT_FOUND; }
RtlQueryProcessDebugInformation = (PRTLQUERYPROCESSDEBUGINFORMATION)GetProcAddress( hModule, "RtlQueryProcessDebugInformation" );
if (!RtlQueryProcessDebugInformation) { return ERROR_INVALID_FUNCTION; }
RtlCreateQueryDebugBuffer = (PRTLCREATEQUERYDEBUGBUFFER)GetProcAddress( hModule, "RtlCreateQueryDebugBuffer" );
if (!RtlCreateQueryDebugBuffer) { return ERROR_INVALID_FUNCTION; }
RtlDestroyQueryDebugBuffer = (PRTLDESTROYQUERYDEBUGBUFFER)GetProcAddress( hModule, "RtlDestroyQueryDebugBuffer" );
if (!RtlDestroyQueryDebugBuffer) { return ERROR_INVALID_FUNCTION; }
Buffer = RtlCreateQueryDebugBuffer( 0, false ); if (!Buffer) { return ERROR_NOT_ENOUGH_MEMORY; }
ProcessId = GetPID(hProcess);
// for backwards compatibility with an old bug
if (!ProcessId) ProcessId = (DWORD_PTR)hProcess;
ULONG QueryFlags = RTL_QUERY_PROCESS_MODULES | RTL_QUERY_PROCESS_NONINVASIVE;
if (option(SYMOPT_INCLUDE_32BIT_MODULES)) { QueryFlags |= RTL_QUERY_PROCESS_MODULES32; }
Status = RtlQueryProcessDebugInformation( (HANDLE)ProcessId, QueryFlags, Buffer );
if (Status != STATUS_SUCCESS) { RtlDestroyQueryDebugBuffer( Buffer ); return(ImagepSetLastErrorFromStatus(Status)); }
for (i=0; i<Buffer->Modules->NumberOfModules; i++) { PRTL_PROCESS_MODULE_INFORMATION Module = &Buffer->Modules->Modules[i]; if (!cbGetModule( hProcess, (LPSTR) &Module->FullPathName[Module->OffsetToFileName], (DWORD64)Module->ImageBase, (DWORD)Module->ImageSize, Context )) { break; } }
RtlDestroyQueryDebugBuffer( Buffer ); return ERROR_SUCCESS; }
VOID FreeModuleEntry( PPROCESS_ENTRY pe, PMODULE_ENTRY mi ) { FunctionEntryCache* Cache;
if (pe && (Cache = GetFeCache(mi->MachineType, false))) Cache->InvalidateProcessOrModule(pe->hProcess, mi->BaseOfDll); if (pe && pe->ipmi == mi) pe->ipmi = NULL; MemFree( mi->symbolTable ); MemFree( mi->SectionHdrs ); MemFree( mi->OriginalSectionHdrs ); if (mi->pFpoData) VirtualFree( mi->pFpoData, 0, MEM_RELEASE ); if (mi->pFpoDataOmap) VirtualFree( mi->pFpoDataOmap, 0, MEM_RELEASE ); if (mi->pExceptionData) VirtualFree( mi->pExceptionData, 0, MEM_RELEASE ); MemFree( mi->pPData ); MemFree( mi->pXData ); MemFree( mi->TmpSym.Name ); MemFree(mi->vsTmpSym.Name); MemFree( mi->ImageName ); MemFree( mi->LoadedImageName ); MemFree( mi->LoadedPdbName ); MemFree( mi->pOmapTo ); MemFree( mi->pOmapFrom ); MemFree( mi->CallerData ); MemFree(mi->vs); if (mi->SourceFiles) { PSOURCE_ENTRY Src, SrcNext;
for (Src = mi->SourceFiles; Src != NULL; Src = SrcNext) { SrcNext = Src->Next; MemFree(Src); } } RemoveSourceForModuleFromHintList(pe, mi); diaRelease(mi->dia);
MemFree( mi ); }
void ClearModuleFlags( PPROCESS_ENTRY pe ) {
PLIST_ENTRY next; PMODULE_ENTRY mi;
next = pe->ModuleList.Flink; if (!next) return;
while (next != &pe->ModuleList) { mi = CONTAINING_RECORD(next, MODULE_ENTRY, ListEntry); mi->processed = false; next = mi->ListEntry.Flink; } }
BOOL MatchSymbolName( PSYMBOL_ENTRY sym, LPSTR SymName ) { if (!strcmpre(sym->Name, SymName, option(SYMOPT_CASE_INSENSITIVE) ? false : true)) return true;
return false; }
PSYMBOL_ENTRY HandleDuplicateSymbols( PPROCESS_ENTRY pe, PMODULE_ENTRY mi, PSYMBOL_ENTRY sym ) { DWORD i; DWORD Dups; DWORD NameSize; PIMAGEHLP_SYMBOL64 Sym64 = NULL; PIMAGEHLP_SYMBOL Sym32 = NULL; PIMAGEHLP_SYMBOL64 pSym64 = NULL; PIMAGEHLP_SYMBOL pSym32 = NULL; IMAGEHLP_DUPLICATE_SYMBOL64 DupSym64; IMAGEHLP_DUPLICATE_SYMBOL DupSym32; PULONG SymSave = NULL;
if (!pe->pCallbackFunction32 && !pe->pCallbackFunction64) { return sym; }
if (!(sym->Flags & SYMF_DUPLICATE)) { return sym; }
Dups = 0; NameSize = 0; for (i = 0; i < mi->numsyms; i++) { if ((mi->symbolTable[i].NameLength == sym->NameLength) && (strcmp( mi->symbolTable[i].Name, sym->Name ) == 0)) { Dups += 1; NameSize += (mi->symbolTable[i].NameLength + 1); } }
if (pe->pCallbackFunction32) { Sym32 = (PIMAGEHLP_SYMBOL) MemAlloc((sizeof(IMAGEHLP_SYMBOL) + MAX_SYM_NAME) * Dups); if (!Sym32) goto cleanup; pSym64 = Sym64;
SymSave = (PULONG) MemAlloc( sizeof(ULONG) * Dups ); if (!SymSave) goto cleanup;
DupSym32.SizeOfStruct = sizeof(IMAGEHLP_DUPLICATE_SYMBOL); DupSym32.NumberOfDups = Dups; DupSym32.Symbol = Sym32; DupSym32.SelectedSymbol = (ULONG) -1;
Dups = 0; for (i = 0; i < mi->numsyms; i++) { if ((mi->symbolTable[i].NameLength == sym->NameLength) && (strcmp( mi->symbolTable[i].Name, sym->Name ) == 0)) { pSym32->MaxNameLength = MAX_SYM_NAME; se2sym(&mi->symbolTable[i], pSym32); pSym32 = (PIMAGEHLP_SYMBOL)((PCHAR)pSym32 + sizeof(IMAGEHLP_SYMBOL) + MAX_SYM_NAME); SymSave[Dups] = i; Dups += 1; } }
} else { Sym64 = (PIMAGEHLP_SYMBOL64) MemAlloc((sizeof(IMAGEHLP_SYMBOL64) + MAX_SYM_NAME) * Dups); if (!Sym64) goto cleanup; pSym64 = Sym64;
SymSave = (PULONG) MemAlloc( sizeof(ULONG) * Dups ); if (!SymSave) goto cleanup;
DupSym64.SizeOfStruct = sizeof(IMAGEHLP_DUPLICATE_SYMBOL64); DupSym64.NumberOfDups = Dups; DupSym64.Symbol = Sym64; DupSym64.SelectedSymbol = (DWORD)-1;
Dups = 0; for (i = 0; i < mi->numsyms; i++) { if ((mi->symbolTable[i].NameLength == sym->NameLength) && (strcmp( mi->symbolTable[i].Name, sym->Name ) == 0)) { pSym64->MaxNameLength = MAX_SYM_NAME; se2lsym(&mi->symbolTable[i], pSym64); pSym64 = (PIMAGEHLP_SYMBOL64)((PCHAR)pSym64 + sizeof(IMAGEHLP_SYMBOL64) + MAX_SYM_NAME); SymSave[Dups] = i; Dups += 1; } } }
__try {
if (pe->pCallbackFunction32) { pe->pCallbackFunction32( pe->hProcess, CBA_DUPLICATE_SYMBOL, (PVOID)&DupSym32, (PVOID)pe->CallbackUserContext );
if (DupSym32.SelectedSymbol != (DWORD)-1) { if (DupSym32.SelectedSymbol < DupSym32.NumberOfDups) { sym = &mi->symbolTable[SymSave[DupSym32.SelectedSymbol]]; } } } else { pe->pCallbackFunction64( pe->hProcess, CBA_DUPLICATE_SYMBOL, (ULONG64)&DupSym64, pe->CallbackUserContext );
if (DupSym64.SelectedSymbol != (DWORD)-1) { if (DupSym64.SelectedSymbol < DupSym64.NumberOfDups) sym = &mi->symbolTable[SymSave[DupSym64.SelectedSymbol]]; } }
} __except (EXCEPTION_EXECUTE_HANDLER) { ; }
cleanup: MemFree(Sym32); MemFree(Sym64); MemFree(SymSave);
return sym; }
PSYMBOL_INFO FindSymbolByName( PPROCESS_ENTRY pe, PMODULE_ENTRY mi, LPSTR SymName ) { DWORD hash; PSYMBOL_ENTRY sym; PSYMBOL_INFO si; DWORD i; char sz[MAX_SYM_NAME + 5];
if (!mi || mi->dia) { si = diaFindSymbolByName(pe, mi, SymName); if (si || !mi) return si; return vsFindSymbolByName(pe, mi, SymName); }
hash = ComputeHash( SymName, strlen(SymName) ); sym = mi->NameHashTable[hash];
if (sym) { //
// there are collision(s) so lets walk the
// collision list and match the names
//
while( sym ) { if (MatchSymbolName( sym, SymName )) { sym = HandleDuplicateSymbols( pe, mi, sym ); se2si(sym, &mi->si); return &mi->si; } sym = sym->Next; } }
//
// the symbol did not hash to anything valid
// this is possible if the caller passed an undecorated name
// now we must look linearly thru the list
//
PrepRE4Srch(SymName, sz); for (i=0; i<mi->numsyms; i++) { sym = &mi->symbolTable[i]; if (MatchSymbolName( sym, sz )) { sym = HandleDuplicateSymbols( pe, mi, sym ); se2si(sym, &mi->si); return &mi->si; } }
return vsFindSymbolByName(pe, mi, SymName); }
IMGHLP_RVA_FUNCTION_DATA * SearchRvaFunctionTable( IMGHLP_RVA_FUNCTION_DATA *FunctionTable, LONG High, LONG Low, DWORD dwPC ) { LONG Middle; IMGHLP_RVA_FUNCTION_DATA *FunctionEntry;
// Perform binary search on the function table for a function table
// entry that subsumes the specified PC.
while (High >= Low) {
// Compute next probe index and test entry. If the specified PC
// is greater than of equal to the beginning address and less
// than the ending address of the function table entry, then
// return the address of the function table entry. Otherwise,
// continue the search.
Middle = (Low + High) >> 1; FunctionEntry = &FunctionTable[Middle]; if (dwPC < FunctionEntry->rvaBeginAddress) { High = Middle - 1;
} else if (dwPC >= FunctionEntry->rvaEndAddress) { Low = Middle + 1;
} else { return FunctionEntry; } } return NULL; }
PIMGHLP_RVA_FUNCTION_DATA GetFunctionEntryFromDebugInfo ( PPROCESS_ENTRY pe, DWORD64 ControlPc ) { PMODULE_ENTRY mi; IMGHLP_RVA_FUNCTION_DATA *FunctionTable;
mi = GetModuleForPC( pe, ControlPc, false ); if (mi == NULL) { return NULL; }
if (!GetPData(pe->hProcess, mi)) { return NULL; }
FunctionTable = (IMGHLP_RVA_FUNCTION_DATA *)mi->pExceptionData; return SearchRvaFunctionTable(FunctionTable, mi->dwEntries - 1, 0, (ULONG)(ControlPc - mi->BaseOfDll)); }
// NTRAID#96939-2000/03/27-patst
//
// All the platform dependent "LookupFunctionEntryXxx" should be retyped as returning
// a PIMAGE_FUNCTION_ENTRY64. This would require a modification of the callers, especially
// the IA64 specific locations that assume that the returned function entries contains RVAs
// and not absolute addresses. I implemented a platform-independant
// "per address space / per module" cache of function entries - capable of supporting the
// dynamic function entries scheme but I fell short of time in delivering it.
PIMAGE_IA64_RUNTIME_FUNCTION_ENTRY LookupFunctionEntryIa64 ( HANDLE hProcess, DWORD64 ControlPc ) { FunctionEntryCache* Cache; FeCacheEntry* FunctionEntry;
if ((Cache = GetFeCache(IMAGE_FILE_MACHINE_IA64, true)) == NULL) { return NULL; }
//
// IA64-NOTE 08/99: IA64 Function entries contain file offsets, not absolute relocated addresses.
// IA64 Callers assume this.
//
// Don't specify the function table access callback or it will
// cause recursion.
FunctionEntry = Cache-> Find(hProcess, ControlPc, ReadInProcMemory, miGetModuleBase, NULL); if ( FunctionEntry == NULL ) { return NULL; }
tlsvar(Ia64FunctionEntry) = FunctionEntry->Data.Ia64; return &tlsvar(Ia64FunctionEntry); }
_PIMAGE_RUNTIME_FUNCTION_ENTRY LookupFunctionEntryAmd64 ( HANDLE hProcess, DWORD64 ControlPc ) { FunctionEntryCache* Cache; FeCacheEntry* FunctionEntry;
if ((Cache = GetFeCache(IMAGE_FILE_MACHINE_AMD64, true)) == NULL) { return NULL; }
// Don't specify the function table access callback or it will
// cause recursion.
FunctionEntry = Cache-> Find(hProcess, ControlPc, ReadInProcMemory, miGetModuleBase, NULL); if ( FunctionEntry == NULL ) { return NULL; }
tlsvar(Amd64FunctionEntry) = FunctionEntry->Data.Amd64; return &tlsvar(Amd64FunctionEntry); }
PFPO_DATA SwSearchFpoData( DWORD key, PFPO_DATA base, DWORD num ) { PFPO_DATA lo = base; PFPO_DATA hi = base + (num - 1); PFPO_DATA mid; DWORD half;
while (lo <= hi) { if (half = num / 2) { mid = lo + ((num & 1) ? half : (half - 1)); if ((key >= mid->ulOffStart)&&(key < (mid->ulOffStart+mid->cbProcSize))) { return mid; } if (key < mid->ulOffStart) { hi = mid - 1; num = (num & 1) ? half : half-1; } else { lo = mid + 1; num = half; } } else if (num) { if ((key >= lo->ulOffStart)&&(key < (lo->ulOffStart+lo->cbProcSize))) { return lo; } else { break; } } else { break; } } return(NULL); }
BOOL DoSymbolCallback ( PPROCESS_ENTRY pe, ULONG CallbackType, IN PMODULE_ENTRY mi, PIMAGEHLP_DEFERRED_SYMBOL_LOAD64 idsl64, LPSTR FileName ) { BOOL Status; IMAGEHLP_DEFERRED_SYMBOL_LOAD idsl32;
Status = false; if (pe->pCallbackFunction32) { idsl32.SizeOfStruct = sizeof(IMAGEHLP_DEFERRED_SYMBOL_LOAD); idsl32.BaseOfImage = (ULONG)mi->BaseOfDll; idsl32.CheckSum = mi->CheckSum; idsl32.TimeDateStamp = mi->TimeDateStamp; idsl32.Reparse = false; idsl32.FileName[0] = 0; idsl32.hFile = mi->hFile; if (FileName) { CatString( idsl32.FileName, FileName, MAX_PATH ); }
__try {
Status = pe->pCallbackFunction32( pe->hProcess, CallbackType, (PVOID)&idsl32, (PVOID)pe->CallbackUserContext ); idsl64->SizeOfStruct = sizeof(IMAGEHLP_DEFERRED_SYMBOL_LOAD64); idsl64->BaseOfImage = (ULONG64)(LONG64)(LONG)idsl32.BaseOfImage; idsl64->CheckSum = idsl32.CheckSum; idsl64->TimeDateStamp = idsl32.TimeDateStamp; idsl64->Reparse = idsl32.Reparse; idsl64->hFile = mi->hFile; if (idsl32.FileName) { CopyStrArray(idsl64->FileName, idsl32.FileName); }
} __except (EXCEPTION_EXECUTE_HANDLER) { } } else if (pe->pCallbackFunction64) { idsl64->SizeOfStruct = sizeof(IMAGEHLP_DEFERRED_SYMBOL_LOAD64); idsl64->BaseOfImage = mi->BaseOfDll; idsl64->CheckSum = mi->CheckSum; idsl64->TimeDateStamp = mi->TimeDateStamp; idsl64->Reparse = false; idsl64->FileName[0] = 0; idsl64->hFile = mi->hFile; if (FileName) { CatString(idsl64->FileName, FileName, MAX_PATH); }
__try {
Status = pe->pCallbackFunction64( pe->hProcess, CallbackType, (ULONG64)(ULONG_PTR)idsl64, pe->CallbackUserContext );
} __except (EXCEPTION_EXECUTE_HANDLER) { } }
if (Status) { mi->CheckSum = idsl64->CheckSum; mi->TimeDateStamp = idsl64->TimeDateStamp; mi->hFile = idsl64->hFile; }
return Status; }
BOOL DoCallback( PPROCESS_ENTRY pe, ULONG type, PVOID data ) { BOOL rc = true;
__try {
// if we weren't passed a process entry, then call all processes
if (!pe) { BOOL ret; PLIST_ENTRY next;
next = g.ProcessList.Flink; if (!next) return false;
while ((PVOID)next != (PVOID)&g.ProcessList) { pe = CONTAINING_RECORD( next, PROCESS_ENTRY, ListEntry ); next = pe->ListEntry.Flink; if (!pe) return rc; ret = DoCallback(pe, type, data); if (!ret) rc = ret; }
return rc; }
// otherwise call this process
if (pe->pCallbackFunction32) { rc = pe->pCallbackFunction32(pe->hProcess, type, data, (PVOID)pe->CallbackUserContext); } else if (pe->pCallbackFunction64) { rc = pe->pCallbackFunction64(pe->hProcess, type, (ULONG64)data, pe->CallbackUserContext); }
} __except (EXCEPTION_EXECUTE_HANDLER) { rc = false; }
return rc; }
BOOL IsCallback( PPROCESS_ENTRY pe ) { __try {
// if we weren't passed a process entry, then call all processes
if (!pe) { PLIST_ENTRY next;
next = g.ProcessList.Flink; if (!next) return false;
while ((PVOID)next != (PVOID)&g.ProcessList) { pe = CONTAINING_RECORD( next, PROCESS_ENTRY, ListEntry ); next = pe->ListEntry.Flink; if (!pe) return false; if (IsCallback(pe)) return true; }
return false; }
// otherwise call this process
if (pe->pCallbackFunction32) return true; if (pe->pCallbackFunction64) return true;
} __except (EXCEPTION_EXECUTE_HANDLER) { }
return false; }
void PrepOutputString( char *in, char *out, int len ) { int i;
*out = 0;
for (i = 0; *in && i < len; i++, in++, out++) { if (*in == '\b') break; *out = *in; } *out = 0; }
BOOL PostEvent( PPROCESS_ENTRY pe, PIMAGEHLP_CBA_EVENT evt ) { char sztxt[4098]; BOOL fdbgout = false; if (!*evt->desc) return true;
// write to log, if called for
PrepOutputString(evt->desc, sztxt, 4098); if (g.hLog && *sztxt) _write(g.hLog, sztxt, strlen(sztxt));
// write to debug terminal, if called for
if (g.fdbgout) { fdbgout = true; OutputDebugString(sztxt); }
// don't pass info-level messages, unless told to
if ((evt->severity <= sevInfo) && !option(SYMOPT_DEBUG)) return true;
// If there is no callback function, send to the debug terminal.
if (!IsCallback(pe)) { if (!fdbgout) OutputDebugString(sztxt); return true; }
// Otherwise call the callback function.
return DoCallback(pe, CBA_EVENT, evt); }
BOOL WINAPIV evtprint( PPROCESS_ENTRY pe, DWORD severity, DWORD code, PVOID object, LPSTR format, ... ) { static char buf[1001] = ""; IMAGEHLP_CBA_EVENT evt; va_list args;
va_start(args, format); _vsnprintf(buf, sizeof(buf) - 1, format, args); buf[sizeof(buf)] = 0; va_end(args); if (!*buf) return true;
evt.severity = severity; evt.code = code; evt.desc = buf; evt.object = object;
return PostEvent(pe, &evt); }
int WINAPIV _peprint( PPROCESS_ENTRY pe, LPSTR Format, ... ) { static char buf[1001]; va_list args;
va_start(args, Format); _vsnprintf(buf, sizeof(buf) - 1, Format, args); buf[sizeof(buf)] = 0; va_end(args); if (!*buf) return 1;
if (!evtprint(pe, sevInfo, 0, NULL, buf)) DoCallback(pe, CBA_DEBUG_INFO, buf); return 1; }
int WINAPIV _pprint( PPROCESS_ENTRY pe, LPSTR Format, ... ) { static char buf[1001]; va_list args;
va_start(args, Format); CopyStrArray(buf, "DBGHELP: "); _vsnprintf(buf + 9, sizeof(buf) - 10, Format, args); buf[sizeof(buf)] = 0; va_end(args); _peprint(pe, buf); return 1; }
int WINAPIV _eprint( LPSTR format, ... ) { static char buf[1001]; va_list args;
va_start(args, format); _vsnprintf(buf, sizeof(buf) - 1, format, args); buf[sizeof(buf)] = 0; va_end(args); _peprint(NULL, buf); return 1; }
int WINAPIV _dprint( LPSTR format, ... ) { static char buf[1001] = "DBGHELP: "; va_list args;
va_start(args, format); _vsnprintf(buf + 9, sizeof(buf) - 10, format, args); buf[sizeof(buf)] = 0; va_end(args); _eprint(buf); return 1; }
BOOL traceAddr( DWORD64 addr ) { DWORD64 taddr = 0;
if (!*g.DebugToken) return false; if (sscanf(g.DebugToken, "0x%I64x", &taddr) < 1) return false; taddr = EXTEND64(taddr); addr = EXTEND64(addr); return (addr == taddr); }
BOOL traceName( PCHAR name ) { if (!*g.DebugToken) return false; return !_strnicmp(name, g.DebugToken, strlen(g.DebugToken)); }
BOOL traceSubName( PCHAR name ) { char *lname; int len; BOOL rc;
if (!*g.DebugToken || !name || !*name) return false; len = strlen(name) + 1; lname = (char *)MemAlloc(sizeof(char) * len); if (!lname) return false; CopyString(lname, name, len); _strlwr(lname); rc = strstr(lname, g.DebugToken) ? true : false; MemFree(lname);
return rc; }
char * SymbolStatus( PMODULE_ENTRY mi, int indent ) { static char pad[123]; static char sz[MAX_PATH * 2]; static char src[MAX_PATH];
if (indent > 120) return NULL;
ZeroMemory(pad, sizeof(pad)); *pad = '\n'; memset(pad + 1, ' ', indent);
// do this only on-demand
diaCountGlobals(mi);
// get the name
if (mi->LoadedImageName && *mi->LoadedImageName) CopyStrArray(src, mi->LoadedImageName); else CopyStrArray(src, "image");
switch (mi->lSymType) { case SymNone: CopyStrArray(sz, "no symbols loaded"); break; case SymCoff: if (mi->loaded) PrintString(sz, DIMA(sz), "coff symbols %s", mi->fLines ? "& lines " : ""); else CopyStrArray(sz, "coff symbols not loaded"); break; case SymCv: if (mi->loaded) PrintString(sz, DIMA(sz), "cv symbols %s", mi->fLines ? "& lines " : ""); else CopyStrArray(sz, "cv symbols not loaded"); break; case SymPdb: case SymDia: if (mi->cGlobals == -1) PrintString(sz, DIMA(sz), "- %s", mi->LoadedPdbName); else if (mi->cGlobals) PrintString(sz, DIMA(sz), "private symbols %s", mi->fLines ? "& lines " : ""); else PrintString(sz, DIMA(sz), "public symbols %s", mi->fLines ? "& lines " : ""); break; case SymExport: CopyStrArray(sz, "export symbols"); if (!mi->loaded) CatStrArray(sz, " not loaded"); break; case SymDeferred: CopyStrArray(sz, "symbol load deferred"); break; case SymSym: CopyStrArray(sz, "symbol loaded from sym file"); break; case SymVirtual: CopyStrArray(sz, "virtual symbol module"); break; default: CopyStrArray(sz, "symbol error"); break; }
if (mi->LoadedImageName && *mi->LoadedImageName && IsDbg(mi->LoadedImageName)) { CatStrArray(sz, pad); // CatStrArray(sz, "\n ");
CatStrArray(sz, mi->LoadedImageName); CatStrArray(sz, mi->fDbgUnmatched ? " - unmatched" : ""); } if (mi->LoadedPdbName && *mi->LoadedPdbName) { CatStrArray(sz, pad); // CatStrArray(sz, "\n ");
CatStrArray(sz, mi->LoadedPdbName); CatStrArray(sz, mi->fPdbUnmatched ? " - unmatched" : ""); }
return sz; }
PPROCESS_ENTRY FindProcessEntry( HANDLE hProcess ) { PLIST_ENTRY next; PPROCESS_ENTRY pe; DWORD count;
next = g.ProcessList.Flink; if (!next) { return NULL; }
for (count = 0; (PVOID)next != (PVOID)&g.ProcessList; count++) { assert(count < g.cProcessList); if (count >= g.cProcessList) return NULL; pe = CONTAINING_RECORD( next, PROCESS_ENTRY, ListEntry ); next = pe->ListEntry.Flink; if (pe->hProcess == hProcess) { return pe; } }
return NULL; }
PPROCESS_ENTRY FindFirstProcessEntry( ) { return CONTAINING_RECORD(g.ProcessList.Flink, PROCESS_ENTRY, ListEntry); }
PMODULE_ENTRY FindModule( HANDLE hProcess, PPROCESS_ENTRY pe, LPSTR ModuleName, BOOL fLoad ) { PLIST_ENTRY next; PMODULE_ENTRY mi;
if (!ModuleName || !*ModuleName) return NULL;
next = pe->ModuleList.Flink; if (next) { while ((PVOID)next != (PVOID)&pe->ModuleList) { mi = CONTAINING_RECORD( next, MODULE_ENTRY, ListEntry ); next = mi->ListEntry.Flink;
if ((_stricmp( mi->ModuleName, ModuleName ) == 0) || (mi->AliasName[0] && _stricmp( mi->AliasName, ModuleName ) == 0)) { if (fLoad && !LoadSymbols(hProcess, mi, 0)) { return NULL; }
return mi; } } }
return NULL; }
BOOL PrepRE4Srch( PCSTR in, PSTR out ) { LPSTR p; BOOL rc;
assert(in && out && strlen(in) <= MAX_SYM_NAME);
rc = false;
*out = 0; for (; *in; in++, out++) { if (*in == '_' && *(in + 1) == '_') { strcpy(out, "[_:][_:]"); // SECURITY: Don't know size of target buffer.
out += 7; in++; rc = true; } else { *out = *in; if (*in == '*' || *in == '?') rc = true; } } *out = 0;
return rc; }
BOOL ValidGuid( GUID *guid ) { int i;
if (!guid) return false;
if (guid->Data1) return true; if (guid->Data2) return true; if (guid->Data3) return true; for (i = 0; i < 8; i++) { if (guid->Data4[i]) return true; }
return false; }
BOOL GuidIsDword( GUID *guid ) { int i;
if (!guid) return false;
if (!guid->Data1) return false; if (guid->Data2) return false; if (guid->Data3) return false; for (i = 0; i < 8; i++) { if (guid->Data4[i]) return false; }
return true; }
PSYMBOL_INFO GetSymFromAddr( DWORD64 dwAddr, PDWORD64 pqwDisplacement, PMODULE_ENTRY mi ) { PSYMBOL_INFO si = NULL; PSYMBOL_INFO vssi; PSYMBOL_ENTRY sym = NULL; DWORD64 disp = 0; DWORD64 vsDisp; LONG High; LONG Low; LONG Middle;
#ifdef DEBUG
if (traceAddr(dwAddr)) // for debug breakpoints ...
dtrace("found 0x%I64x\n", dwAddr); #endif
if (mi == NULL) { return NULL; }
if (mi->dia) { si = diaGetSymFromAddr(mi, dwAddr, &disp); vssi = vsGetSymFromAddr(mi, dwAddr, &vsDisp); if (vssi && vsDisp < disp) { if (pqwDisplacement) *pqwDisplacement = vsDisp; return vssi; } if (pqwDisplacement) *pqwDisplacement = disp; return si; }
//
// do a binary search to locate the symbol
//
if (mi->numsyms) { Low = 0; High = mi->numsyms - 1;
while (High >= Low) { Middle = (Low + High) >> 1; sym = &mi->symbolTable[Middle]; if (!sym) break; if (dwAddr < sym->Address) { High = Middle - 1; } else if (dwAddr >= sym->Address + sym->Size) { Low = Middle + 1; } else { if (pqwDisplacement) { *pqwDisplacement = dwAddr - sym->Address; } break; } }
if (sym) { if (sym->Address > dwAddr) sym = NULL; else disp = dwAddr - sym->Address; } }
vssi = vsGetSymFromAddr(mi, dwAddr, &vsDisp); if (vssi && (!sym || vsDisp < disp)) { if (pqwDisplacement) *pqwDisplacement = vsDisp; return vssi; }
if (!sym) return NULL;
if (pqwDisplacement) *pqwDisplacement = disp;
se2si(sym, &mi->si);
return &mi->si; }
PSYMBOL_INFO GetSymFromAddrByTag( DWORD64 dwAddr, DWORD SymTag, PDWORD64 pqwDisplacement, PMODULE_ENTRY mi ) { PSYMBOL_INFO si = NULL; PSYMBOL_INFO vssi; PSYMBOL_ENTRY sym = NULL; DWORD64 disp = 0; DWORD64 vsDisp; LONG High; LONG Low; LONG Middle;
#ifdef DEBUG
if (traceAddr(dwAddr)) // for debug breakpoints ...
dtrace("found 0x%I64x\n", dwAddr); #endif
if (!mi) return NULL;
if (mi->dia) { si = diaGetSymFromAddrByTag(mi, dwAddr, SymTag, &disp); #if 0
vssi = vsGetSymFromAddr(mi, dwAddr, &vsDisp); if (vssi && vsDisp < disp) { if (pqwDisplacement) *pqwDisplacement = vsDisp; return vssi; } #endif
if (pqwDisplacement) *pqwDisplacement = disp; }
return si;
//
// do a binary search to locate the symbol
//
if (mi->numsyms) { Low = 0; High = mi->numsyms - 1;
while (High >= Low) { Middle = (Low + High) >> 1; sym = &mi->symbolTable[Middle]; if (!sym) break; if (dwAddr < sym->Address) { High = Middle - 1; } else if (dwAddr >= sym->Address + sym->Size) { Low = Middle + 1; } else { if (pqwDisplacement) { *pqwDisplacement = dwAddr - sym->Address; } break; } }
if (sym) { if (sym->Address > dwAddr) sym = NULL; else disp = dwAddr - sym->Address; } }
vssi = vsGetSymFromAddr(mi, dwAddr, &vsDisp); if (vssi && (!sym || vsDisp < disp)) { if (pqwDisplacement) *pqwDisplacement = vsDisp; return vssi; }
if (!sym) return NULL;
if (pqwDisplacement) *pqwDisplacement = disp;
se2si(sym, &mi->si);
return &mi->si; }
PSYMBOL_INFO GetSymFromToken( PMODULE_ENTRY mi, DWORD token ) { if (!mi || !mi->dia) return NULL;
return diaGetSymFromToken(mi, token); }
PSYMBOL_ENTRY cvGetSymFromAddr( DWORD64 dwAddr, PDWORD64 pqwDisplacement, PMODULE_ENTRY mi ) { PSYMBOL_ENTRY sym = NULL; PSYMBOL_ENTRY vsSym; DWORD64 disp = 0; DWORD64 vsDisp; LONG High; LONG Low; LONG Middle;
#ifdef DEBUG
if (traceAddr(dwAddr)) // for debug breakpoints ...
dtrace("found 0x%I64x\n", dwAddr); #endif
if (!mi || mi->dia) return NULL;
//
// do a binary search to locate the symbol
//
if (mi->numsyms) { Low = 0; High = mi->numsyms - 1;
while (High >= Low) { Middle = (Low + High) >> 1; sym = &mi->symbolTable[Middle]; if (!sym) break; if (dwAddr < sym->Address) { High = Middle - 1; } else if (dwAddr >= sym->Address + sym->Size) { Low = Middle + 1; } else { if (pqwDisplacement) { *pqwDisplacement = dwAddr - sym->Address; } break; } }
if (sym) { if (sym->Address > dwAddr) sym = NULL; else disp = dwAddr - sym->Address; } }
vsSym = vsGetSymEntryFromAddr(mi, dwAddr, &vsDisp);
if (vsSym && (!sym || vsDisp < disp)) { if (pqwDisplacement) *pqwDisplacement = vsDisp; return vsSym; }
if (pqwDisplacement) *pqwDisplacement = disp;
return sym; }
PMODULE_ENTRY GetModuleForPC( PPROCESS_ENTRY pe, DWORD64 dwPcAddr, BOOL ExactMatch ) { PLIST_ENTRY next; PMODULE_ENTRY mi = NULL;
if (!pe) return NULL;
next = pe->NextModule;
if (dwPcAddr == (DWORD64)-1) { if (!next) return NULL; if ((PVOID)next == (PVOID)&pe->ModuleList) { // Reset to NULL so the list can be re-walked
next = NULL; goto miss; } mi = CONTAINING_RECORD( next, MODULE_ENTRY, ListEntry ); next = mi->ListEntry.Flink; goto hit; }
next = pe->ModuleList.Flink; if (!next) goto miss;
while ((PVOID)next != (PVOID)&pe->ModuleList) { mi = CONTAINING_RECORD( next, MODULE_ENTRY, ListEntry ); next = mi->ListEntry.Flink; if (!dwPcAddr) goto hit; if (ExactMatch) { if (dwPcAddr == mi->BaseOfDll) { goto hit; } } else if ((dwPcAddr == mi->BaseOfDll && mi->DllSize == 0) || ((dwPcAddr >= mi->BaseOfDll) && (dwPcAddr < mi->BaseOfDll + mi->DllSize))) { goto hit; } }
miss: // found nothing
mi = NULL;
hit: EnterCriticalSection(&g.threadlock); pe->NextModule = next; LeaveCriticalSection(&g.threadlock);
return mi; }
DWORD ComputeHash( LPSTR lpbName, ULONG cb ) { ULONG UNALIGNED * lpulName; ULONG ulEnd = 0; int cul; int iul; ULONG ulSum = 0;
while (cb & 3) { ulEnd |= (lpbName[cb - 1] & 0xdf); ulEnd <<= 8; cb -= 1; }
cul = cb / 4; lpulName = (ULONG UNALIGNED *) lpbName; for (iul =0; iul < cul; iul++) { ulSum ^= (lpulName[iul] & 0xdfdfdfdf); ulSum = _lrotl( ulSum, 4); } ulSum ^= ulEnd; return ulSum % HASH_MODULO; }
PSYMBOL_ENTRY AllocSym( PMODULE_ENTRY mi, DWORD64 addr, LPSTR name ) { PSYMBOL_ENTRY sym; ULONG Length;
if (mi->numsyms == mi->MaxSyms) { // dtrace("AllocSym: ERROR - symbols Table overflow!\n");
return NULL; }
if (!mi->StringSize) { // dtrace("AllocSym: ERROR - symbols strings not allocated for module!\n");
return NULL; }
Length = strlen(name);
if ((Length + 1) > mi->StringSize) { // dtrace("AllocSym: ERROR - symbols strings buffer overflow!\n");
return NULL; }
sym = &mi->symbolTable[mi->numsyms];
mi->numsyms += 1; sym->Name = mi->SymStrings; mi->SymStrings += (Length + 2); mi->StringSize -= (Length + 2);
strcpy(sym->Name, name); // SECURITY: Don't know size of target buffer.
sym->Address = addr; sym->Size = 0; sym->Flags = 0; sym->Next = NULL; sym->NameLength = Length;
return sym; }
int __cdecl SymbolTableAddressCompare( const void *e1, const void *e2 ) { PSYMBOL_ENTRY sym1 = (PSYMBOL_ENTRY) e1; PSYMBOL_ENTRY sym2 = (PSYMBOL_ENTRY) e2; LONG64 diff;
if ( sym1 && sym2 ) { diff = (sym1->Address - sym2->Address); return (diff < 0) ? -1 : (diff == 0) ? 0 : 1; } else { return 1; } }
int __cdecl SymbolTableNameCompare( const void *e1, const void *e2 ) { PSYMBOL_ENTRY sym1 = (PSYMBOL_ENTRY) e1; PSYMBOL_ENTRY sym2 = (PSYMBOL_ENTRY) e2;
return strcmp( sym1->Name, sym2->Name ); }
VOID CompleteSymbolTable( PMODULE_ENTRY mi ) { PSYMBOL_ENTRY sym; PSYMBOL_ENTRY symH; ULONG Hash; ULONG i; ULONG dups; ULONG seq;
//
// sort the symbols by name
//
dbg_qsort( mi->symbolTable, mi->numsyms, sizeof(SYMBOL_ENTRY), SymbolTableNameCompare );
//
// mark duplicate names
//
seq = 0; for (i=0; i<mi->numsyms; i++) { dups = 0; while ((mi->symbolTable[i+dups].NameLength == mi->symbolTable[i+dups+1].NameLength) && (strcmp( mi->symbolTable[i+dups].Name, mi->symbolTable[i+dups+1].Name ) == 0)) { mi->symbolTable[i+dups].Flags |= SYMF_DUPLICATE; mi->symbolTable[i+dups+1].Flags |= SYMF_DUPLICATE; dups += 1; } i += dups; }
//
// sort the symbols by address
//
dbg_qsort( mi->symbolTable, mi->numsyms, sizeof(SYMBOL_ENTRY), SymbolTableAddressCompare );
//
// calculate the size of each symbol
//
for (i=0; i<mi->numsyms; i++) { mi->symbolTable[i].Next = NULL; if (i+1 < mi->numsyms) { mi->symbolTable[i].Size = (ULONG)(mi->symbolTable[i+1].Address - mi->symbolTable[i].Address); } }
//
// compute the hash for each symbol
//
ZeroMemory( mi->NameHashTable, sizeof(mi->NameHashTable) ); for (i=0; i<mi->numsyms; i++) { sym = &mi->symbolTable[i];
Hash = ComputeHash( sym->Name, sym->NameLength );
if (mi->NameHashTable[Hash]) {
//
// we have a collision
//
symH = mi->NameHashTable[Hash]; while( symH->Next ) { symH = symH->Next; } symH->Next = sym;
} else {
mi->NameHashTable[Hash] = sym;
} } }
BOOL CreateSymbolTable( PMODULE_ENTRY mi, DWORD SymbolCount, SYM_TYPE SymType, DWORD NameSize ) { //
// allocate the symbol table
//
NameSize += OMAP_SYM_STRINGS; mi->symbolTable = (PSYMBOL_ENTRY) MemAlloc( (sizeof(SYMBOL_ENTRY) * (SymbolCount + OMAP_SYM_EXTRA)) + NameSize + (SymbolCount * CPP_EXTRA) ); if (!mi->symbolTable) { return false; }
//
// initialize the relevant fields
//
mi->numsyms = 0; mi->MaxSyms = SymbolCount + OMAP_SYM_EXTRA; mi->SymType = SymType; mi->StringSize = NameSize + (SymbolCount * CPP_EXTRA); mi->SymStrings = (LPSTR)(mi->symbolTable + SymbolCount + OMAP_SYM_EXTRA);
return true; }
PIMAGE_SECTION_HEADER FindSection( PIMAGE_SECTION_HEADER sh, ULONG NumSections, ULONG Address ) { ULONG i; for (i=0; i<NumSections; i++) { if (Address >= sh[i].VirtualAddress && Address < (sh[i].VirtualAddress + sh[i].Misc.VirtualSize)) { return &sh[i]; } } return NULL; }
PVOID GetSectionPhysical( HANDLE hp, ULONG64 base, PIMGHLP_DEBUG_DATA idd, ULONG Address ) { PIMAGE_SECTION_HEADER sh;
sh = FindSection( idd->pCurrentSections, idd->cCurrentSections, Address ); if (!sh) { return 0; }
return (PCHAR)idd->ImageMap + sh->PointerToRawData + (Address - sh->VirtualAddress); }
BOOL ReadSectionInfo( HANDLE hp, ULONG64 base, PIMGHLP_DEBUG_DATA idd, ULONG address, PVOID buf, DWORD size ) { PIMAGE_SECTION_HEADER sh; DWORD_PTR status = true;
sh = FindSection( idd->pCurrentSections, idd->cCurrentSections, address ); if (!sh) return false;
if (!hp) { status = (DWORD_PTR)memcpy((PCHAR)buf, (PCHAR)base + sh->PointerToRawData + (address - sh->VirtualAddress), size); } else { status = ReadImageData(hp, base, address, buf, size); } if (!status) return false;
return true; }
PCHAR expptr( HANDLE hp, ULONG64 base, PIMGHLP_DEBUG_DATA idd, ULONG address ) { PIMAGE_SECTION_HEADER sh; DWORD_PTR status = true;
if (hp) return (PCHAR)base + address;
sh = FindSection( idd->pCurrentSections, idd->cCurrentSections, address ); if (!sh) return false;
return (PCHAR)base + sh->PointerToRawData + (address - sh->VirtualAddress); }
ULONG LoadExportSymbols( PMODULE_ENTRY mi, PIMGHLP_DEBUG_DATA idd ) { PULONG names; PULONG addrs; PUSHORT ordinals; PUSHORT ordidx = NULL; ULONG cnt; ULONG idx; PIMAGE_EXPORT_DIRECTORY expdir; PCHAR expbuf = NULL; ULONG i; PSYMBOL_ENTRY sym; ULONG NameSize; HANDLE hp; ULONG64 base; CHAR name[2048]; BOOL rc; DWORD64 endExports; PCHAR p;
if (option(SYMOPT_EXACT_SYMBOLS)) return 0;
cnt = 0;
// setup pointers for grabing data
switch (idd->dsExports) { case dsInProc: hp = idd->hProcess; expbuf = (PCHAR)MemAlloc(idd->cExports); if (!expbuf) goto cleanup; if (!ReadImageData(hp, idd->InProcImageBase, idd->oExports, expbuf, idd->cExports)) goto cleanup; base = (ULONG64)expbuf - idd->oExports; expdir = (PIMAGE_EXPORT_DIRECTORY)expbuf; break; case dsImage: hp = NULL; expbuf = NULL; if (!idd->ImageMap) idd->ImageMap = MapItRO(idd->ImageFileHandle); base = (ULONG64)idd->ImageMap; expdir = &idd->expdir; break; default: return 0; }
names = (PULONG)expptr(hp, base, idd, expdir->AddressOfNames); if (!names) goto cleanup;
addrs = (PULONG)expptr(hp, base, idd, expdir->AddressOfFunctions); if (!addrs) goto cleanup;
ordinals = (PUSHORT)expptr(hp, base, idd, expdir->AddressOfNameOrdinals); if (!ordinals) goto cleanup;
ordidx = (PUSHORT) MemAlloc( max(expdir->NumberOfFunctions, expdir->NumberOfNames) * sizeof(USHORT) );
if (!ordidx) goto cleanup;
cnt = 0; NameSize = 0;
// count the symbols
for (i=0; i<expdir->NumberOfNames; i++) { *name = 0; p = expptr(hp, base, idd, names[i]); if (!p) continue; CopyStrArray(name, p); if (!*name) continue; if (option(SYMOPT_UNDNAME)) { SymUnDNameInternal( mi->TmpSym.Name, TMP_SYM_LEN, name, strlen(name), mi->MachineType, true ); NameSize += strlen(mi->TmpSym.Name); cnt += 1; } else { NameSize += (strlen(name) + 2); cnt += 1; } }
for (i=0,idx=expdir->NumberOfNames; i<expdir->NumberOfFunctions; i++) { if (!ordidx[i]) { NameSize += 16; cnt += 1; } }
// allocate the symbol table
if (!CreateSymbolTable( mi, cnt, SymExport, NameSize )) { cnt = 0; goto cleanup; }
// allocate the symbols
cnt = 0; endExports = idd->oExports + idd->cExports;
for (i=0; i<expdir->NumberOfNames; i++) { idx = ordinals[i]; ordidx[idx] = true; *name = 0; p = expptr(hp, base, idd, names[i]); if (!p) continue; CopyStrArray(name, p); if (!*name) continue; if (option(SYMOPT_UNDNAME)) { SymUnDNameInternal( mi->TmpSym.Name, TMP_SYM_LEN, (LPSTR)name, strlen(name), mi->MachineType, true ); sym = AllocSym( mi, addrs[idx] + mi->BaseOfDll, mi->TmpSym.Name); } else { sym = AllocSym( mi, addrs[idx] + mi->BaseOfDll, name); } if (sym) { cnt += 1; } if (idd->oExports <= addrs[idx] && addrs[idx] <= endExports) { sym->Flags |= SYMFLAG_FORWARDER; } else { sym->Flags |= SYMFLAG_EXPORT; } }
for (i=0,idx=expdir->NumberOfNames; i<expdir->NumberOfFunctions; i++) { if (!ordidx[i]) { CHAR NameBuf[sizeof("Ordinal99999") + 1]; // Ordinals are only 64k max.
CopyStrArray(NameBuf, "Ordinal"); _itoa( i+expdir->Base, &NameBuf[7], 10 ); sym = AllocSym( mi, addrs[i] + mi->BaseOfDll, NameBuf); if (sym) { cnt += 1; } idx += 1; } }
CompleteSymbolTable( mi );
cleanup: if (expbuf) { MemFree(expbuf); } if (ordidx) { MemFree(ordidx); }
return cnt; }
BOOL LoadCoffSymbols( HANDLE hProcess, PMODULE_ENTRY mi, PIMGHLP_DEBUG_DATA idd ) { PIMAGE_COFF_SYMBOLS_HEADER pCoffHeader = (PIMAGE_COFF_SYMBOLS_HEADER)(idd->pMappedCoff); PUCHAR stringTable; PIMAGE_SYMBOL allSymbols; DWORD numberOfSymbols; PIMAGE_LINENUMBER LineNumbers; PIMAGE_SYMBOL NextSymbol; PIMAGE_SYMBOL Symbol; PSYMBOL_ENTRY sym; CHAR szSymName[256]; DWORD i; DWORD64 addr; DWORD CoffSymbols = 0; DWORD NameSize = 0; DWORD64 Bias;
allSymbols = (PIMAGE_SYMBOL)((PCHAR)pCoffHeader + pCoffHeader->LvaToFirstSymbol); stringTable = (PUCHAR)pCoffHeader + pCoffHeader->LvaToFirstSymbol + (pCoffHeader->NumberOfSymbols * IMAGE_SIZEOF_SYMBOL);
numberOfSymbols = pCoffHeader->NumberOfSymbols; LineNumbers = (PIMAGE_LINENUMBER)((PCHAR)pCoffHeader + pCoffHeader->LvaToFirstLinenumber);
//
// count the number of actual symbols
//
NextSymbol = allSymbols; for (i= 0; i < numberOfSymbols; i++) { Symbol = NextSymbol++; if (Symbol->StorageClass == IMAGE_SYM_CLASS_EXTERNAL && Symbol->SectionNumber > 0) { GetSymName( Symbol, stringTable, szSymName, sizeof(szSymName) ); if (szSymName[0] == '?' && szSymName[1] == '?' && szSymName[2] == '_' && szSymName[3] == 'C' ) { //
// ignore strings
//
} else if (option(SYMOPT_UNDNAME)) { SymUnDNameInternal(mi->TmpSym.Name, TMP_SYM_LEN, szSymName, strlen(szSymName), mi->MachineType, true); NameSize += strlen(mi->TmpSym.Name); CoffSymbols += 1; } else { CoffSymbols += 1; NameSize += (strlen(szSymName) + 1); } }
NextSymbol += Symbol->NumberOfAuxSymbols; i += Symbol->NumberOfAuxSymbols; }
//
// allocate the symbol table
//
if (!CreateSymbolTable( mi, CoffSymbols, SymCoff, NameSize )) { return false; }
//
// populate the symbol table
//
if (mi->Flags & MIF_ROM_IMAGE) { Bias = mi->BaseOfDll & 0xffffffff00000000; } else { Bias = mi->BaseOfDll; }
NextSymbol = allSymbols; for (i= 0; i < numberOfSymbols; i++) { Symbol = NextSymbol++; if (Symbol->StorageClass == IMAGE_SYM_CLASS_EXTERNAL && Symbol->SectionNumber > 0) { GetSymName( Symbol, stringTable, szSymName, sizeof(szSymName) ); addr = Symbol->Value + Bias; if (szSymName[0] == '?' && szSymName[1] == '?' && szSymName[2] == '_' && szSymName[3] == 'C' ) { //
// ignore strings
//
} else if (option(SYMOPT_UNDNAME)) { SymUnDNameInternal(mi->TmpSym.Name, TMP_SYM_LEN, szSymName, strlen(szSymName), mi->MachineType, true); AllocSym( mi, addr, mi->TmpSym.Name); } else { AllocSym( mi, addr, szSymName ); } }
NextSymbol += Symbol->NumberOfAuxSymbols; i += Symbol->NumberOfAuxSymbols; }
CompleteSymbolTable( mi );
if (option(SYMOPT_LOAD_LINES)) idd->fLines = AddLinesForCoff(mi, allSymbols, numberOfSymbols, LineNumbers);
return true; }
BOOL LoadCodeViewSymbols( HANDLE hProcess, PMODULE_ENTRY mi, PIMGHLP_DEBUG_DATA idd ) { DWORD i, j; PPROCESS_ENTRY pe; OMFSignature *omfSig; OMFDirHeader *omfDirHdr; OMFDirEntry *omfDirEntry; OMFSymHash *omfSymHash; DATASYM32 *dataSym; DWORD64 addr; DWORD CvSymbols; DWORD NameSize; SYMBOL_ENTRY SymEntry;
pe = FindProcessEntry( hProcess ); if (!pe) { return false; }
omfSig = (OMFSignature*) idd->pMappedCv; if ((*(DWORD *)(omfSig->Signature) != '80BN') && (*(DWORD *)(omfSig->Signature) != '90BN') && (*(DWORD *)(omfSig->Signature) != '11BN')) { if ((*(DWORD *)(omfSig->Signature) != '01BN') && (*(DWORD *)(omfSig->Signature) != 'SDSR')) { pprint(pe, "unrecognized OMF sig: %x\n", *(DWORD *)(omfSig->Signature)); } return false; }
//
// count the number of actual symbols
//
omfDirHdr = (OMFDirHeader*) ((ULONG_PTR)omfSig + (DWORD)omfSig->filepos); omfDirEntry = (OMFDirEntry*) ((ULONG_PTR)omfDirHdr + sizeof(OMFDirHeader));
NameSize = 0; CvSymbols = 0;
for (i=0; i<omfDirHdr->cDir; i++,omfDirEntry++) { LPSTR SymbolName; UCHAR SymbolLen;
if (omfDirEntry->SubSection == sstGlobalPub) { omfSymHash = (OMFSymHash*) ((ULONG_PTR)omfSig + omfDirEntry->lfo); dataSym = (DATASYM32*) ((ULONG_PTR)omfSig + omfDirEntry->lfo + sizeof(OMFSymHash)); for (j=sizeof(OMFSymHash); j<=omfSymHash->cbSymbol; ) { addr = 0; cvExtractSymbolInfo(mi, (PCHAR) dataSym, &SymEntry, false); #ifndef DO_NB09
if (SymEntry.Segment && (SymEntry.Segment <= mi->OriginalNumSections)) { addr = mi->OriginalSectionHdrs[SymEntry.Segment-1].VirtualAddress + SymEntry.Offset + mi->BaseOfDll; #else
if (1) { addr = SymEntry.Offset+ mi->BaseOfDll; #endif
SymbolName = SymEntry.Name; SymbolLen = (UCHAR) SymEntry.NameLength; if (!SymbolName) { // ignore symbols with no name
} else if (SymbolName[0] == '?' && SymbolName[1] == '?' && SymbolName[2] == '_' && SymbolName[3] == 'C' ) { //
// ignore strings
//
} else if (option(SYMOPT_UNDNAME)) { SymUnDNameInternal(mi->TmpSym.Name, TMP_SYM_LEN, SymbolName, SymbolLen, mi->MachineType, true); NameSize += strlen(mi->TmpSym.Name); CvSymbols += 1; } else { CvSymbols += 1; NameSize += SymbolLen + 1; } } j += dataSym->reclen + 2; dataSym = (DATASYM32*) ((ULONG_PTR)dataSym + dataSym->reclen + 2); } break; } } //
// allocate the symbol table
//
if (!CreateSymbolTable( mi, CvSymbols, SymCv, NameSize )) { pprint(pe, "CreateSymbolTable failed\n"); return false; }
//
// populate the symbol table
//
omfDirHdr = (OMFDirHeader*) ((ULONG_PTR)omfSig + (DWORD)omfSig->filepos); omfDirEntry = (OMFDirEntry*) ((ULONG_PTR)omfDirHdr + sizeof(OMFDirHeader)); for (i=0; i<omfDirHdr->cDir; i++,omfDirEntry++) { LPSTR SymbolName; if (omfDirEntry->SubSection == sstGlobalPub) { omfSymHash = (OMFSymHash*) ((ULONG_PTR)omfSig + omfDirEntry->lfo); dataSym = (DATASYM32*) ((ULONG_PTR)omfSig + omfDirEntry->lfo + sizeof(OMFSymHash)); for (j=sizeof(OMFSymHash); j<=omfSymHash->cbSymbol; ) { addr = 0; cvExtractSymbolInfo(mi, (PCHAR) dataSym, &SymEntry, false); #ifndef DO_NB09
if (SymEntry.Segment && (SymEntry.Segment <= mi->OriginalNumSections)) { addr = mi->OriginalSectionHdrs[SymEntry.Segment-1].VirtualAddress + SymEntry.Offset + mi->BaseOfDll; #else
if (1) { addr = SymEntry.Offset+ mi->BaseOfDll; #endif
SymbolName = SymEntry.Name; if (!SymbolName) { // ignore symbols with no name
} else if (SymbolName[0] == '?' && SymbolName[1] == '?' && SymbolName[2] == '_' && SymbolName[3] == 'C' ) { //
// ignore strings
//
} else if (option(SYMOPT_UNDNAME)) { SymUnDNameInternal(mi->TmpSym.Name, TMP_SYM_LEN, SymbolName, SymEntry.NameLength, mi->MachineType, true); AllocSym( mi, addr, (LPSTR) mi->TmpSym.Name); #ifdef DO_NB09
dtrace("0x%I64x %s\n", addr, mi->TmpSym.Name); #endif
} else { mi->TmpSym.NameLength = SymEntry.NameLength; memcpy( mi->TmpSym.Name, SymbolName, mi->TmpSym.NameLength ); mi->TmpSym.Name[mi->TmpSym.NameLength] = 0; AllocSym( mi, addr, mi->TmpSym.Name); #ifdef DO_NB09
dtrace("0x%I86x %s\n", addr, mi->TmpSym.Name); #endif
} } j += dataSym->reclen + 2; dataSym = (DATASYM32*) ((ULONG_PTR)dataSym + dataSym->reclen + 2); } break; } else if (omfDirEntry->SubSection == sstSrcModule && option(SYMOPT_LOAD_LINES)) { #ifndef DO_NB09
idd->fLines = AddLinesForOmfSourceModule(mi, (PUCHAR)(idd->pMappedCv)+omfDirEntry->lfo, (OMFSourceModule *) ((PCHAR)(idd->pMappedCv)+omfDirEntry->lfo), NULL); #endif
} }
CompleteSymbolTable( mi );
return true; }
VOID GetSymName( PIMAGE_SYMBOL Symbol, PUCHAR StringTable, LPSTR s, DWORD size ) { DWORD i;
if (Symbol->n_zeroes) { for (i=0; i<8; i++) { if ((Symbol->n_name[i]>0x1f) && (Symbol->n_name[i]<0x7f)) { *s++ = Symbol->n_name[i]; } } *s = 0; } else { strncpy( s, (char *) &StringTable[Symbol->n_offset], size ); // SECURITY: Don't know size of output buffer.
} }
VOID ProcessOmapForModule( PMODULE_ENTRY mi, PIMGHLP_DEBUG_DATA idd ) { PSYMBOL_ENTRY sym; PSYMBOL_ENTRY symN; DWORD i; ULONG64 addr; DWORD bias; PFPO_DATA fpo;
if (idd->cOmapTo && idd->pOmapTo) { if (idd->fOmapToMapped) { mi->pOmapTo = (POMAP)MemAlloc(idd->cOmapTo * sizeof(OMAP)); if (mi->pOmapTo) { CopyMemory( mi->pOmapTo, idd->pOmapTo, idd->cOmapTo * sizeof(OMAP) ); } } else { mi->pOmapTo = idd->pOmapTo; } mi->cOmapTo = idd->cOmapTo; }
if (idd->cOmapFrom && idd->pOmapFrom) { if (idd->fOmapFromMapped) { mi->pOmapFrom = (POMAP)MemAlloc(idd->cOmapFrom * sizeof(OMAP)); if (mi->pOmapFrom) { CopyMemory( mi->pOmapFrom, idd->pOmapFrom, idd->cOmapFrom * sizeof(OMAP) ); } } else { mi->pOmapFrom = idd->pOmapFrom; } mi->cOmapFrom = idd->cOmapFrom; }
if (mi->pFpoData) { //
// if this module is BBT-optimized, then build
// another fpo table with omap transalation
//
mi->pFpoDataOmap = (PFPO_DATA)VirtualAlloc( NULL, sizeof(FPO_DATA) * mi->dwEntries, MEM_COMMIT, PAGE_READWRITE ); if (mi->pFpoDataOmap) { CopyMemory( mi->pFpoDataOmap, idd->pFpo, sizeof(FPO_DATA) * mi->dwEntries ); for (i = 0, fpo = mi->pFpoDataOmap; i < mi->dwEntries; i++, fpo++) { addr = ConvertOmapFromSrc(mi, mi->BaseOfDll + fpo->ulOffStart, &bias); if (addr) fpo->ulOffStart = (ULONG)(addr - mi->BaseOfDll) + bias; } VirtualProtect( mi->pFpoData, sizeof(FPO_DATA) * mi->dwEntries, PAGE_READONLY, &i ); } }
if (!mi->pOmapFrom || !mi->symbolTable || ((mi->SymType != SymCoff) && (mi->SymType != SymCv)) ) { return; }
for (i=0; i<mi->numsyms; i++) { ProcessOmapSymbol( mi, &mi->symbolTable[i] ); }
CompleteSymbolTable( mi ); }
BOOL ProcessOmapSymbol( PMODULE_ENTRY mi, PSYMBOL_ENTRY sym ) { DWORD bias; DWORD64 OptimizedSymAddr; DWORD rvaSym; POMAPLIST pomaplistHead; DWORD64 SymbolValue; DWORD64 OrgSymAddr; POMAPLIST pomaplistNew; POMAPLIST pomaplistPrev; POMAPLIST pomaplistCur; POMAPLIST pomaplistNext; DWORD rva; DWORD rvaTo; DWORD cb; DWORD end; DWORD rvaToNext; LPSTR NewSymName; CHAR Suffix[32]; DWORD64 addrNew; POMAP pomap; PSYMBOL_ENTRY symOmap;
if ((sym->Flags & SYMF_OMAP_GENERATED) || (sym->Flags & SYMF_OMAP_MODIFIED)) { return false; }
OrgSymAddr = SymbolValue = sym->Address;
OptimizedSymAddr = ConvertOmapFromSrc( mi, SymbolValue, &bias );
if (OptimizedSymAddr == 0) { //
// No equivalent address
//
sym->Address = 0; return false;
}
//
// We have successfully converted
//
sym->Address = OptimizedSymAddr + bias;
rvaSym = (ULONG)(SymbolValue - mi->BaseOfDll); SymbolValue = sym->Address;
pomap = GetOmapFromSrcEntry( mi, OrgSymAddr ); if (!pomap) { goto exit; }
pomaplistHead = NULL;
//
// Look for all OMAP entries belonging to SymbolEntry
//
end = (ULONG)(OrgSymAddr - mi->BaseOfDll + sym->Size);
while (pomap && (pomap->rva < end)) {
if (pomap->rvaTo == 0) { pomap++; continue; }
//
// Allocate and initialize a new entry
//
pomaplistNew = (POMAPLIST) MemAlloc( sizeof(OMAPLIST) ); if (!pomaplistNew) { return false; }
pomaplistNew->omap = *pomap; pomaplistNew->cb = pomap[1].rva - pomap->rva;
pomaplistPrev = NULL; pomaplistCur = pomaplistHead;
while (pomaplistCur != NULL) { if (pomap->rvaTo < pomaplistCur->omap.rvaTo) { //
// Insert between Prev and Cur
//
break; } pomaplistPrev = pomaplistCur; pomaplistCur = pomaplistCur->next; }
if (pomaplistPrev == NULL) { //
// Insert in head position
//
pomaplistHead = pomaplistNew; } else { pomaplistPrev->next = pomaplistNew; }
pomaplistNew->next = pomaplistCur;
pomap++; }
if (pomaplistHead == NULL) { goto exit; }
pomaplistCur = pomaplistHead; pomaplistNext = pomaplistHead->next;
//
// we do have a list
//
while (pomaplistNext != NULL) { rva = pomaplistCur->omap.rva; rvaTo = pomaplistCur->omap.rvaTo; cb = pomaplistCur->cb; rvaToNext = pomaplistNext->omap.rvaTo;
if (rvaToNext == sym->Address - mi->BaseOfDll) { //
// Already inserted above
//
} else if (rvaToNext < (rvaTo + cb + 8)) { //
// Adjacent to previous range
//
} else { addrNew = mi->BaseOfDll + rvaToNext; Suffix[0] = '_'; _ltoa( pomaplistNext->omap.rva - rvaSym, &Suffix[1], 10 ); CopyNString(mi->TmpSym.Name,sym->Name, sym->NameLength, TMP_SYM_LEN); CatString(mi->TmpSym.Name, Suffix, TMP_SYM_LEN); symOmap = AllocSym( mi, addrNew, mi->TmpSym.Name); if (symOmap) { symOmap->Flags |= SYMF_OMAP_GENERATED; } }
MemFree(pomaplistCur);
pomaplistCur = pomaplistNext; pomaplistNext = pomaplistNext->next; }
MemFree(pomaplistCur);
exit: if (sym->Address != OrgSymAddr) { sym->Flags |= SYMF_OMAP_MODIFIED; }
return true; }
DWORD64 ConvertOmapFromSrc( PMODULE_ENTRY mi, DWORD64 addr, LPDWORD bias ) { DWORD rva; DWORD comap; POMAP pomapLow; POMAP pomapHigh; DWORD comapHalf; POMAP pomapMid;
*bias = 0;
if (!mi->pOmapFrom) { return addr; }
rva = (DWORD)(addr - mi->BaseOfDll);
comap = mi->cOmapFrom; pomapLow = mi->pOmapFrom; pomapHigh = pomapLow + comap;
while (pomapLow < pomapHigh) {
comapHalf = comap / 2;
pomapMid = pomapLow + ((comap & 1) ? comapHalf : (comapHalf - 1));
if (rva == pomapMid->rva) { if (pomapMid->rvaTo) { return mi->BaseOfDll + pomapMid->rvaTo; } else { return(0); // No need adding the base. This address was discarded...
} }
if (rva < pomapMid->rva) { pomapHigh = pomapMid; comap = (comap & 1) ? comapHalf : (comapHalf - 1); } else { pomapLow = pomapMid + 1; comap = comapHalf; } }
//
// If no exact match, pomapLow points to the next higher address
//
if (pomapLow == mi->pOmapFrom) { //
// This address was not found
//
return 0; }
if (pomapLow[-1].rvaTo == 0) { //
// This address is in a discarded block
//
return 0; }
//
// Return the closest address plus the bias
//
*bias = rva - pomapLow[-1].rva;
return mi->BaseOfDll + pomapLow[-1].rvaTo; }
DWORD64 ConvertOmapToSrc( PMODULE_ENTRY mi, DWORD64 addr, LPDWORD bias, BOOL fBackup ) { DWORD rva; DWORD comap; POMAP pomapLow; POMAP pomapHigh; DWORD comapHalf; POMAP pomapMid;
*bias = 0;
if (!mi->pOmapTo) { return addr; }
rva = (DWORD)(addr - mi->BaseOfDll);
comap = mi->cOmapTo; pomapLow = mi->pOmapTo; pomapHigh = pomapLow + comap;
while (pomapLow < pomapHigh) {
comapHalf = comap / 2;
pomapMid = pomapLow + ((comap & 1) ? comapHalf : (comapHalf - 1));
if (rva == pomapMid->rva) { if (pomapMid->rvaTo == 0) { //
// We may be at the start of an inserted branch instruction
//
if (fBackup) { //
// Return information about the next lower address
//
rva--; pomapLow = pomapMid; break; }
return 0; }
return mi->BaseOfDll + pomapMid->rvaTo; }
if (rva < pomapMid->rva) { pomapHigh = pomapMid; comap = (comap & 1) ? comapHalf : (comapHalf - 1); } else { pomapLow = pomapMid + 1; comap = comapHalf; } }
//
// If no exact match, pomapLow points to the next higher address
//
if (pomapLow == mi->pOmapTo) { //
// This address was not found
//
return 0; }
// find the previous valid item in the omap
do { pomapLow--; if (pomapLow->rvaTo) break; } while (pomapLow > mi->pOmapTo);
// should never occur
// assert(pomapLow->rvaTo);
if (pomapLow->rvaTo == 0) { return 0; }
//
// Return the new address plus the bias
//
*bias = rva - pomapLow->rva;
return mi->BaseOfDll + pomapLow->rvaTo; }
POMAP GetOmapFromSrcEntry( PMODULE_ENTRY mi, DWORD64 addr ) { DWORD rva; DWORD comap; POMAP pomapLow; POMAP pomapHigh; DWORD comapHalf; POMAP pomapMid;
if (mi->pOmapFrom == NULL) { return NULL; }
rva = (DWORD)(addr - mi->BaseOfDll);
comap = mi->cOmapFrom; pomapLow = mi->pOmapFrom; pomapHigh = pomapLow + comap;
while (pomapLow < pomapHigh) {
comapHalf = comap / 2;
pomapMid = pomapLow + ((comap & 1) ? comapHalf : (comapHalf - 1));
if (rva == pomapMid->rva) { return pomapMid; }
if (rva < pomapMid->rva) { pomapHigh = pomapMid; comap = (comap & 1) ? comapHalf : (comapHalf - 1); } else { pomapLow = pomapMid + 1; comap = comapHalf; } }
return NULL; }
VOID DumpOmapForModule( PMODULE_ENTRY mi ) { POMAP pomap; DWORD i;
i = sizeof(ULONG_PTR); i = sizeof(DWORD);
if (!mi->pOmapFrom) return;
dtrace("\nOMAP FROM:\n"); for(i = 0, pomap = mi->pOmapFrom; i < 100; // mi->cOmapFrom;
i++, pomap++) { dtrace("%8x %8x\n", pomap->rva, pomap->rvaTo); }
if (!mi->pOmapTo) return;
dtrace("\nOMAP TO:\n"); for(i = 0, pomap = mi->pOmapTo; i < 100; // mi->cOmapTo;
i++, pomap++) { dtrace("%8x %8x\n", pomap->rva, pomap->rvaTo); } }
LPSTR StringDup( LPSTR str ) { LPSTR ds; int len;
len = strlen(str) + 1; ds = (LPSTR)MemAlloc(len); if (ds) CopyString(ds, str, len); return ds; }
BOOL LoadedModuleEnumerator( HANDLE hProcess, LPSTR ModuleName, DWORD64 ImageBase, DWORD ImageSize, PLOADED_MODULE lm ) { if (lm->EnumLoadedModulesCallback64) { return lm->EnumLoadedModulesCallback64( ModuleName, ImageBase, ImageSize, lm->Context ); } else { return lm->EnumLoadedModulesCallback32( ModuleName, (DWORD)ImageBase, ImageSize, lm->Context ); } }
LPSTR SymUnDNameInternal( LPSTR UnDecName, DWORD UnDecNameLength, LPSTR DecName, DWORD DecNameLength, DWORD MachineType, BOOL IsPublic ) { LPSTR p; ULONG i; LPSTR TmpDecName;
*UnDecName = 0;
__try {
// strip leading periods - if any
for (i = 0; i < DecNameLength; i++) { if (*DecName != '.') break; DecName += 1; DecNameLength -= 1; }
if (*DecName == '?') {
TmpDecName = (LPSTR)MemAlloc( 4096 ); if (!TmpDecName) { strncat( UnDecName, DecName, min(DecNameLength,UnDecNameLength) ); return UnDecName; } TmpDecName[0] = 0; strncat( TmpDecName, DecName, DecNameLength );
if (UnDecorateSymbolName(TmpDecName, UnDecName, UnDecNameLength, UNDNAME_NAME_ONLY ) == 0 ) strncat( UnDecName, DecName, min(DecNameLength,UnDecNameLength) );
MemFree( TmpDecName );
} else {
if ((IsPublic && DecName[0] == '_') || DecName[0] == '@') { DecName += 1; DecNameLength -= 1; }
p = 0; for (i = 0; i < DecNameLength; i++) { if (DecName [i] == '@') { p = &DecName [i]; break; } } if (p) { i = (int)(p - DecName); } else { i = min(DecNameLength,UnDecNameLength); }
strncat( UnDecName, DecName, i ); }
} __except (EXCEPTION_EXECUTE_HANDLER) {
CatString(UnDecName, DecName, min(DecNameLength,UnDecNameLength)); }
if (option(SYMOPT_NO_CPP)) { while (p = strstr( UnDecName, "::" )) { p[0] = '_'; p[1] = '_'; } }
return UnDecName; }
BOOL MatchSymName( LPSTR matchName, LPSTR symName ) { assert(matchName && symName); if (!*matchName || !*symName) return false;
if (option(SYMOPT_CASE_INSENSITIVE)) { if (!_strnicmp(matchName, symName, MAX_SYM_NAME)) return true; } else { if (!strncmp(matchName, symName, MAX_SYM_NAME)) return true; }
return false; }
BOOL __stdcall ReadInProcMemory( HANDLE hProcess, DWORD64 addr, PVOID buf, DWORD bytes, DWORD *bytesread ) { DWORD rc; PPROCESS_ENTRY pe; IMAGEHLP_CBA_READ_MEMORY rm;
rm.addr = addr; rm.buf = buf; rm.bytes = bytes; rm.bytesread = bytesread;
rc = false; *bytesread = 0;
__try { pe = FindProcessEntry(hProcess); if (!pe) { SetLastError( ERROR_INVALID_HANDLE ); return false; }
if (pe->pCallbackFunction32) { rc = pe->pCallbackFunction32(pe->hProcess, CBA_READ_MEMORY, (PVOID)&rm, (PVOID)pe->CallbackUserContext);
} else if (pe->pCallbackFunction64) { rc = pe->pCallbackFunction64(pe->hProcess, CBA_READ_MEMORY, (ULONG64)&rm, pe->CallbackUserContext); } else { SIZE_T RealBytesRead=0; rc = ReadProcessMemory(hProcess, (LPVOID)(ULONG_PTR)addr, buf, bytes, &RealBytesRead); *bytesread = (DWORD)RealBytesRead; } } __except (EXCEPTION_EXECUTE_HANDLER) { rc = false; }
return (rc != false); }
DWORD64 miGetModuleBase( HANDLE hProcess, DWORD64 Address ) { IMAGEHLP_MODULE64 ModuleInfo = {0}; ModuleInfo.SizeOfStruct = sizeof(ModuleInfo);
if (SymGetModuleInfo64(hProcess, Address, &ModuleInfo)) { return ModuleInfo.BaseOfImage; } else { return 0; } }
BOOL GetPData( HANDLE hp, PMODULE_ENTRY mi ) { BOOL status; ULONG cb; PCHAR pc; BOOL fROM = false; IMAGE_DOS_HEADER DosHeader; IMAGE_NT_HEADERS ImageNtHeaders; PIMAGE_FILE_HEADER ImageFileHdr; PIMAGE_OPTIONAL_HEADER ImageOptionalHdr; PIMAGE_OPTIONAL_HEADER32 OptionalHeader32 = NULL; PIMAGE_OPTIONAL_HEADER64 OptionalHeader64 = NULL; ULONG feCount = 0; ULONG i;
HANDLE fh = 0; PCHAR base = NULL; USHORT filetype; PIMAGE_SEPARATE_DEBUG_HEADER sdh; PIMAGE_DOS_HEADER dh; PIMAGE_NT_HEADERS inth; PIMAGE_OPTIONAL_HEADER32 ioh32; PIMAGE_OPTIONAL_HEADER64 ioh64; ULONG cdd; PCHAR p; PIMAGE_DEBUG_DIRECTORY dd; ULONG cexp = 0; ULONG tsize; ULONG csize = 0;
// if the pdata is already loaded, return
if (mi->pExceptionData) return true;
if (!LoadSymbols(hp, mi, 0)) return false;
// try to get pdata from dia
if (mi->dia) { if ((mi->pPData) && (mi->dsExceptions == dsDia)) goto dia;
if (diaGetPData(mi)) { p = (PCHAR)mi->pPData; csize = mi->cbPData; goto dia; } }
if (!mi->dsExceptions) return false;
// open the file and get the file type
SetCriticalErrorMode();
fh = CreateFile(mi->LoadedImageName, GENERIC_READ, g.OSVerInfo.dwPlatformId == VER_PLATFORM_WIN32_NT ? (FILE_SHARE_DELETE | FILE_SHARE_READ | FILE_SHARE_WRITE) : (FILE_SHARE_READ | FILE_SHARE_WRITE), NULL, OPEN_EXISTING, 0, NULL );
ResetCriticalErrorMode();
if (fh == INVALID_HANDLE_VALUE) return false;
base = (PCHAR)MapItRO(fh); if (!base) goto cleanup; p = base;
filetype = *(USHORT *)p; if (filetype == IMAGE_DOS_SIGNATURE) goto image; if (filetype == IMAGE_SEPARATE_DEBUG_SIGNATURE) goto dbg; goto cleanup;
image:
// process disk-based image
dh = (PIMAGE_DOS_HEADER)p; p += dh->e_lfanew; inth = (PIMAGE_NT_HEADERS)p;
if (inth->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) { ioh32 = (PIMAGE_OPTIONAL_HEADER32)&inth->OptionalHeader; p = base + ioh32->DataDirectory[IMAGE_DIRECTORY_ENTRY_EXCEPTION].VirtualAddress; csize = ioh32->DataDirectory[IMAGE_DIRECTORY_ENTRY_EXCEPTION].Size; } else if (inth->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) { ioh64 = (PIMAGE_OPTIONAL_HEADER64)&inth->OptionalHeader; p = base + ioh64->DataDirectory[IMAGE_DIRECTORY_ENTRY_EXCEPTION].VirtualAddress; csize = ioh64->DataDirectory[IMAGE_DIRECTORY_ENTRY_EXCEPTION].Size; }
dia:
if (!csize) goto cleanup;
switch (mi->MachineType) { case IMAGE_FILE_MACHINE_ALPHA: cexp = csize / sizeof(IMAGE_ALPHA_RUNTIME_FUNCTION_ENTRY); break; case IMAGE_FILE_MACHINE_ALPHA64: cexp = csize / sizeof(IMAGE_ALPHA64_RUNTIME_FUNCTION_ENTRY); break; case IMAGE_FILE_MACHINE_IA64: cexp = csize / sizeof(IMAGE_IA64_RUNTIME_FUNCTION_ENTRY); break; case IMAGE_FILE_MACHINE_AMD64: cexp = csize / sizeof(_IMAGE_RUNTIME_FUNCTION_ENTRY); break; default: goto cleanup; }
goto table;
dbg:
// process dbg file
sdh = (PIMAGE_SEPARATE_DEBUG_HEADER)p; cdd = sdh->DebugDirectorySize / sizeof(IMAGE_DEBUG_DIRECTORY); p += sizeof(IMAGE_SEPARATE_DEBUG_HEADER) + (sdh->NumberOfSections * sizeof(IMAGE_SECTION_HEADER)) + sdh->ExportedNamesSize; dd = (PIMAGE_DEBUG_DIRECTORY)p;
for (i = 0; i < cdd; i++, dd++) { if (dd->Type == IMAGE_DEBUG_TYPE_EXCEPTION) { p = base + dd->PointerToRawData; cexp = dd->SizeOfData / sizeof(IMAGE_FUNCTION_ENTRY); break; } }
table:
// parse the pdata into a table
if (!cexp) goto cleanup;
tsize = cexp * sizeof(IMGHLP_RVA_FUNCTION_DATA);
mi->pExceptionData = (PIMGHLP_RVA_FUNCTION_DATA)VirtualAlloc( NULL, tsize, MEM_COMMIT, PAGE_READWRITE );
if (mi->pExceptionData) { PIMGHLP_RVA_FUNCTION_DATA pIRFD = mi->pExceptionData; switch (mi->MachineType) {
case IMAGE_FILE_MACHINE_ALPHA: if (filetype == IMAGE_SEPARATE_DEBUG_SIGNATURE) { // easy case. The addresses are already in rva format.
PIMAGE_FUNCTION_ENTRY pFE = (PIMAGE_FUNCTION_ENTRY)p; for (i = 0; i < cexp; i++) { pIRFD[i].rvaBeginAddress = pFE[i].StartingAddress; pIRFD[i].rvaEndAddress = pFE[i].EndingAddress; pIRFD[i].rvaPrologEndAddress = pFE[i].EndOfPrologue; pIRFD[i].rvaExceptionHandler = 0; pIRFD[i].rvaHandlerData = 0; } } else { PIMAGE_ALPHA_RUNTIME_FUNCTION_ENTRY pRFE = (PIMAGE_ALPHA_RUNTIME_FUNCTION_ENTRY)p; for (i = 0; i < cexp; i++) { pIRFD[i].rvaBeginAddress = pRFE[i].BeginAddress - (ULONG)mi->BaseOfDll; pIRFD[i].rvaEndAddress = pRFE[i].EndAddress - (ULONG)mi->BaseOfDll; pIRFD[i].rvaPrologEndAddress = pRFE[i].PrologEndAddress - (ULONG)mi->BaseOfDll; pIRFD[i].rvaExceptionHandler = pRFE[i].ExceptionHandler - (ULONG)mi->BaseOfDll; pIRFD[i].rvaHandlerData = pRFE[i].HandlerData - (ULONG)mi->BaseOfDll; } } break;
case IMAGE_FILE_MACHINE_ALPHA64: { PIMAGE_ALPHA64_RUNTIME_FUNCTION_ENTRY pRFE = (PIMAGE_ALPHA64_RUNTIME_FUNCTION_ENTRY)p; for (i = 0; i < cexp; i++) { pIRFD[i].rvaBeginAddress = (DWORD)(pRFE[i].BeginAddress - mi->BaseOfDll); pIRFD[i].rvaEndAddress = (DWORD)(pRFE[i].EndAddress - mi->BaseOfDll); pIRFD[i].rvaPrologEndAddress = (DWORD)(pRFE[i].PrologEndAddress - mi->BaseOfDll); pIRFD[i].rvaExceptionHandler = (DWORD)(pRFE[i].ExceptionHandler - mi->BaseOfDll); pIRFD[i].rvaHandlerData = (DWORD)(pRFE[i].HandlerData - mi->BaseOfDll); } } break;
case IMAGE_FILE_MACHINE_IA64: { PIMAGE_IA64_RUNTIME_FUNCTION_ENTRY pRFE = (PIMAGE_IA64_RUNTIME_FUNCTION_ENTRY)p; for (i = 0; i < cexp; i++) { pIRFD[i].rvaBeginAddress = pRFE[i].BeginAddress; pIRFD[i].rvaEndAddress = pRFE[i].EndAddress; pIRFD[i].rvaPrologEndAddress = pRFE[i].UnwindInfoAddress; pIRFD[i].rvaExceptionHandler = 0; pIRFD[i].rvaHandlerData = 0; } } break;
case IMAGE_FILE_MACHINE_AMD64: { _PIMAGE_RUNTIME_FUNCTION_ENTRY pRFE = (_PIMAGE_RUNTIME_FUNCTION_ENTRY)p; for (i = 0; i < cexp; i++) { pIRFD[i].rvaBeginAddress = pRFE[i].BeginAddress; pIRFD[i].rvaEndAddress = pRFE[i].EndAddress; pIRFD[i].rvaPrologEndAddress = pRFE[i].UnwindInfoAddress; pIRFD[i].rvaExceptionHandler = 0; pIRFD[i].rvaHandlerData = 0; } } break;
default: break; }
VirtualProtect( mi->pExceptionData, tsize, PAGE_READONLY, &i );
mi->dwEntries = cexp; }
cleanup:
if (mi->pPData) { MemFree(mi->pPData); mi->pPData = NULL; }
if (base) UnmapViewOfFile(base);
if (fh) CloseHandle(fh);
return (cexp) ? true : false; }
BOOL GetXData( HANDLE hp, PMODULE_ENTRY mi ) { if (mi->pXData) return true;
if (LoadSymbols(hp, mi, 0) && !mi->pXData && mi->dia && !diaGetXData(mi)) return false;
return (mi->pXData != NULL); }
PVOID GetXDataFromBase( HANDLE hp, DWORD64 base, ULONG* size ) { PPROCESS_ENTRY pe; PMODULE_ENTRY mi;
pe = FindProcessEntry(hp); if (!pe) { SetLastError(ERROR_INVALID_HANDLE); return NULL; }
mi = GetModuleForPC(pe, base, false); if (!mi) { SetLastError(ERROR_MOD_NOT_FOUND); return NULL; }
if (!GetXData(hp, mi)) return NULL;
if (size) *size = mi->cbXData; return mi->pXData; }
PVOID GetUnwindInfoFromSymbols( HANDLE hProcess, DWORD64 ModuleBase, ULONG UnwindInfoAddress, ULONG* Size ) { ULONG XDataSize;
PBYTE pXData = (PBYTE)GetXDataFromBase(hProcess, ModuleBase, &XDataSize); if (!pXData) return NULL;
DWORD DataBase = *(DWORD*)pXData; pXData += sizeof(DWORD);
if (DataBase > UnwindInfoAddress) return NULL;
ULONG Offset = (ULONG)(ULONG_PTR)(UnwindInfoAddress - DataBase);
if (Offset >= XDataSize) return NULL;
if (Size) *Size = XDataSize - Offset; return pXData + Offset; }
BOOL IsRegularExpression( const char *sz) { for (; *sz; sz++) { switch(*sz) { case '*': case '?': case '[': case ']': return true; } }
return false; }
|