|
|
/**************************************************************************\
* * * * * * * # # ##### * * # # # # # * * # # # # # # # * * # ### ### # # * * # # ### # # # ### # # ### ##### # ### ### ### * * # ## # # # ## # # # # # # ## # # # * * # # # # # # # # # ##### # # ##### # * * # # # # # # # # # # # # # # ## * * # # # # # # # # # ### # # ### ### ## * * * * * * Infinte Precision Production Version * * * \**************************************************************************/ //
// RETAIL version of NUMOBJ math that uses Infinite Precision
//
#include "..\ratpak\ratpak.h"
#define HNUMOBJ PRAT
typedef HNUMOBJ * PHNUMOBJ;
//
// Memory Alloc functions
//
#define NumObjAllocMem( cb ) zmalloc( cb )
#define NumObjFreeMem( h ) zfree( h ),(h=NULL)
//
// Unary functions
//
void NumObjInvert( PHNUMOBJ phno );
#define NumObjNegate( phno ) ( ((PRAT)*phno)->pp->sign= -(((PRAT)*phno)->pp->sign) )
#define NumObjAbs( phno ) ( ((PRAT)*phno)->pp->sign=1, ((PRAT)*phno)->pq->sign=1 )
extern void NumObjSin( PHNUMOBJ phno ); extern void NumObjCos( PHNUMOBJ phno ); extern void NumObjTan( PHNUMOBJ phno ); extern void NumObjAntiLog10( PHNUMOBJ phno );
extern void NumObjNot( PHNUMOBJ phno );
//
// Comparison functions
//
#define NumObjIsZero( hno ) zerrat( hno )
#define NumObjIsLess( hno1, hno2 ) rat_lt( hno1, hno2 )
#define NumObjIsLessEq( hno1, hno2 ) rat_le( hno1, hno2 )
#define NumObjIsGreaterEq( hno1, hno2 ) rat_ge( hno1, hno2 )
#define NumObjIsEq( hno1, hno2 ) rat_equ(hno1, hno2 )
//
// Assignment operator. ('=' in C language)
//
#define NumObjAssign( phnol, hnor ) if (1) { DUPRAT( (*phnol), hnor ); } else
//
// Data type conversion functions
//
void NumObjSetIntValue( PHNUMOBJ phnol, LONG i );
//
// NumObjMakeNumber
//
// HNUMOBJ NumObjMakeNumber( LPTSTR psz );
//
// Converts psz to a number and returns it. Call NumObjDestroy()
// when you are done using the returned NumObj.
//
#define NumObjMakeNumber( fMantNeg, pszMant, fExpNeg, pszExp ) inrat( fMantNeg, pszMant, fExpNeg, pszExp )
//
// NumObjGetSzValue
//
// void NumObjGetSzValue( LPTSTR *ppszNum, int* pcchNum, HNUMOBJ hnoNum, INT nRadix, NUMOBJ_FMT gafmt );
//
// Converts hnoNum to a string and places the pointer into *ppszNum. If *ppszNum already points
// to a string, then that string is freed.
//
// NOTES: *ppszNum must either be NULL or point to a string previously returned by this function!
// If you wish to free the string without replacing it. You MUST use the NumObjFreeMem() function!
//
void NumObjGetSzValue( LPTSTR *ppszNum, int* pcchNum, HNUMOBJ hnoNum, INT nRadix, NUMOBJ_FMT gafmt );
//
// GetObjGetExp
//
// returns an int that equals the exponent of the NumObj
//
#define NumObjGetExp( hno ) LOGRATRADIX(hno)
//
// NumObjCvtEpsilonToZero
//
// if the input is < 1*10^(-nPrecision), then it gets set to zero
// useful for special cases in ln, log, and sin, and cos
//
#define NumObjCvtEpsilonToZero( phno )
//#define NumObjCvtEpsilonToZero( phno ) if ( NumObjGetExp( *phno ) <= -nPrecision ) { NumObjAssign( phno, HNO_ZERO );} else
//
// NumObjAbortOperation( fAbort )
//
// If called with fAbort==TRUE, it will cause RATPAK to abort the current calculation and to return
// immeadiatly.
//
// It MUST be called again with fAbort=FALSE after ratpak has aborted to reset ratpak.
//
#define NumObjAbortOperation( fAbort ) (fhalt=fAbort)
#define NumObjWasAborted() (fhalt)
//
// NumObjOK( hno )
//
// returns TRUE if the HNUMOBJ is valid (ie created and initialized)
//
// Used to check the HNUMOBJ returned from NumObjMakeNumber and NumObjCreate
//
# define NumObjOK( hno ) ((hno) == NULL ? FALSE : TRUE)
//
// NumObjDestroy( hno )
//
// call this when you nolonger need the NumObj. Failure to do so
// will result in memory leaks.
//
# define NumObjDestroy( phno ) destroyrat( (*(phno)) )
//
// DECLARE_HNUMOBJ( hno )
//
// Use this macro when ever you want to declare a local variable.
//
# define DECLARE_HNUMOBJ( hno ) HNUMOBJ hno = NULL
//
// Useful Constants. These have to be recomputed after a base or precision change.
//
void BaseOrPrecisionChanged( void );
#define HNO_ZERO rat_zero
#define HNO_ONE_OVER_TWO rat_half
#define HNO_ONE rat_one
#define HNO_TWO rat_two
#define HNO_180_OVER_PI rad_to_deg
#define HNO_200_OVER_PI rad_to_grad
#define HNO_2PI two_pi
#define HNO_PI pi
#define HNO_PI_OVER_TWO pi_over_two
#define HNO_THREE_PI_OVER_TWO one_pt_five_pi
|