|
|
//-----------------------------------------------------------------------------
// Package Title ratpak
// File num.c
// Author Timothy David Corrie Jr. ([email protected])
// Copyright (C) 1995-97 Microsoft
// Date 01-16-95
//
//
// Description
//
// Contains number routines for add, mul, div, rem and other support
// and longs.
//
// Special Information
//
//
//-----------------------------------------------------------------------------
#if defined( DOS )
#include <dosstub.h>
#else
#include <windows.h>
#endif
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <stdlib.h>
#include <ratpak.h>
//----------------------------------------------------------------------------
//
// FUNCTION: addnum
//
// ARGUMENTS: pointer to a number a second number, and the
// nRadix.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the number equivalent of *pa += b.
// Assumes nRadix is the base of both numbers.
//
// ALGORITHM: Adds each digit from least significant to most
// significant.
//
//
//----------------------------------------------------------------------------
void _addnum( PNUMBER *pa, PNUMBER b, unsigned long nRadix );
void __inline addnum( PNUMBER *pa, PNUMBER b, unsigned long nRadix )
{ if ( b->cdigit > 1 || b->mant[0] != 0 ) { // If b is zero we are done.
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 0 ) { // pa and b are both nonzero.
_addnum( pa, b, nRadix ); } else { // if pa is zero and b isn't just copy b.
DUPNUM(*pa,b); } } }
void _addnum( PNUMBER *pa, PNUMBER b, unsigned long nRadix )
{ PNUMBER c=NULL; // c will contain the result.
PNUMBER a=NULL; // a is the dereferenced number pointer from *pa
MANTTYPE *pcha; // pcha is a pointer to the mantissa of a.
MANTTYPE *pchb; // pchb is a pointer to the mantissa of b.
MANTTYPE *pchc; // pchc is a pointer to the mantissa of c.
long cdigits; // cdigits is the max count of the digits results
// used as a counter.
long mexp; // mexp is the exponent of the result.
MANTTYPE da; // da is a single 'digit' after possible padding.
MANTTYPE db; // db is a single 'digit' after possible padding.
MANTTYPE cy=0; // cy is the value of a carry after adding two 'digits'
long fcompla = 0; // fcompla is a flag to signal a is negative.
long fcomplb = 0; // fcomplb is a flag to signal b is negative.
a=*pa; // Calculate the overlap of the numbers after alignment, this includes
// necessary padding 0's
cdigits = max( a->cdigit+a->exp, b->cdigit+b->exp ) - min( a->exp, b->exp );
createnum( c, cdigits + 1 ); c->exp = min( a->exp, b->exp ); mexp = c->exp; c->cdigit = cdigits; pcha = MANT(a); pchb = MANT(b); pchc = MANT(c); // Figure out the sign of the numbers
if ( a->sign != b->sign ) { cy = 1; fcompla = ( a->sign == -1 ); fcomplb = ( b->sign == -1 ); } // Loop over all the digits, real and 0 padded. Here we know a and b are
// aligned
for ( ;cdigits > 0; cdigits--, mexp++ ) { // Get digit from a, taking padding into account.
da = ( ( ( mexp >= a->exp ) && ( cdigits + a->exp - c->exp > (c->cdigit - a->cdigit) ) ) ? *pcha++ : 0 ); // Get digit from b, taking padding into account.
db = ( ( ( mexp >= b->exp ) && ( cdigits + b->exp - c->exp > (c->cdigit - b->cdigit) ) ) ? *pchb++ : 0 ); // Handle complementing for a and b digit. Might be a better way, but
// haven't found it yet.
if ( fcompla ) { da = (MANTTYPE)(nRadix) - 1 - da; } if ( fcomplb ) { db = (MANTTYPE)(nRadix) - 1 - db; } // Update carry as necessary
cy = da + db + cy; *pchc++ = (MANTTYPE)(cy % (MANTTYPE)nRadix); cy /= (MANTTYPE)nRadix; } // Handle carry from last sum as extra digit
if ( cy && !(fcompla || fcomplb) ) { *pchc++ = cy; c->cdigit++; } // Compute sign of result
if ( !(fcompla || fcomplb) ) { c->sign = a->sign; } else { if ( cy ) { c->sign = 1; } else { // In this particular case an overflow or underflow has occoured
// and all the digits need to be complemented, at one time an
// attempt to handle this above was made, it turned out to be much
// slower on average.
c->sign = -1; cy = 1; for ( ( cdigits = c->cdigit ), (pchc = MANT(c) ); cdigits > 0; cdigits-- ) { cy = (MANTTYPE)nRadix - (MANTTYPE)1 - *pchc + cy; *pchc++ = (MANTTYPE)( cy % (MANTTYPE)nRadix ); cy /= (MANTTYPE)nRadix; } } } // Remove leading zeroes, remember digits are in order of
// increasing significance. i.e. 100 would be 0,0,1
while ( c->cdigit > 1 && *(--pchc) == 0 ) { c->cdigit--; } destroynum( *pa ); *pa=c; }
//----------------------------------------------------------------------------
//
// FUNCTION: mulnum
//
// ARGUMENTS: pointer to a number a second number, and the
// nRadix.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the number equivalent of *pa *= b.
// Assumes nRadix is the nRadix of both numbers. This algorithm is the
// same one you learned in gradeschool.
//
//----------------------------------------------------------------------------
void _mulnum( PNUMBER *pa, PNUMBER b, unsigned long nRadix );
void __inline mulnum( PNUMBER *pa, PNUMBER b, unsigned long nRadix )
{ if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 ) { // If b is one we don't multiply exactly.
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 ) { // pa and b are both nonone.
_mulnum( pa, b, nRadix ); } else { // if pa is one and b isn't just copy b, and adjust the sign.
long sign = (*pa)->sign; DUPNUM(*pa,b); (*pa)->sign *= sign; } } else { // But we do have to set the sign.
(*pa)->sign *= b->sign; } }
void _mulnum( PNUMBER *pa, PNUMBER b, unsigned long nRadix )
{ PNUMBER c=NULL; // c will contain the result.
PNUMBER a=NULL; // a is the dereferenced number pointer from *pa
MANTTYPE *pcha; // pcha is a pointer to the mantissa of a.
MANTTYPE *pchb; // pchb is a pointer to the mantissa of b.
MANTTYPE *pchc; // pchc is a pointer to the mantissa of c.
MANTTYPE *pchcoffset; // pchcoffset, is the anchor location of the next
// single digit multiply partial result.
long iadigit = 0; // Index of digit being used in the first number.
long ibdigit = 0; // Index of digit being used in the second number.
MANTTYPE da = 0; // da is the digit from the fist number.
TWO_MANTTYPE cy = 0; // cy is the carry resulting from the addition of
// a multiplied row into the result.
TWO_MANTTYPE mcy = 0; // mcy is the resultant from a single
// multiply, AND the carry of that multiply.
long icdigit = 0; // Index of digit being calculated in final result.
a=*pa; ibdigit = a->cdigit + b->cdigit - 1; createnum( c, ibdigit + 1 ); c->cdigit = ibdigit; c->sign = a->sign * b->sign;
c->exp = a->exp + b->exp; pcha = MANT(a); pchcoffset = MANT(c);
for ( iadigit = a->cdigit; iadigit > 0; iadigit-- ) { da = *pcha++; pchb = MANT(b); // Shift pchc, and pchcoffset, one for each digit
pchc = pchcoffset++;
for ( ibdigit = b->cdigit; ibdigit > 0; ibdigit-- ) { cy = 0; mcy = (TWO_MANTTYPE)da * *pchb; if ( mcy ) { icdigit = 0; if ( ibdigit == 1 && iadigit == 1 ) { c->cdigit++; } } // If result is nonzero, or while result of carry is nonzero...
while ( mcy || cy ) { // update carry from addition(s) and multiply.
cy += (TWO_MANTTYPE)pchc[icdigit]+(mcy%(TWO_MANTTYPE)nRadix); // update result digit from
pchc[icdigit++]=(MANTTYPE)(cy%(TWO_MANTTYPE)nRadix); // update carries from
mcy /= (TWO_MANTTYPE)nRadix; cy /= (TWO_MANTTYPE)nRadix; } *pchb++; *pchc++; } } // prevent different kinds of zeros, by stripping leading duplicate zeroes.
// digits are in order of increasing significance.
while ( c->cdigit > 1 && MANT(c)[c->cdigit-1] == 0 ) { c->cdigit--; }
destroynum( *pa ); *pa=c; }
//----------------------------------------------------------------------------
//
// FUNCTION: remnum
//
// ARGUMENTS: pointer to a number a second number, and the
// nRadix.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the number equivalent of *pa %= b.
// Repeatedly subtracts off powers of 2 of b until *pa < b.
//
//
//----------------------------------------------------------------------------
void remnum( PNUMBER *pa, PNUMBER b, long nRadix )
{ PNUMBER tmp = NULL; // tmp is the working remainder.
PNUMBER lasttmp = NULL; // lasttmp is the last remainder which worked.
// Once *pa is less than b, *pa is the remainder.
while ( !lessnum( *pa, b ) && !fhalt ) { DUPNUM( tmp, b ); if ( lessnum( tmp, *pa ) ) { // Start off close to the right answer for subtraction.
tmp->exp = (*pa)->cdigit+(*pa)->exp - tmp->cdigit; if ( MSD(*pa) <= MSD(tmp) ) { // Don't take the chance that the numbers are equal.
tmp->exp--; } }
destroynum( lasttmp ); lasttmp=longtonum( 0, nRadix );
while ( lessnum( tmp, *pa ) ) { DUPNUM( lasttmp, tmp ); addnum( &tmp, tmp, nRadix ); }
if ( lessnum( *pa, tmp ) ) { // too far, back up...
destroynum( tmp ); tmp=lasttmp; lasttmp=NULL; } // Subtract the working remainder from the remainder holder.
tmp->sign = -1*(*pa)->sign; addnum( pa, tmp, nRadix );
destroynum( tmp ); destroynum( lasttmp );
} }
//---------------------------------------------------------------------------
//
// FUNCTION: divnum
//
// ARGUMENTS: pointer to a number a second number, and the
// nRadix.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the number equivalent of *pa /= b.
// Assumes nRadix is the nRadix of both numbers.
//
//---------------------------------------------------------------------------
void _divnum( PNUMBER *pa, PNUMBER b, unsigned long nRadix );
void __inline divnum( PNUMBER *pa, PNUMBER b, unsigned long nRadix )
{ if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 ) { // b is not one
_divnum( pa, b, nRadix ); } else { // But we do have to set the sign.
(*pa)->sign *= b->sign; } }
void _divnum( PNUMBER *pa, PNUMBER b, unsigned long nRadix )
{ PNUMBER a = NULL; PNUMBER c = NULL; PNUMBER tmp = NULL; PNUMBER rem = NULL; PLINKEDLIST pll = NULL; PLINKEDLIST pllrover = NULL; long digit; long cdigits; BOOL bret; MANTTYPE *ptrc; long thismax = maxout+2;
a=*pa; if ( thismax < a->cdigit ) { thismax = a->cdigit; }
if ( thismax < b->cdigit ) { thismax = b->cdigit; }
createnum( c, thismax + 1 ); c->exp = (a->cdigit+a->exp) - (b->cdigit+b->exp) + 1; c->sign = a->sign * b->sign;
ptrc = MANT(c) + thismax; cdigits = 0; DUPNUM( rem, a ); DUPNUM( tmp, b ); tmp->sign = a->sign; rem->exp = b->cdigit + b->exp - rem->cdigit; // Build a table of multiplications of the divisor, this is quicker for
// more than nRadix 'digits'
pll = (PLINKEDLIST)zmalloc( sizeof( LINKEDLIST ) ); pll->pnum = longtonum( 0L, nRadix ); pll->llprev = NULL; for ( cdigits = 1; cdigits < (long)nRadix; cdigits++ ) { pllrover = (PLINKEDLIST)zmalloc( sizeof( LINKEDLIST ) ); pllrover->pnum=NULL; DUPNUM( pllrover->pnum, pll->pnum ); addnum( &(pllrover->pnum), tmp, nRadix ); pllrover->llprev = pll; pll = pllrover; } destroynum( tmp ); cdigits = 0; while ( cdigits++ < thismax && !zernum(rem) ) { pllrover = pll; digit = nRadix - 1; do { bret = lessnum( rem, pllrover->pnum ); } while ( bret && --digit && ( pllrover = pllrover->llprev ) ); if ( digit ) { pllrover->pnum->sign *= -1; addnum( &rem, pllrover->pnum, nRadix ); pllrover->pnum->sign *= -1; } rem->exp++; *ptrc-- = (MANTTYPE)digit; } cdigits--; if ( MANT(c) != ++ptrc ) { memmove( MANT(c), ptrc, (int)(cdigits*sizeof(MANTTYPE)) ); } // Cleanup table structure
pllrover = pll; do { pll = pllrover->llprev; destroynum( pllrover->pnum ); zfree( pllrover ); } while ( pllrover = pll );
if ( !cdigits ) { c->cdigit = 1; c->exp = 0; } else { c->cdigit = cdigits; c->exp -= cdigits; while ( c->cdigit > 1 && MANT(c)[c->cdigit-1] == 0 ) { c->cdigit--; } } destroynum( rem );
destroynum( *pa ); *pa=c; }
//---------------------------------------------------------------------------
//
// FUNCTION: equnum
//
// ARGUMENTS: two numbers.
//
// RETURN: Boolean
//
// DESCRIPTION: Does the number equivalent of ( a == b )
// Only assumes that a and b are the same nRadix.
//
//---------------------------------------------------------------------------
BOOL equnum( PNUMBER a, PNUMBER b )
{ long diff; MANTTYPE *pa; MANTTYPE *pb; long cdigits; long ccdigits; MANTTYPE da; MANTTYPE db;
diff = ( a->cdigit + a->exp ) - ( b->cdigit + b->exp ); if ( diff < 0 ) { // If the exponents are different, these are different numbers.
return( FALSE ); } else { if ( diff > 0 ) { // If the exponents are different, these are different numbers.
return( FALSE ); } else { // OK the exponents match.
pa = MANT(a); pb = MANT(b); pa += a->cdigit - 1; pb += b->cdigit - 1; cdigits = max( a->cdigit, b->cdigit ); ccdigits = cdigits; // Loop over all digits until we run out of digits or there is a
// difference in the digits.
for ( ;cdigits > 0; cdigits-- ) { da = ( (cdigits > (ccdigits - a->cdigit) ) ? *pa-- : 0 ); db = ( (cdigits > (ccdigits - b->cdigit) ) ? *pb-- : 0 ); if ( da != db ) { return( FALSE ); } } // In this case, they are equal.
return( TRUE ); } } }
//---------------------------------------------------------------------------
//
// FUNCTION: lessnum
//
// ARGUMENTS: two numbers.
//
// RETURN: Boolean
//
// DESCRIPTION: Does the number equivalent of ( abs(a) < abs(b) )
// Only assumes that a and b are the same nRadix, WARNING THIS IS AN.
// UNSIGNED COMPARE!
//
//---------------------------------------------------------------------------
BOOL lessnum( PNUMBER a, PNUMBER b )
{ long diff; MANTTYPE *pa; MANTTYPE *pb; long cdigits; long ccdigits; MANTTYPE da; MANTTYPE db;
diff = ( a->cdigit + a->exp ) - ( b->cdigit + b->exp ); if ( diff < 0 ) { // The exponent of a is less than b
return( TRUE ); } else { if ( diff > 0 ) { return( FALSE ); } else { pa = MANT(a); pb = MANT(b); pa += a->cdigit - 1; pb += b->cdigit - 1; cdigits = max( a->cdigit, b->cdigit ); ccdigits = cdigits; for ( ;cdigits > 0; cdigits-- ) { da = ( (cdigits > (ccdigits - a->cdigit) ) ? *pa-- : 0 ); db = ( (cdigits > (ccdigits - b->cdigit) ) ? *pb-- : 0 ); diff = da-db; if ( diff ) { return( diff < 0 ); } } // In this case, they are equal.
return( FALSE ); } } }
//----------------------------------------------------------------------------
//
// FUNCTION: zernum
//
// ARGUMENTS: number
//
// RETURN: Boolean
//
// DESCRIPTION: Does the number equivalent of ( !a )
//
//----------------------------------------------------------------------------
BOOL zernum( PNUMBER a )
{ long length; MANTTYPE *pcha; length = a->cdigit; pcha = MANT( a ); // loop over all the digits until you find a nonzero or until you run
// out of digits
while ( length-- > 0 ) { if ( *pcha++ ) { // One of the digits isn't zero, therefore the number isn't zero
return( FALSE ); } } // All of the digits are zero, therefore the number is zero
return( TRUE ); }
|