|
|
/**************************************************************************\
* * Copyright (c) 1998 Microsoft Corporation * * Module Name: * * One-pixel-wide solid anti-aliased lines * * Abstract: * * Draws anti-aliased solid-color lines which are one pixel wide. * Supports clipping against complex clipping regions. * * History: * * 3/31/1999 AMatos * Created it. * 08/17/1999 AGodfrey * Separated aliased from antialiased. * \**************************************************************************/
#include "precomp.hpp"
#pragma optimize("a", on)
// Antialiased lines are usually drawn using aarasterizer.cpp
// rather than aaline.cpp. If aaline.cpp is to be used, define
// AAONEPIXELLINE_SUPPORT
#ifdef AAONEPIXELLINE_SUPPORT
//------------------------------------------------------------------------
// Global array that stores all the different options of drawing functions.
// If the order of the functions change, the offset constants must also
// change.
//------------------------------------------------------------------------
#define FUNC_X_MAJOR 0
#define FUNC_Y_MAJOR 1
#define FUNC_CLIP_OFFSET 2
typedef VOID (OnePixelLineDDAAntiAliased::*DDAFunc)(DpScanBuffer*);
DDAFunc gDrawFunctions[] = { OnePixelLineDDAAntiAliased::DrawXMajor, OnePixelLineDDAAntiAliased::DrawYMajor, OnePixelLineDDAAntiAliased::DrawXMajorClip, OnePixelLineDDAAntiAliased::DrawYMajorClip, };
//------------------------------------------------------------------------
// Constants used for manipulating fixed point and doing all the bitwise
// operations on the aliased and antialiased DDA. I know some of these
// are already defined elsewhere, but I do it again here as it might be nice to
// keep this independent of the rest of gdiplus.
//------------------------------------------------------------------------
// Fixed point
#define RealToFix GpRealToFix4
#define FBITS 4
#define FMASK 0xf
#define FINVMASK 0xfffffff0
#define FSIZE 16
#define FHALF 8
#define FHALFMASK 7
// Antialiasing constants
#define MAXALPHA 255
#define MAXERROR 0x08000000
#define TESTABOVE 0xf8000000
#define TESTBELOW 0x07ffffff
#define MAXHALF 0x04000000
#define CONVERTALPHA 19
/**************************************************************************\
* * Function Description: * * Does all the DDA setup that is common to aliased and antialiased * lines. * * Arguments: * * [IN] point1 - end point * [IN] point2 - end point * [IN] drawLast - FALSE if the line is to be end-exclusive
* Return Value: * * Returns TRUE if the drawing should continue, meaning the line * has non-zero length. * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
BOOL OnePixelLineDDAAntiAliased::SetupCommon( GpPointF *point1, GpPointF *point2, BOOL drawLast ) { // Turn the points into fixed 28.4
INT x1 = RealToFix(point1->X); INT x2 = RealToFix(point2->X); REAL rDeltaX = point2->X - point1->X; REAL rDeltaY = point2->Y - point1->Y;
if( rDeltaX == 0 && rDeltaY == 0 ) { return FALSE; }
INT xDir = 1;
if(rDeltaX < 0) { rDeltaX = -rDeltaX; xDir = -1; }
INT y1 = RealToFix(point1->Y); INT y2 = RealToFix(point2->Y);
INT yDir = 1;
if( rDeltaY < 0) { rDeltaY = -rDeltaY; yDir = -1; } Flipped = FALSE;
if( rDeltaY >= rDeltaX ) { // y-major
InvDelta = 1.0F/rDeltaY;
// Invert the endpoints if necessary
if(yDir == -1) { INT tmp = y1; y1 = y2; y2 = tmp; tmp = x1; x1 = x2; x2 = tmp; xDir = -xDir; Flipped = TRUE; }
// Determine the Slope
Slope = xDir*rDeltaX*InvDelta;
// Initialize the Start and End points
IsXMajor = FALSE; MajorStart = y1; MajorEnd = y2; MinorStart = x1; MinorEnd = x2; MinorDir = xDir;
// This will help us for the AntiAliased x-major case.
SwitchFirstLast = 1;
// Mark that we'll use the y-major functions.
DrawFuncIndex = FUNC_Y_MAJOR; } else { // x-major
InvDelta = 1.0F/rDeltaX;
// Invert the endpoints if necessary
if(xDir == -1) { INT tmp = x1; x1 = x2; x2 = tmp; tmp = y1; y1 = y2; y2 = tmp; yDir = -yDir; Flipped = TRUE; }
Slope = yDir*rDeltaY*InvDelta;
// Initialize the rest
IsXMajor = TRUE; MajorStart = x1; MajorEnd = x2; MinorStart = y1; MinorEnd = y2; MinorDir = yDir;
// This will help us for the AntiAliased x-major case.
SwitchFirstLast = MinorDir;
// Mark that we'll use the x-major functions.
DrawFuncIndex = FUNC_X_MAJOR; }
// Initialize the Deltas. In fixed point.
DMajor = MajorEnd - MajorStart; DMinor = (MinorEnd - MinorStart)*MinorDir;
// Mark if we're drawing end-exclusive
IsEndExclusive = drawLast;
return TRUE; }
/**************************************************************************\
* * Function Description: * * Does the part of the DDA setup that is specific for anti-aliased lines. * * Arguments:
* Return Value: * * Always returns TRUE. It must return a BOOL because it must have the * same signature as the aliased case. * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
BOOL OnePixelLineDDAAntiAliased::SetupAntiAliased() { const REAL maxError = MAXERROR;
// Find the integer major positions for the beginning and
// the end of the line.
INT major, minor; INT majorEnd, minorEnd;
major = (MajorStart + FHALF) >> FBITS; majorEnd = (MajorEnd + FHALF) >> FBITS;
// Check for the simple case of a one pixel long line
if(majorEnd == major) { AlphaFirst = (MAXALPHA*(MajorEnd - MajorStart)*MinorDir) >> FBITS; MajorStart = major; MajorEnd = majorEnd; MinorStart = (MinorStart + FHALF) >> FBITS; return TRUE; }
// Store the fraction of the first pixel covered due to
// the start point.
FracStart = (major << FBITS) - MajorStart;
// Advance the minor coordinate to the integer major
MinorStart += GpFloor(Slope*FracStart);
// Calculate the length across the line in the minor direction
INT halfWidth = RealToFix(LineLength*InvDelta) >> 1;
// Make sure thar startX and endX don't end up being the
// same pixel, which our code does not handle. Theoretically
// this cannot happen when the width of the line is 1, but
// let's make sure it doesn't happen because of some roundoff
// Error.
if( halfWidth < FHALF ) { halfWidth = FHALF; } INT endMinor = MinorEnd + MinorDir*halfWidth;
// Calculate the Error up from the Slope. It needs to be that
// way so that the Error up will work when the 0-1 interval
// is mapped to the interval 0 to 0x8000000. See comments below.
ErrorUp = GpFloor(Slope*maxError); ErrorDown = MinorDir*MAXERROR;
// For a given aa one pixel wide line, there can be up to three pixels
// baing painted across the line. We call these the first, middle and
// last lines. So all variable with such prefixes refer to one
// of these three. firstX and lastX are the positions of these lines.
// In the x-major case, unlike the y-major, we might need to switch
// who is the first and who is the second line depending on the
// direction, so that the order that each line fills the scan
// remains the same. That's why we multiply halfWidth by yDir.
halfWidth *= SwitchFirstLast;
MinorFirst = MinorStart - halfWidth; MinorLast = MinorStart + halfWidth;
// Calculate the initial Error. The Error is mapped so that 1 is
// taken to MAXERROR. So we find how mush we are into the
// pixel in X, which is a number between 0 and 16 (n.4). We then
// multiply this by MAXERROR and shift it from fized point. Finally we add
// MAXHALF so that the 0-1 interval is mapped to 0 to MAXERROR
// instead of from -MAXHALF and MAXHALF .
const INT convError = MAXERROR >> FBITS;
ErrorFirst = (MinorFirst - ((MinorFirst + FHALF) & FINVMASK))* convError + MAXHALF; ErrorLast = (MinorLast - ((MinorLast + FHALF) & FINVMASK))* convError + MAXHALF ; // Now calculate the alpha's for the first pixel. This is
// done from the Error. Since the Error is between
// 0 and MAXERROR-1, if we shift it back by 19 (CONVERTALPHA)
// we have a number between 0 and 255. We the multiply by
// yFrac which takes into account that the end of the line
// also cuts the coverage down. At the end we convert from
// 28.4. alphaFirst is the alpha of for the first pixel across the
// aa line, alpha Mid is for the middle if there is one, and
// AlphaLast is for the last pixel.
FracStart = FracStart + FHALF;
// Convert from 28.4 rounding
MinorFirst = (MinorFirst + FHALF) >> FBITS; MinorLast = (MinorLast + FHALF) >> FBITS;
// Store the fraction for the last pixel
FracEnd = MajorEnd - (majorEnd << FBITS) + FHALF;
// Store the initial values in integer coordinates
MajorStart = major; MajorEnd = majorEnd; MinorStart = MinorFirst; MinorEnd = (endMinor + FHALF) >> FBITS;
// Now do some initializations specific for the x-major and
// y-major cases. These can't be done in the drawing routine
// because those are reused during clipping.
if(!IsXMajor) { // Calculate the coverage values at the initial pixel.
AlphaFirst = ((MAXALPHA - (ErrorFirst >> CONVERTALPHA))* FracStart) >> FBITS; AlphaLast = ((ErrorLast >> CONVERTALPHA)*FracStart) >> FBITS; AlphaMid = (MAXALPHA*FracStart) >> FBITS; } else { // Depending if we are going up or down, the alpha is calculated
// a different way from the coverage. In each case we want to
// estimate the coverage as the area from the current position to
// the end of the pixel, but which end varies. This is stored
// in the following biases. We don't have to do this for the
// y-major line because of the switch between first and last line
// explained above.
AlphaBiasLast = ((1 - MinorDir) >> 1)*TESTBELOW; AlphaBiasFirst = ((1 + MinorDir) >> 1)*TESTBELOW;
AlphaFirst = ((AlphaBiasFirst - MinorDir*ErrorFirst)*FracStart) >> FBITS; AlphaLast = ((AlphaBiasLast + MinorDir*ErrorLast)*FracStart) >> FBITS; // If there is a middle line on the first X value, take xFrac into
// account. Otherwise, the middle line's alpha is always MAXALPHA.
if(MinorDir*(MinorLast - MinorFirst) < 2) { AlphaMid = MAXALPHA; } else { AlphaMid = MAXALPHA*FracStart >> FBITS; } // Both the first and last DDAs start with the same
// major positions, given by the first pixel.
MajorFirst = MajorLast = MajorStart; }
return TRUE; }
/**************************************************************************\
* * Function Description: * * Draws a y major anti-aliased line. Does not support clipping, it assumes that * it is completely inside any clipping area. * * Arguments: * * [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value: * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
VOID OnePixelLineDDAAntiAliased::DrawYMajor( DpScanBuffer *scan ) { ARGB *buffer;
// Treat the special case where the line is just
// one pixel long.
if( MajorEnd == MajorStart) { buffer = scan->NextBuffer( MinorStart, MajorStart, 1); *buffer = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst)); return; }
// Get the number of pixels not counting the last one.
// Which requires special endpoint treatment.
INT numPixels = MajorEnd - MajorStart; BOOL endDone = FALSE;
// There can be two or three pixels across the line
INT pixelWidth = MinorLast - MinorFirst + 1;
while(numPixels) { numPixels--;
last_pixel: // Get the scanline buffer buffer
buffer = scan->NextBuffer(MinorFirst, MajorStart, pixelWidth);
// Write the value of the first DDA
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst));
// If there is a middle line, write its value.
if(pixelWidth > 2) { *buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaMid)); } // Write the value of the last (2nd or 3rd) DDA
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaLast));
// Update the errors of both DDAs
ErrorFirst+= ErrorUp; ErrorLast += ErrorUp; MajorStart++;
if(ErrorFirst & TESTABOVE) { ErrorFirst -= ErrorDown; MinorFirst += MinorDir; } if(ErrorLast & TESTABOVE) { ErrorLast -= ErrorDown; MinorLast += MinorDir; } // Calculate the new alphas for the next scan, and
// the new line width.
AlphaFirst = MAXALPHA - (ErrorFirst >> CONVERTALPHA); AlphaLast = (ErrorLast >> CONVERTALPHA); AlphaMid = MAXALPHA;
pixelWidth = MinorLast - MinorFirst + 1; }
// The last scan requires special treatment since its coverage
// must be multiplied my the stored end coverage. So so this
// multiplication and go back to the body of the loop above
// to draw the last scan.
if(!endDone) { AlphaFirst = (AlphaFirst*FracEnd) >> FBITS; AlphaLast = (AlphaLast*FracEnd) >> FBITS; AlphaMid = (AlphaMid*FracEnd) >> FBITS; endDone = TRUE; goto last_pixel; } }
/**************************************************************************\
* * Function Description: * * Draws a x major anti-aliased line. Does not support clipping, it assumes that * it is completely inside any clipping area. * * Arguments: * * [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value: * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
VOID OnePixelLineDDAAntiAliased::DrawXMajor( DpScanBuffer *scan ) { ARGB *buffer; INT maxWidth = scan->GetSurface()->Width;
// Treat the special case where the line is just
// one pixel long.
if( MajorEnd == MajorStart) { buffer = scan->NextBuffer( MajorStart, MinorStart, 1); *buffer = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst)); return; }
// For an x-major one-pixel wide line, there can be up to
// three different scans being painted for the same x
// position. But in our case we can't draw to these all at
// the same time since some surfaces can only be accessed
// one scan at a time. So the algorithm used here does all the
// drawing to one scan at each time. But on the first scan, only
// the first line should be drawn, on the second one both the
// first and middle (if there is a middle) and only then all
// the lines. So correct the Error of the last line so that
// it'll only be drawn when we are at the second or third scan line.
// Also correct the alpha since it'll also be crecremented for
// each scan line.
ErrorLast += MinorDir*(MinorLast - MinorFirst)*ErrorDown; AlphaLast += (MinorLast - MinorFirst)*ErrorDown;
// Get the pointer to the buffer
buffer = scan->NextBuffer(MajorLast, MinorStart, maxWidth);
INT width = 0; INT alpha; INT middleMajor;
while(MajorLast <= MajorEnd) { // Fill the scan with the portion corresponding to the
// last line, which shoudl comes first on the scan. This is
// why we use the class member SwitchFirstLast, so we can decide
// based on the line direction which DDA will be the first and last
// so that the last one (paradoxically) always comes first on the
// scan. Keep doing it untill the last line chages scan. Check for
// the end to multiply by the last pixel's coverage.
while(!(ErrorLast & TESTABOVE)) { if(MajorLast == MajorEnd) { AlphaLast = (AlphaLast*FracEnd) >> FBITS;
// Increment the error to correct for the
// decrementing below, since we didn't leave the
// loop because the error became above 0.
ErrorLast += ErrorDown; } *buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaLast >> CONVERTALPHA)); ErrorLast += ErrorUp; AlphaLast = AlphaBiasLast + MinorDir*ErrorLast; width++; MajorLast++; }
// We changed scans on the last DDA, so update the errors
ErrorLast -= ErrorDown; AlphaLast -= MinorDir*ErrorDown; // Fill in the middle part if there is one
middleMajor = MajorLast;
while(middleMajor < MajorFirst) { if( middleMajor == MajorEnd) { AlphaMid = (AlphaMid*FracEnd) >> FBITS; } *buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaMid)); AlphaMid = MAXALPHA; width++; middleMajor++; } // Fill the scan with the portion corresponding to the
// first line, which comes last. Keep doing it untill the
// last line chages scan.
while(!(ErrorFirst & TESTABOVE)) { if(MajorFirst == MajorEnd) { AlphaFirst = (AlphaFirst*FracEnd) >> FBITS; // Since we can have at most three more scans
// increment ErrorFirst so that we never go in here again
ErrorFirst += 4*ErrorDown; }
*buffer++ = GpColor::PremultiplyWithCoverage( Color, static_cast<BYTE>(AlphaFirst >> CONVERTALPHA)); ErrorFirst += ErrorUp; AlphaFirst = AlphaBiasFirst - MinorDir*ErrorFirst; width++; MajorFirst++; }
// Update the errors on the first scan
ErrorFirst -= ErrorDown; AlphaFirst += MinorDir*ErrorDown;
// Write the buffer and update the minor variables
scan->UpdateWidth(width); MinorStart += MinorDir; if (MajorLast <= MajorEnd) { buffer = scan->NextBuffer(MajorLast, MinorStart, maxWidth); } width = 0; }
scan->UpdateWidth(width); }
/**************************************************************************\
* * Function Description: * * Draws a y major line taking clipping into account. It uses the member * variables MajorIn, MajorOut, MinorIn, MinorOut of the class as the * clip rectangle. It advances untill the line is in the clip rectangle and * draws untill it gets out or the end point is reached. In the first case, * it leaves the DDA in a state so that it can be called again with another * clipping rectangle. * * Arguments: * * [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value: * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/ VOID OnePixelLineDDAAntiAliased::DrawYMajorClip( DpScanBuffer *scan ) { ARGB *buffer; // Treat the special case where the line is just
// one pixel long.
if( MajorEnd == MajorStart) { // Check if the point is inside the rectangle
if((MajorStart >= MajorIn) && (MajorStart <= MajorOut) && ((MinorStart - MinorIn)*MinorDir >= 0) && ((MinorOut - MinorStart)*MinorDir >= 0)) { buffer = scan->NextBuffer( MinorStart, MajorStart, 1); *buffer = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst)); } return; }
// Align the major start coordinate with the edge of the
// cliprectangle
INT numScans = MajorIn - MajorStart;
while(numScans > 0) {
ErrorFirst+= ErrorUp; ErrorLast += ErrorUp; MajorStart++; numScans--;
if(ErrorFirst & MAXERROR) { ErrorFirst -= ErrorDown; MinorFirst += MinorDir; } if(ErrorLast & MAXERROR) { ErrorLast -= ErrorDown; MinorLast += MinorDir; } // Calculate the new alphas for the next line, and
// the width.
AlphaFirst = MAXALPHA - (ErrorFirst >> CONVERTALPHA); AlphaLast = (ErrorLast >> CONVERTALPHA); AlphaMid = MAXALPHA; } // Save the end values
INT saveMajor2 = MajorEnd; INT saveFracEnd = FracEnd;
// If the end major coordinate is outside of the rectangle,
// mark that the DDA should stop at the edge
if(MajorEnd > MajorOut) { MajorEnd = MajorOut; FracEnd = FSIZE; }
// Number of pixels to draw, not counting the last
INT numPixels = MajorEnd - MajorStart; BOOL endDone = FALSE;
// There can be two or three pixels across the line
INT pixelWidth = MinorLast - MinorFirst + 1;
// Do the DDA loop. Two loops are implemented here. The
// first one is used in the case that the x coordinate of
// the rectangle is close enough to the constant-y edges
// of the clip rectangle. In this case, it's a pain, since
// we have to check each pixel that we are writing if it's
// not outside. Thus, as soon as we notice that we are
// far from the edges we go to the other loop that doesn't
// check all that. All it checks is if it got close enough
// to the other edge, in which case it comes back to this
// loop, using the label last_part. firstOutDist, firstInDist,
// lastOutDist and lastInDist keeps track of the number of
// pixels between the first and last DDAs and the In and
// Out y-constant edges of the rectangle.
INT firstOutDist = (MinorOut - MinorFirst)*MinorDir;
last_part:
INT firstInDist = (MinorFirst - MinorIn)*MinorDir; INT lastInDist = (MinorLast - MinorIn)*MinorDir; INT lastOutDist = (MinorOut - MinorLast)*MinorDir;
while(numPixels > 0) { numPixels--;
last_pixel: // Check if it's ok to write the first pixel
if(firstInDist >= 0 && firstOutDist >= 0) { buffer = scan->NextBuffer(MinorFirst, MajorStart, 1); *buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst)); } else { // If the first DDA is out, and we are going in the
// positive direction, then the whole line is out and
// we are done
if(firstOutDist < 0 && MinorDir == 1) { goto end; } }
// If the line has 3 pixels across
if(pixelWidth > 2) { // Check if it's ok to write the second pixel
if(firstInDist >= -MinorDir && firstOutDist >= MinorDir) { buffer = scan->NextBuffer(MinorFirst+1, MajorStart, 1); *buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaMid)); } } // Now check if it's ok to write the last one
if(lastInDist >= 0 && lastOutDist >= 0) { buffer = scan->NextBuffer(MinorLast, MajorStart, 1); *buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaLast)); } else { // If the first DDA is out, and we are going in the
// negative direction, then the whole line is out and
// we are done
if(lastOutDist < 0 && MinorDir == -1) { goto end; } }
// Update the errors
ErrorFirst+= ErrorUp; ErrorLast += ErrorUp; MajorStart++;
if(ErrorFirst & TESTABOVE) { ErrorFirst -= ErrorDown; MinorFirst += MinorDir; firstInDist++; firstOutDist--; } if(ErrorLast & TESTABOVE) { ErrorLast -= ErrorDown; MinorLast += MinorDir; lastInDist++; lastOutDist--; } // Calculate the new alphas for the next line, and
// the width.
AlphaFirst = MAXALPHA - (ErrorFirst >> CONVERTALPHA); AlphaLast = (ErrorLast >> CONVERTALPHA); AlphaMid = MAXALPHA;
pixelWidth = MinorLast - MinorFirst + 1;
// Check to see if we can 'upgrade' to the next loop
if(firstInDist >= 3 && firstOutDist >= 3) { break; } } while(numPixels > 0) { numPixels--;
// Get the scanline buffer buffer
buffer = scan->NextBuffer(MinorFirst, MajorStart, pixelWidth);
// Write the value of the first DDA
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst));
// If there is a middle line, write its value.
if(pixelWidth > 2) { *buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaMid)); } // Write the value of the last (2nd or 3rd) DDA
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaLast));
// Update the DDA
ErrorFirst+= ErrorUp; ErrorLast += ErrorUp; MajorStart++;
if(ErrorFirst & TESTABOVE) { ErrorFirst -= ErrorDown; MinorFirst += MinorDir; firstOutDist--; } if(ErrorLast & TESTABOVE) { ErrorLast -= ErrorDown; MinorLast += MinorDir; } // Calculate the new alphas for the next line, and
// the width.
AlphaFirst = MAXALPHA - (ErrorFirst >> CONVERTALPHA); AlphaLast = (ErrorLast >> CONVERTALPHA); AlphaMid = MAXALPHA;
pixelWidth = MinorLast - MinorFirst + 1;
// Now check if it's time to go to the other loop
// because we are too close to the out edge
if(firstOutDist < 3) { goto last_part; } }
// Now if we haven't gotten here yet, do the last pixel
// and go once more through the loop.
if(!endDone) { AlphaFirst = (AlphaFirst*FracEnd) >> FBITS; AlphaLast = (AlphaLast*FracEnd) >> FBITS; AlphaMid = (AlphaMid*FracEnd) >> FBITS; endDone = TRUE; goto last_pixel; }
end:
MajorEnd = saveMajor2; FracEnd = saveFracEnd; }
/**************************************************************************\
* * Function Description: * * Draws a x major line taking clipping into account. It uses the member * variables MajorIn, MajorOut, MinorIn, MinorOut of the class as the * clip rectangle. It advances untill the line is in the clip rectangle and * draws untill it gets out or the end point is reached. In the first case, * it leaves the DDA in a state so that it can be called again with another * clipping rectangle. * * Arguments: * * [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value: * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
VOID OnePixelLineDDAAntiAliased::DrawXMajorClip( DpScanBuffer *scan ) { ARGB *buffer; INT maxWidth = scan->GetSurface()->Width; // Treat the special case where the line is just
// one pixel long.
if( MajorEnd == MajorStart) { // Check to see if the point is inside the rectangle
if((MajorStart >= MajorIn) && (MajorStart <= MajorOut) && ((MinorStart - MinorIn)*MinorDir >= 0) && ((MinorOut - MinorStart)*MinorDir >= 0)) { buffer = scan->NextBuffer( MajorStart, MinorStart, 1); *buffer = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst)); } return; }
// Save the real end and its fraction
INT saveMajor2 = MajorEnd; INT saveFracEnd = FracEnd; // If the end major coordinate is out, mark that we must stop
// before. Also make the fraction be one, since the last
// one drawn now should not have a fraction
if(MajorOut < MajorEnd) { MajorEnd = MajorOut; FracEnd = FSIZE; } // Advance until the last DDA is in the right scan line and
// is aligned with the In y-constant edge of the rectnagle
INT numScans = (MinorIn - MinorLast)*MinorDir; while((numScans > 0 && MajorLast <= MajorEnd) || MajorLast < MajorIn) { ErrorLast += ErrorUp; if(ErrorLast & TESTABOVE) { ErrorLast -= ErrorDown; MinorLast += MinorDir; numScans--; }
MajorLast++;
// Calculate the alpha for the current pixel
AlphaLast = AlphaBiasLast + MinorDir*ErrorLast; } // Do the same for the first DDA
numScans = (MinorIn - MinorFirst)*MinorDir; while((numScans > 0 && MajorFirst <= MajorEnd) || MajorFirst < MajorIn) { ErrorFirst += ErrorUp; if(ErrorFirst & TESTABOVE) { ErrorFirst -= ErrorDown; MinorFirst += MinorDir; numScans--; }
MajorFirst++;
AlphaFirst = AlphaBiasFirst - MinorDir*ErrorFirst; } // If there is no middle line in the first x-position,
// make the middle alpha full, since the start coverage
// won't apply
if((MinorLast - MinorFirst) < 2) { AlphaMid = MAXALPHA; }
MinorStart = MinorFirst;
// The same way that was done in the non-clipping case,
// mock arround with the error so we won't draw the
// last DDA until the first DDA is in the same scan line,
// or has caught up. We need to adjust the alpha and minor
// positions for this DDA to, so that when we start
// drawing they will have the right value
ErrorLast += MinorDir*(MinorLast - MinorFirst)*ErrorDown; AlphaLast += (MinorLast - MinorFirst)*ErrorDown; MinorLast -= (MinorLast - MinorFirst);
// Get the pointer to the buffer
buffer = scan->NextBuffer(MajorLast, MinorStart, maxWidth); INT width = 0; INT alpha; INT middleMajor;
while(MajorLast <= MajorEnd) { // Fill the scan with the portion corresponding to the
// last line, which should come first. Keep doing it
// until the last line changes scan.
while(!(ErrorLast & TESTABOVE)) { // Check if we passed or are at the last pixel
if(MajorLast >= MajorEnd) { if(MajorLast == MajorEnd) { // If we are at, just update the alpha
AlphaLast = (AlphaLast*FracEnd) >> FBITS; } else { // If we passed, we don't want to draw anymore.
// Just adjust the error, alpha and minor so they
// will be right when they are corrected after this
// loop for the next scan
ErrorLast += ErrorDown; AlphaLast -= MinorDir*ErrorDown; MinorLast -= MinorDir; break; } } *buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaLast >> CONVERTALPHA)); ErrorLast += ErrorUp; AlphaLast = AlphaBiasLast + MinorDir*ErrorLast; width++; MajorLast++; } // Correct the values for the next scan
ErrorLast -= ErrorDown; AlphaLast -= MinorDir*ErrorDown; MinorLast += MinorDir;
// Fill in the middle part.
middleMajor = MajorLast;
while(middleMajor < MajorFirst) { if( middleMajor == MajorEnd) { AlphaMid = (AlphaMid*FracEnd) >> FBITS; } *buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaMid)); AlphaMid = MAXALPHA; width++; middleMajor++; } // Fill the scan with the portion corresponding to the
// first line, which should come first. Keep doing it
// until the last line changes scan.
while(!(ErrorFirst & TESTABOVE)) { // Check for the end pixel, just like we
// did for the last DDA
if(MajorFirst >= MajorEnd) { if(MajorFirst == MajorEnd) { AlphaFirst = (AlphaFirst*FracEnd) >> FBITS; } else { ErrorFirst += ErrorDown; AlphaFirst -= MinorDir*ErrorDown; MinorFirst -= MinorDir; break; } } *buffer++ = GpColor::PremultiplyWithCoverage( Color, static_cast<BYTE>(AlphaFirst >> CONVERTALPHA)); ErrorFirst += ErrorUp; AlphaFirst = AlphaBiasFirst - MinorDir*ErrorFirst; width++; MajorFirst++; } // Correct the values for the next scan
ErrorFirst -= ErrorDown; AlphaFirst += MinorDir*ErrorDown; MinorFirst += MinorDir; scan->UpdateWidth(width); // Check to see if we have come to the end of the rectangle
// through the minor coordinate crossing the Out edge
// in the x-constant direction
if(MinorStart == MinorOut) { MinorStart += MinorDir; break; }
// Update the minor coordinate and get the next buffer
// if we aren't done yet.
MinorStart += MinorDir; if (MajorLast <= MajorEnd) { buffer = scan->NextBuffer(MajorLast, MinorStart, maxWidth); } width = 0; }
scan->UpdateWidth(width);
// Restore the old values
MajorEnd = saveMajor2; FracEnd = saveFracEnd; }
//--------------------------------------------------------------------
// Auxiliary functions
//--------------------------------------------------------------------
/**************************************************************************\
* * Function Description: * * Clips the line against a rectangle. It assumes that the line endpoints * are stored in the class in floating point format. This sets an * order in which this function can be called. It must be after the * SetupCommon function and before the specific setups for antialiasing * and aliasing. This is a pain, but it's better than requirering on of * these to have to know about clipping. The clipping here is done by * using the Slope and InvSlope members of the class to advance the * endpoints to the rectangle edges. Thus the function also assumes that * Slope and InvSlope have been calculated. * * Arguments: * * [IN] clipRect - The rectangle to clip against
* Return Value: * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
BOOL OnePixelLineDDAAntiAliased::ClipRectangle( const GpRect* clipRect ) {
INT clipBottom, clipTop, clipLeft, clipRight;
// Set the major and minor edges ef the clipping
// region, converting to fixed point 28.4. Note that
// we don't convert to the pixel center, but to a
// that goes all the way up to the pixel edges. This
// makes a difference for antialiasing. We don't go all
// the way to the edge since some rounding rules could
// endup lihgting the next pixel outside of the clipping
// area. That's why we add/subtract 7 instead of 8.
// The right and bottom are exclusive.
INT majorMin = (clipRect->GetLeft() << FBITS) - FHALFMASK; INT majorMax = ((clipRect->GetRight() - 1) << FBITS) + FHALFMASK; INT minorMax = ((clipRect->GetBottom() - 1) << FBITS) + FHALFMASK; INT minorMin = (clipRect->GetTop() << FBITS) - FHALFMASK;
if(!IsXMajor) { INT tmp; tmp = majorMin; majorMin = minorMin; minorMin = tmp; tmp = majorMax; majorMax = minorMax; minorMax = tmp; }
// First clip in the major coordinate
BOOL minOut, maxOut;
minOut = MajorStart < majorMin; maxOut = MajorEnd > majorMax;
if( minOut || maxOut ) { if(MajorStart > majorMax || MajorEnd < majorMin) { return FALSE; }
if(minOut) { MinorStart += GpFloor((majorMin - MajorStart)*Slope); MajorStart = majorMin; }
if(maxOut) { MinorEnd += GpFloor((majorMax - MajorEnd)*Slope); MajorEnd = majorMax;
// If we clipped the last point, we don't need to be IsEndExclusive
// anymore, as the last point now is not the line's last
// point but some in the middle.
IsEndExclusive = FALSE; } }
// Now clip the minor coordinate
INT *pMajor1, *pMinor1, *pMajor2, *pMinor2;
if(MinorDir == 1) { pMajor1 = &MajorStart; pMajor2 = &MajorEnd; pMinor1 = &MinorStart; pMinor2 = &MinorEnd; } else { pMajor1 = &MajorEnd; pMajor2 = &MajorStart; pMinor1 = &MinorEnd; pMinor2 = &MinorStart; }
minOut = *pMinor1 < minorMin; maxOut = *pMinor2 > minorMax;
if(minOut || maxOut) { if(*pMinor1 > minorMax || *pMinor2 < minorMin) { return FALSE; }
if(minOut) { *pMajor1 += GpFloor((minorMin - *pMinor1)*InvSlope); *pMinor1 = minorMin; }
if(maxOut) { *pMajor2 += GpFloor((minorMax - *pMinor2)*InvSlope); *pMinor2 = minorMax;
// If we clipped the last point, we don't need to be endExclusive
// anymore, as the last point now is not the line's last
// point but some in the middle.
IsEndExclusive = FALSE; } }
return(TRUE); }
/**************************************************************************\
* * Function Description: * * Draws a one-pixe-wide line with a solid color. Calls on the * OnePixelLineDDAAntiAliased class to do the actual drawing. * * Arguments: * * [IN] scan - The DpScanBuffer to access the drawing surface * [IN] clipRect - A single rectangle that includes all the clipping * region. If there is no clipping, should be set to NULL. * [IN] clipRegionIn - A complex clipping region. If the clipping region is * simple, this should be NULL, and clipRect will be used. * [IN] point1 - line end point * [IN] point2 - line end point * [IN] inColor - the solid color * [IN] drawLast - FALSE if the line is to be end-exclusive. * [IN] antiAliased - TRUE if the line should be antialiased. * * Return Value: * * GpStatus - Ok or failure status * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
GpStatus DrawSolidLineOnePixelAntiAliased( DpScanBuffer *scan, const GpRect *clipRect, const DpClipRegion* clipRegionIn, GpPointF *point1, GpPointF *point2, ARGB inColor, BOOL drawLast ) { // Take out the const for now because the Enumeration method
// is not const.
DpClipRegion *clipRegion = const_cast<DpClipRegion*>(clipRegionIn);
// Setup the common part of the DDA
OnePixelLineDDAAntiAliased dda;
if(!dda.SetupCommon(point1, point2, drawLast)) { return Ok; }
// Calculate the length of the line. Since we only use
// it to determine the width, it shouldn't matter that
// we convert the deltas from 28.4 before the multiplication.
INT d1 = dda.DMajor >> FBITS; INT d2 = dda.DMinor >> FBITS;
dda.LineLength = (REAL)sqrt((double)(d1*d1 + d2*d2));
// Store the color, not premultiplied
dda.Color = inColor;
// Now handle the different clipping cases
if(!clipRect) { // This is easy, there is no clipping so just draw.
if(!dda.SetupAntiAliased()) { return Ok; }
(dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
return Ok; } else { // The inverse of the Slope might be needed.
// Can't use the inverse slope if the slope is zero.
if(dda.Slope==0.0F) { dda.InvSlope=0.0F; } else { dda.InvSlope = (1.0F/dda.Slope); }
// First of all clip against the bounding rectangle
if(!dda.ClipRectangle(clipRect)) { return Ok; }
// Do the specific setup
if(!dda.SetupAntiAliased()) { return Ok; }
// For each clip rectangle we store it's limits in
// an array of four elements. We then index this array using
// the variables below which depend on the slope and
// direction of the line in the following way: majorIn is edge crossed
// to go into the rect in the major direction, majorOut is the edge
// crossed to go out of the rect in the major direction, and so on.
// The same for xIn, xOut, yIn, yOut.
INT majorIn, majorOut, minorIn, minorOut; INT xIn, xOut, yIn, yOut; // Direction to enumerate the rectangles which depends on the
// line
DpClipRegion::Direction enumDirection; INT clipBounds[4]; // We store all our info in terms of major and minor
// direction, but to deal with cliping rectangles we
// need to know them in terms of x and y, so calculate
// xDir, yDir, the advance slope.
REAL xAdvanceRate; INT xDir, yDir; INT yEndLine; // If the line crosses a span completely, (xStart, yStart)
// is the position where it enters the span and (xEnd, yEnd)
// is the position that it leaves. If it starts inside the
// span, then (xStart, yStart) is the start point
REAL yStart, xStart, xEnd, yEnd;
if(dda.IsXMajor) { // Calculate the in-out indices
majorIn = xIn = 0; majorOut = xOut = 2; if(dda.MinorDir == 1) { minorIn = 1; minorOut = 3; enumDirection = DpClipRegion::TopLeftToBottomRight; } else { minorIn = 3; minorOut = 1; enumDirection = DpClipRegion::BottomLeftToTopRight; } yIn = minorIn; yOut = minorOut;
// Make (xStart, yStart) be the initial point
yStart = (REAL)dda.MinorStart; xStart = (REAL)dda.MajorStart;
xAdvanceRate = dda.InvSlope; xDir = 1; yDir = dda.MinorDir; yEndLine = dda.MinorEnd; } else { majorIn = yIn = 1; majorOut = yOut = 3; if(dda.MinorDir == 1) { minorIn = 0; minorOut = 2; enumDirection = DpClipRegion::TopLeftToBottomRight; } else { minorIn = 2; minorOut = 0; enumDirection = DpClipRegion::TopRightToBottomLeft; } xIn = minorIn; xOut = minorOut;
// Make (xStart, yStart) be the initial point
yStart = (REAL)dda.MajorStart; xStart = (REAL)dda.MinorStart;
xAdvanceRate = dda.Slope; xDir = dda.MinorDir; yDir = 1; yEndLine = dda.MajorEnd; }
// Update the drawing function to the correct
// slipping version
dda.DrawFuncIndex += FUNC_CLIP_OFFSET; if(!clipRegion) { // In this case there is only a single rect, so just
// draw clipped to that
// Store the rectangle in an array so we can atribute the
// right values to the MajorIn, majorOut, etc... variables.
// Remember that bottom and right are exclusive.
clipBounds[0] = clipRect->GetLeft(); clipBounds[1] = clipRect->GetTop(); clipBounds[2] = clipRect->GetRight() - 1; clipBounds[3] = clipRect->GetBottom() - 1;
dda.MajorIn = clipBounds[majorIn]; dda.MajorOut = clipBounds[majorOut]; dda.MinorIn = clipBounds[minorIn]; dda.MinorOut = clipBounds[minorOut];
(dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
return Ok; } else { BOOL agregating = FALSE; INT agregateBounds[4];
// We have a complex clipping region. So what we'll do
// is clip against each individual rectangle in the
// cliping region.
clipRegion->StartEnumeration(GpFloor(yStart), enumDirection);
GpRect rect;
// Get the first rectangle.
INT numRects = 1;
clipRegion->Enumerate(&rect, numRects); clipBounds[0] = rect.GetLeft(); clipBounds[1] = rect.GetTop(); clipBounds[2] = rect.GetRight() - 1; clipBounds[3] = rect.GetBottom() - 1; // Store the y position into the span
INT currSpanYMin = clipBounds[yIn];
// We need some special treatment for the case where the
// line is horizontal, since is this case it's not going
// to cross different spans. And it it's not in the current
// span, it's totally clipped out.
if(dda.IsXMajor && dda.ErrorUp == 0) { if(yStart >= clipBounds[1] && yStart <= clipBounds[3]) { xStart = (REAL)dda.MajorStart; xEnd = (REAL)dda.MajorEnd; } else { return Ok; } } else { if(yStart < clipBounds[1] || yStart > clipBounds[3]) { xStart = xStart + (clipBounds[yIn] - yStart)*xAdvanceRate; yStart = (REAL)clipBounds[yIn]; }
xEnd = xStart + (clipBounds[yOut] - yStart)*xAdvanceRate; } yEnd = (REAL)clipBounds[yOut];
while(1) { // Get to the first rectangle on the span that crosses the
// line
while((xStart - clipBounds[xOut])*xDir > 0) { numRects = 1; clipRegion->Enumerate(&rect, numRects); clipBounds[0] = rect.GetLeft(); clipBounds[1] = rect.GetTop(); clipBounds[2] = rect.GetRight() - 1; clipBounds[3] = rect.GetBottom() - 1;
if(numRects != 1) { goto draw_agregated; } if(clipBounds[yIn] != currSpanYMin) { goto process_next_span; } }
// Draw on all the rectangles that intersect the
// line
if((xStart - clipBounds[xIn])*xDir > 0 && (clipBounds[xOut] - xEnd)*xDir > 0) { if(agregating) { if((clipBounds[xIn] - agregateBounds[xIn])*xDir < 0) { agregateBounds[xIn] = clipBounds[xIn]; } if((clipBounds[xOut] - agregateBounds[xOut])*xDir > 0) { agregateBounds[xOut] = clipBounds[xOut]; } agregateBounds[yOut] = clipBounds[yOut]; } else { agregateBounds[0] = clipBounds[0]; agregateBounds[1] = clipBounds[1]; agregateBounds[2] = clipBounds[2]; agregateBounds[3] = clipBounds[3];
agregating = TRUE; } } else { if(agregating) { dda.MajorIn = agregateBounds[majorIn]; dda.MajorOut = agregateBounds[majorOut]; dda.MinorIn = agregateBounds[minorIn]; dda.MinorOut = agregateBounds[minorOut]; (dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan); agregating = FALSE; } while((xEnd - clipBounds[xIn])*xDir > 0) { dda.MajorIn = clipBounds[majorIn]; dda.MajorOut = clipBounds[majorOut]; dda.MinorIn = clipBounds[minorIn]; dda.MinorOut = clipBounds[minorOut]; (dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan); if(dda.MajorStart > dda.MajorEnd) { return Ok; }
numRects = 1; clipRegion->Enumerate(&rect, numRects); clipBounds[0] = rect.GetLeft(); clipBounds[1] = rect.GetTop(); clipBounds[2] = rect.GetRight() - 1; clipBounds[3] = rect.GetBottom() - 1; if(numRects != 1) { goto draw_agregated; } if(clipBounds[yIn] != currSpanYMin) { goto process_next_span; } } } // Get to the next span
while(clipBounds[yIn] == currSpanYMin) { numRects = 1; clipRegion->Enumerate(&rect, numRects); clipBounds[0] = rect.GetLeft(); clipBounds[1] = rect.GetTop(); clipBounds[2] = rect.GetRight() - 1; clipBounds[3] = rect.GetBottom() - 1;
if(numRects != 1) { goto draw_agregated; } }
process_next_span:
if((clipBounds[yIn] - yEndLine)*yDir > 0) { // We are done.
goto draw_agregated; }
if((clipBounds[yIn] - yEnd)*yDir == 1) { xStart = xEnd; } else { if(agregating) { dda.MajorIn = agregateBounds[majorIn]; dda.MajorOut = agregateBounds[majorOut]; dda.MinorIn = agregateBounds[minorIn]; dda.MinorOut = agregateBounds[minorOut]; (dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan); if(dda.MajorStart > dda.MajorEnd) { return Ok; }
agregating = FALSE; }
xStart = xStart + (clipBounds[yIn] - yStart)*xAdvanceRate; }
yStart = (REAL)clipBounds[yIn]; xEnd = xStart + (clipBounds[yOut] - yStart)*xAdvanceRate; yEnd = (REAL)clipBounds[yOut]; currSpanYMin = GpFloor(yStart); }
draw_agregated:
if(agregating) { dda.MajorIn = agregateBounds[majorIn]; dda.MajorOut = agregateBounds[majorOut]; dda.MinorIn = agregateBounds[minorIn]; dda.MinorOut = agregateBounds[minorOut]; (dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan); }
} }
return Ok; }
#endif // AAONEPIXELLINE_SUPPORT
#pragma optimize("a", off)
|