|
|
/*++
Copyright (c) 1997 Microsoft Corporation
Module Name:
gart.c
Abstract:
This module contains the routines for setting and querying the AGP aperture, and for Reserving, Releasing, Mapping, and Unmapping.
TODO: 1. Optimize for dual memory controllers (Done on 3/24/99 by elliots) 2. Claim MMIO resources for the chipset 3. Make sure the driver is generic for all RCC based systems (not just SP700).
Author:
John Vert (jvert) 10/30/1997
Revision History:
12/15/97 John Theisen Modified to support Compaq Chipsets 10/09/98 John Theisen Modified to enable Shadowing in the SP700 prior to MMIO writes. 01/15/99 John Theisen Modified to disable the aperture, by shrinking it to size = 0. 3/24/99 Elliot Shmukler Added support for "favored" memory ranges for AGP physical memory allocation, fixed some bugs. These changes optimizine the driver for dual memory controllers. 3/16/00 Peter Johnston Add support for ServerWorks HE chipset. --*/ #include "AGPCPQ.H"
//
// Local routine prototypes
//
NTSTATUS AgpCPQCreateGart( IN PAGPCPQ_EXTENSION AgpContext, IN ULONG MinimumPages );
NTSTATUS AgpCPQSetRate( IN PVOID AgpContext, IN ULONG AgpRate );
PGART_PTE AgpCPQFindRangeInGart( IN PGART_PTE StartPte, IN PGART_PTE EndPte, IN ULONG Length, IN BOOLEAN SearchBackward, IN ULONG SearchState );
VOID AgpCPQMaintainGARTCacheCoherency ( IN PAGPCPQ_EXTENSION AgpContext, IN PHYSICAL_ADDRESS MemoryBase, IN ULONG NumberOfEntries, IN BOOLEAN InvalidateAll );
PIO_RESOURCE_LIST AgpCPQGetApSizeRequirements( ULONG MaxSize, ULONG Count );
NTSTATUS AgpCPQSetApSizeInChipset ( IN UCHAR NewSetApSize, IN UCHAR NewSetAgpValid );
NTSTATUS AgpCPQSetApBaseInChipset ( IN PHYSICAL_ADDRESS NewBase );
//
// IMPLEMENTATION
//
NTSTATUS AgpQueryAperture( IN PAGPCPQ_EXTENSION AgpContext, OUT PHYSICAL_ADDRESS *CurrentBase, OUT ULONG *CurrentSizeInPages, OUT OPTIONAL PIO_RESOURCE_LIST *pApertureRequirements ) /*******************************************************************************
* * Routine Functional Description: * * Returns the current base and size of the GART aperture. Optionally returns * the possible GART settings. * * Arguments: * * AgpContext -- Supplies the AGP Context, i.e. the AGP Extension. * * CurrentBase -- Returns the current physical address of the aperture. * * CurrentSizeInPages -- Returns the current size of the aperture, in pages. * * pApertureRequirements -- If present, returns the possible aperture * settings. * * Return Value: * * NTSTATUS * *******************************************************************************/
{ ULONG BAR0, CodedApSize;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpQueryAperture entered.\n"));
//
// Get the current base physical address of the AGP Aperture.
//
ReadCPQConfig(&BAR0, OFFSET_BAR0, sizeof(BAR0)); CurrentBase->QuadPart = BAR0 & PCI_ADDRESS_MEMORY_ADDRESS_MASK;
//
// Get the (current) size of the aperture. This is done by writing all ones
// to BAR0, and then reading back the value. The Read/Write attributes
// of bits 31:25 in BAR0 will indicate the size.
//
CodedApSize = ALL_ONES; WriteCPQConfig(&CodedApSize, OFFSET_BAR0, sizeof(ULONG)); ReadCPQConfig(&CodedApSize, OFFSET_BAR0, sizeof(CodedApSize)); WriteCPQConfig(&BAR0, OFFSET_BAR0, sizeof(ULONG));
CodedApSize &= MASK_LOW_TWENTYFIVE; switch(CodedApSize) { case BAR0_CODED_AP_SIZE_0MB: *CurrentSizeInPages = 0; break; case BAR0_CODED_AP_SIZE_32MB: *CurrentSizeInPages = (32 * 1024*1024) / PAGE_SIZE; break; case BAR0_CODED_AP_SIZE_64MB: *CurrentSizeInPages = (64 * 1024*1024) / PAGE_SIZE; break; case BAR0_CODED_AP_SIZE_128MB: *CurrentSizeInPages = (128* 1024*1024) / PAGE_SIZE; break; case BAR0_CODED_AP_SIZE_256MB: *CurrentSizeInPages = (256* 1024*1024) / PAGE_SIZE; break; case BAR0_CODED_AP_SIZE_512MB: *CurrentSizeInPages = (512* 1024*1024) / PAGE_SIZE; break; case BAR0_CODED_AP_SIZE_1GB: *CurrentSizeInPages = (1024*1024*1024) / PAGE_SIZE; break; case BAR0_CODED_AP_SIZE_2GB: *CurrentSizeInPages = (BYTES_2G) / PAGE_SIZE; break; default: AGPLOG(AGP_CRITICAL, ("AGPCPQ - AgpQueryAperture - Unexpected HW aperture size: %x.\n", *CurrentSizeInPages * PAGE_SIZE)); ASSERT(FALSE); AgpContext->ApertureStart.QuadPart = 0; AgpContext->ApertureLength = 0; return(STATUS_UNSUCCESSFUL); }
//
// Remember the current aperture settings
//
AgpContext->ApertureStart.QuadPart = CurrentBase->QuadPart; AgpContext->ApertureLength = *CurrentSizeInPages * PAGE_SIZE;
//
// The pApertureRequirements will be returned in an
// IO_RESOURCE_REQUIREMENTS_LIST structure
// that describes the possible aperture sizes and bases that we support.
// This will depend on which chipset we are running on, i.e. the
// Device-VendorID in the PCI config header.
//
if (pApertureRequirements != NULL) { switch (AgpContext->DeviceVendorID) { case AGP_CNB20_LE_IDENTIFIER: *pApertureRequirements = AgpCPQGetApSizeRequirements( AP_MAX_SIZE_CNB20_LE, AP_SIZE_COUNT_CNB20_LE); break; case AGP_CNB20_HE_IDENTIFIER: *pApertureRequirements = AgpCPQGetApSizeRequirements( AP_MAX_SIZE_CNB20_HE, AP_SIZE_COUNT_CNB20_HE); break; case AGP_DRACO_IDENTIFIER: *pApertureRequirements = AgpCPQGetApSizeRequirements( AP_MAX_SIZE_DRACO, AP_SIZE_COUNT_DRACO); break; default: *pApertureRequirements = NULL; break; } }
return(STATUS_SUCCESS); }
NTSTATUS AgpSetAperture( IN PAGPCPQ_EXTENSION AgpContext, IN PHYSICAL_ADDRESS NewBase, IN ULONG NewSizeInPages ) /*******************************************************************************
* * Routine Functional Description: * * Sets the AGP aperture to the requested settings. * * Arguments: * * AgpContext -- Supplies the AGP Context, i.e. the AGP Extension. * * NewBase -- Supplies the new physical memroy base for the AGP aperture. * * NewSizeInPages -- Supplies the new size for the AGP aperture. * * Return Value: * * NTSTATUS * *******************************************************************************/
{ NTSTATUS Status = STATUS_SUCCESS; // Assume successful completion.
UCHAR SetApSize; ULONG ApBase; AGP_AP_SIZE_REG AgpApSizeRegister; BOOLEAN ChangingBase = TRUE; BOOLEAN ChangingSize = TRUE;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpSetAperture entered.\n"));
//
// If we are resuming from s3, or s4, we need to reprogram
// the gart cache enable and base
//
if (AgpContext->Gart) {
if (AgpContext->IsHPSA) DnbSetShadowBit(0); AgpContext->MMIO->GartBase.Page = (AgpContext->GartPointer >> PAGE_SHIFT); AgpContext->MMIO->FeatureControl.GARTCacheEnable = 1; //
// If the chipset supports linking then enable linking.
//
if (AgpContext->MMIO->Capabilities.LinkingSupported==1) { AgpContext->MMIO->FeatureControl.LinkingEnable=1; }
if (AgpContext->IsHPSA) DnbSetShadowBit(1); }
//
// Reprogram Special Target settings when the chip
// is powered off, but ignore rate changes as those were already
// applied during MasterInit
//
if (AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE) { AgpSpecialTarget(AgpContext, AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE); }
//
// Determine which parameter(s) we are being asked to change.
//
if (NewBase.QuadPart == AgpContext->ApertureStart.QuadPart) { ChangingBase = FALSE; }
if (NewSizeInPages == AgpContext->ApertureLength / PAGE_SIZE) { ChangingSize = FALSE; }
//
// If the new settings match the current settings, leave everything alone.
//
if ( !ChangingBase && !ChangingSize ) { return(STATUS_SUCCESS); } //
// Make sure the supplied Base is aligned on the appropriate boundary for the size.
//
ASSERT(NewBase.HighPart == 0); ASSERT((NewBase.LowPart + (NewSizeInPages * PAGE_SIZE) - 1) <= ALL_ONES); ASSERT((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) == 0);
if ((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) != 0 ) { AGPLOG(AGP_CRITICAL, ("AgpSetAperture - invalid base: %I64X for aperture of %lx pages\n", NewBase.QuadPart, NewSizeInPages)); return(STATUS_INVALID_PARAMETER); }
//
// Change the size first, since doing so will modify the Read/Write attributes
// of the appropriate bits in the Aperture Base register.
//
if (ChangingSize) {
//
// Draco only supports the default 256MB h/w Aperture Size, and can't change it, so fail.
//
if (AgpContext->DeviceVendorID == AGP_DRACO_IDENTIFIER) { ASSERT(NewSizeInPages != (256 * 1024*1024)); AGPLOG(AGP_CRITICAL, ("AgpSetAperture - Chipset incapable of changing Aperture Size.\n")); return(STATUS_INVALID_PARAMETER); }
//
// RCC HE and LE chipset both support from 32M to 2G h/w Aperture Size.
//
ASSERT( (AgpContext->DeviceVendorID == AGP_CNB20_LE_IDENTIFIER) || (AgpContext->DeviceVendorID == AGP_CNB20_HE_IDENTIFIER) );
//
// Determine the value to use to set the aperture size in the chipset's
// Device Address Space Size register.
//
switch(NewSizeInPages) { case (32 * 1024*1024) / PAGE_SIZE: SetApSize = SET_AP_SIZE_32MB; break; case (64 * 1024*1024) / PAGE_SIZE: SetApSize = SET_AP_SIZE_64MB; break; case (128 * 1024*1024) / PAGE_SIZE: SetApSize = SET_AP_SIZE_128MB; break; case (256 * 1024*1024) / PAGE_SIZE: SetApSize = SET_AP_SIZE_256MB; break; case (512 * 1024*1024) / PAGE_SIZE: SetApSize = SET_AP_SIZE_512MB; break; case (1024 * 1024*1024) / PAGE_SIZE: SetApSize = SET_AP_SIZE_1GB; break; case (BYTES_2G) / PAGE_SIZE: SetApSize = SET_AP_SIZE_2GB; break; default: AGPLOG(AGP_CRITICAL, ("AgpSetAperture - Invalid size: %lx pages. Base: %I64X.\n", NewSizeInPages, NewBase.QuadPart)); ASSERT(FALSE); return(STATUS_INVALID_PARAMETER); }
//
// Set the aperture size and set AgpValid bit. This must be done before setting the Aperture Base.
//
Status = AgpCPQSetApSizeInChipset(SetApSize, 1);
if (!NT_SUCCESS(Status)) { return(Status); }
} // End if ChangingSize
if (ChangingBase) { //
// Set the aperture base.
//
Status = AgpCPQSetApBaseInChipset(NewBase);
if (!NT_SUCCESS(Status)) { return(Status); }
} // End if ChangingBase
//
// Update our extension to reflect the new GART setting
//
AgpContext->ApertureStart = NewBase; AgpContext->ApertureLength = NewSizeInPages * PAGE_SIZE;
return(STATUS_SUCCESS); }
VOID AgpDisableAperture( IN PAGPCPQ_EXTENSION AgpContext ) /*++
Routine Description:
Disables the GART aperture so that this resource is available for other devices
Arguments:
AgpContext - Supplies the AGP context
Return Value:
None - this routine must always succeed.
--*/
{ AGPLOG(AGP_NOISE, ("AgpCpq: AgpDisableAperture entered.\n"));
//
// Set the ApSize and AgpValid to 0, which causes BAR0 to be set back
// to zero and to be read only.
//
AgpCPQSetApSizeInChipset(0, 0);
//
// Nuke the Gart! (It's meaningless now...)
//
if (AgpContext->Gart != NULL) {
//
// Two level translation...
//
if (AgpContext->MMIO->Capabilities.TwoLevelAddrTransSupported == 1) { AgpLibFreeMappedPhysicalMemory(AgpContext->Gart, AgpContext->GartLength); //
// Free the directory base allocation
//
if (AgpContext->Dir != NULL) { MmFreeContiguousMemory(AgpContext->Dir); AgpContext->Dir = NULL; }
} else { MmFreeContiguousMemory(AgpContext->Gart); }
AgpContext->Gart = NULL; AgpContext->GartLength = 0; } }
NTSTATUS AgpReserveMemory( IN PAGPCPQ_EXTENSION AgpContext, IN OUT AGP_RANGE *Range ) /*******************************************************************************
* * Routine Functional Description: * * Reserves a range of memory in the GART. * * Arguments: * * AgpContext -- Supplies the AGP Context, i.e. the AGP Extension. * * Range -- Supplies the AGP_RANGE structure. AGPLIB will have filled in * NumberOfPages and Type. This routine will fill in MemoryBase * and Context. * * Return Value: * * NTSTATUS * *******************************************************************************/
{ ULONG Index; ULONG NewState; NTSTATUS Status; PGART_PTE FoundRange; BOOLEAN Backwards;
ASSERT((Range->Type == MmNonCached) || (Range->Type == MmWriteCombined)); ASSERT(Range->NumberOfPages <= (AgpContext->ApertureLength / PAGE_SIZE));
AGPLOG(AGP_NOISE, ("AgpCpq: AgpReserveMemory entered.\n"));
//
// If we have not allocated our GART yet, now is the time to do so
//
if (AgpContext->Gart == NULL) { ASSERT(AgpContext->GartLength == 0); Status = AgpCPQCreateGart(AgpContext, Range->NumberOfPages); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_CRITICAL, ("AgpCPQCreateGart failed %08lx to create GART of size %lx\n", Status, AgpContext->ApertureLength/PAGE_SIZE)); return(Status); } } ASSERT(AgpContext->GartLength != 0);
//
// Now that we have a GART, try and find enough contiguous entries
// to satisfy the request. Requests for uncached memory will scan
// from high addresses to low addresses. Requests for write-combined
// memory will scan from low addresses to high addresses. We will
// use a first-fit algorithm to try and keep the allocations
// packed and contiguous.
//
Backwards = (Range->Type == MmNonCached) ? TRUE : FALSE; FoundRange = AgpCPQFindRangeInGart(&AgpContext->Gart[0], &AgpContext->Gart[(AgpContext->GartLength / sizeof(GART_PTE)) - 1], Range->NumberOfPages, Backwards, GART_ENTRY_FREE);
if (FoundRange == NULL) { //
// A big enough chunk was not found.
//
AGPLOG(AGP_CRITICAL, ("AgpReserveMemory - Could not find %d contiguous free pages of type %d in GART at %08lx\n", Range->NumberOfPages, Range->Type, AgpContext->Gart));
//
// This is where we could try and grow the GART
//
return(STATUS_INSUFFICIENT_RESOURCES); }
AGPLOG(AGP_NOISE, ("AgpReserveMemory - reserved %d pages at GART PTE %08lx\n", Range->NumberOfPages, FoundRange));
//
// Set these pages to reserved
//
if (Range->Type == MmNonCached) { NewState = GART_ENTRY_RESERVED_UC; } else { NewState = GART_ENTRY_RESERVED_WC; }
for (Index = 0; Index < Range->NumberOfPages; Index++) { ASSERT(FoundRange[Index].Soft.State == GART_ENTRY_FREE); FoundRange[Index].AsUlong = 0; FoundRange[Index].Soft.State = NewState; }
//
// Return the values.
//
Range->MemoryBase.QuadPart = AgpContext->ApertureStart.QuadPart + (FoundRange - &AgpContext->Gart[0]) * PAGE_SIZE; Range->Context = FoundRange;
ASSERT(Range->MemoryBase.HighPart == 0); AGPLOG(AGP_NOISE, ("AgpReserveMemory - reserved memory handle %lx at PA %08lx\n", FoundRange, Range->MemoryBase.LowPart));
return(STATUS_SUCCESS); }
NTSTATUS AgpReleaseMemory( IN PAGPCPQ_EXTENSION AgpContext, IN PAGP_RANGE Range ) /*******************************************************************************
* * Routine Functional Description: * * Releases memory previously reserved with AgpReserveMemory. * * Arguments: * * AgpContext -- Supplies the AGP Context, i.e. the AGP Extension. * * Range -- Supplies the range to be released. * * Return Value: * * NTSTATUS * *******************************************************************************/
{ PGART_PTE Pte, LastPteWritten; ULONG Start, ReadBack, PolledValue, Retry;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpReleaseMemory entered.\n"));
//
// Go through and free all the PTEs. None of these should still
// be valid at this point, nor should they be mapped.
//
LastPteWritten = NULL; for (Pte = Range->Context; Pte < (PGART_PTE)Range->Context + Range->NumberOfPages; Pte++) { ASSERT(Pte->Hard.Page == 0); if (Range->Type == MmNonCached) { ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_UC); } else { ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_WC); }
Pte->Soft.State = GART_ENTRY_FREE; LastPteWritten = Pte; }
//
// Invalidate the GART Cache appropriately.
//
AgpCPQMaintainGARTCacheCoherency(AgpContext, Range->MemoryBase, Range->NumberOfPages, FALSE );
//
// Flush the posted write buffers
//
if (AgpContext->IsHPSA) DnbSetShadowBit(0); AgpContext->MMIO->PostedWriteBufferControl.Flush = 1; if (AgpContext->IsHPSA) DnbSetShadowBit(1);
if (LastPteWritten) { ReadBack = *(volatile ULONG *)&LastPteWritten->AsUlong; }
for (Retry = 1000; Retry; Retry--) { PolledValue = AgpContext->MMIO->PostedWriteBufferControl.Flush; if (PolledValue == 0) { break; } } ASSERT(PolledValue == 0); // This bit should get reset by the chipset.
Range->MemoryBase.QuadPart = 0; return(STATUS_SUCCESS); }
NTSTATUS AgpMapMemory( IN PAGPCPQ_EXTENSION AgpContext, IN PAGP_RANGE Range, IN PMDL Mdl, IN ULONG OffsetInPages, OUT PHYSICAL_ADDRESS *MemoryBase ) /*******************************************************************************
* * Routine Functional Description: * * Maps physical memory into the AGP aperture, somewhere in the specified * range. * * Arguments: * * AgpContext -- Supplies the AGP Context, i.e. the AGP Extension. * * Range -- Supplies the AGP range into which the memory should be mapped. * * Mdl -- Supplies the MDL describing the physical pages to be mapped. * * OffsetInPages - Supplies the offset into the reserved range where the * mapping should begin. * * MemoryBase -- Returns the 'physical' address in the aperture where the * pages were mapped. * * Return Value: * * NTSTATUS * *******************************************************************************/
{ ULONG PageCount; PGART_PTE Pte; PGART_PTE StartPte; ULONG Index; ULONG TargetState; PULONG Page; BOOLEAN Backwards; GART_PTE NewPte; ULONG PolledValue, Retry;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpMapMemory entered.\n"));
ASSERT(Mdl->Next == NULL);
StartPte = Range->Context; PageCount = BYTES_TO_PAGES(Mdl->ByteCount); ASSERT(PageCount <= Range->NumberOfPages); ASSERT(OffsetInPages <= Range->NumberOfPages); ASSERT(PageCount + OffsetInPages <= Range->NumberOfPages); ASSERT(PageCount > 0);
TargetState = (Range->Type == MmNonCached) ? GART_ENTRY_RESERVED_UC : GART_ENTRY_RESERVED_WC;
Pte = StartPte + OffsetInPages;
//
// We have found a suitable spot to map the pages. Now map them.
//
ASSERT(Pte >= StartPte); ASSERT(Pte + PageCount <= StartPte + Range->NumberOfPages); NewPte.AsUlong = 0; NewPte.Soft.State = (Range->Type == MmNonCached) ? GART_ENTRY_VALID_UC : GART_ENTRY_VALID_WC; Page = (PULONG)(Mdl + 1);
for (Index = 0; Index < PageCount; Index++) { ASSERT(Pte[Index].Soft.State == TargetState); NewPte.Hard.Page = *Page++; Pte[Index].AsUlong = NewPte.AsUlong; ASSERT(Pte[Index].Hard.Valid == 1); ASSERT(Pte[Index].Hard.Linked == 0); }
//
// If Linking is supported, then link the entries by setting the link bit
// in all entries, except the last entry, in the mapped set.
//
if (AgpContext->MMIO->Capabilities.LinkingSupported) { ASSERT(AgpContext->MMIO->FeatureControl.LinkingEnable); for (Index = 0; Index < PageCount-1; Index++) { ASSERT(Pte[Index].Hard.Page != 0); Pte[Index].Hard.Linked = 1; } }
//
// We have filled in all the PTEs. Now flush the write buffers.
//
if (AgpContext->IsHPSA) DnbSetShadowBit(0); AgpContext->MMIO->PostedWriteBufferControl.Flush = 1; if (AgpContext->IsHPSA) DnbSetShadowBit(1); NewPte.AsUlong = *(volatile ULONG *)&Pte[PageCount-1].AsUlong;
for (Retry = 1000; Retry; Retry--) { PolledValue = AgpContext->MMIO->PostedWriteBufferControl.Flush; if (PolledValue == 0) { break; } } ASSERT(PolledValue == 0); // This bit should get reset by the chipset.
//
// Return where they are mapped
//
MemoryBase->QuadPart = Range->MemoryBase.QuadPart + (Pte - StartPte) * PAGE_SIZE;
return(STATUS_SUCCESS); }
NTSTATUS AgpUnMapMemory( IN PAGPCPQ_EXTENSION AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages ) /*******************************************************************************
* * Routine Functional Description: * * UnMaps all or part of the memory that was previously mapped by AgpMapMemory. * * Arguments: * * AgpContext -- Supplies the AGP Context, i.e. the AGP Extension. * * AgpRange -- Supplies the AGP range out of which memory should be un-mapped. * * NumberOfPages -- Supplies the number of pages in the range to be un-mapped. * * OffsetInPages -- Supplies the offset into the Reserved Range where the un-mapping * should begin. * * Return Value: * * NTSTATUS * *******************************************************************************/
{ ULONG Index, TargetState, ReadBack, PolledValue, Retry; PGART_PTE ReservedBasePte; PGART_PTE Pte; PGART_PTE LastChangedPte=NULL; PHYSICAL_ADDRESS pa;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpUnMapMemory entered.\n"));
ASSERT(OffsetInPages + NumberOfPages <= AgpRange->NumberOfPages);
ReservedBasePte = AgpRange->Context; Pte = &ReservedBasePte[OffsetInPages];
TargetState = (AgpRange->Type == MmNonCached) ? GART_ENTRY_RESERVED_UC : GART_ENTRY_RESERVED_WC; //
// UnMap each entry by putting each Mapped Entry back into the 'Reserved State'
//
for (Index=0; Index < NumberOfPages; Index++) {
if (Pte[Index].Hard.Valid) { ASSERT(Pte[Index].Hard.Page != 0);
Pte[Index].Hard.Page = 0; Pte[Index].Soft.State = TargetState; LastChangedPte = &Pte[Index];
} else { //
// We are being asked to un-map a page that is not mapped.
//
ASSERT(Pte[Index].Hard.Page == 0); ASSERT(Pte[Index].Soft.State == TargetState); AGPLOG(AGP_NOISE, ("AgpUnMapMemory - PTE %08lx (%08lx) at offset %d not mapped\n", &Pte[Index], Pte[Index].AsUlong, Index)); } }
//
// Maintain link bit coherency within this reserved range.
//
if (OffsetInPages != 0) { ASSERT(OffsetInPages >= 1); if (ReservedBasePte[OffsetInPages-1].Hard.Linked == 1) { ASSERT(ReservedBasePte[OffsetInPages-1].Hard.Valid == 1); ReservedBasePte[OffsetInPages-1].Hard.Linked = 0; } }
//
// Invalidate the Cache appropriately.
//
pa.HighPart = 0; pa.LowPart = AgpRange->MemoryBase.LowPart + OffsetInPages*PAGE_SIZE; AgpCPQMaintainGARTCacheCoherency(AgpContext, pa, NumberOfPages, FALSE);
//
// Flush the posted write buffers
//
if (LastChangedPte != NULL) { if (AgpContext->IsHPSA) DnbSetShadowBit(0); AgpContext->MMIO->PostedWriteBufferControl.Flush = 1; if (AgpContext->IsHPSA) DnbSetShadowBit(1); ReadBack = *((volatile ULONG *)&(LastChangedPte[0].AsUlong)); for (Retry = 2000; Retry; Retry--) { PolledValue = AgpContext->MMIO->PostedWriteBufferControl.Flush; if (PolledValue == 0) { break; } } ASSERT(PolledValue == 0); // This bit should get reset by the chipset.
}
return(STATUS_SUCCESS); }
NTSTATUS AgpCPQCreateGart( IN PAGPCPQ_EXTENSION AgpContext, IN ULONG MinimumPages ) /*******************************************************************************
* * Routine Functional Description: * * Allocates and initializes an empty GART. The current implementation * attempts to allocate the entire GART on the first reserve. * * Arguments: * * AgpContext -- Supplies the AGP Context, i.e. the AGP Extension. * * MinimumPages -- Supplies the minimum size (in pages) of the GART to be * created. * * Return Value: * * NTSTATUS * *******************************************************************************/
{ PGART_PTE Gart; ULONG* Dir; PHYSICAL_ADDRESS LowestAcceptable; PHYSICAL_ADDRESS BoundaryMultiple; PHYSICAL_ADDRESS HighestAcceptable; PHYSICAL_ADDRESS GartPhysical, DirPhysical, GartPointer, GartPagePhysical; ULONG Index; ULONG GartLength = BYTES_TO_PAGES(AgpContext->ApertureLength) * sizeof(GART_PTE);;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQCreateGart entered.\n"));
//
// If the chipset requires two-level address translation, then allocate a not-necessarily-
// contiguous GART, and create a Directory. Otherwise, allocate a contiguous GART.
//
if (AgpContext->MMIO->Capabilities.TwoLevelAddrTransSupported == 1){
//
// The chipset uses 2-level GART address translation.
// Allocate the (not-necessarily-contiguous) GART.
//
Gart = AgpLibAllocateMappedPhysicalMemory(AgpContext, GartLength);
if (Gart == NULL) { AGPLOG(AGP_CRITICAL, ("AgpCPQCreateGart - MmAllocateNonCachedMemory, for %lx bytes, failed\n", PAGE_SIZE)); return(STATUS_INSUFFICIENT_RESOURCES); } ASSERT(((ULONG_PTR)Gart & (PAGE_SIZE-1)) == 0);
//
// Now allocate a GART Directory. The directory needs to be
// below the 4GB boundary.
//
HighestAcceptable.QuadPart = 0xffffffff; LowestAcceptable.QuadPart = 0; BoundaryMultiple.QuadPart = 0;
Dir = MmAllocateContiguousMemorySpecifyCache(PAGE_SIZE, LowestAcceptable, HighestAcceptable, BoundaryMultiple, MmNonCached); if (Dir == NULL) { AGPLOG(AGP_CRITICAL, ("AgpCPQCreateGart - MmAllocateContiguousMemory %lx failed\n", PAGE_SIZE)); return(STATUS_INSUFFICIENT_RESOURCES); } ASSERT(((ULONG_PTR)Dir & (PAGE_SIZE-1)) == 0); DirPhysical = MmGetPhysicalAddress(Dir);
//
// Walk the Directory, and assign to each Directory entry the value
// of the physical address of the corresponding GART page.
//
ASSERT(GartLength/PAGE_SIZE <= PAGE_SIZE/sizeof(ULONG)); for (Index=0; Index<(GartLength/PAGE_SIZE); Index++) { ULONG HighPart; ULONG Temp;
GartPagePhysical = MmGetPhysicalAddress( &(Gart[Index*PAGE_SIZE/sizeof(GART_PTE)]));
//
// Format of a directory entry is
// 31 12 11 10 9 8 7 2 1 0 <- bits
// ------------------------------------------------------
// | [31:12] | [32] | [33] | [34] | [35] | | L | V | <- Data
// ------------------------------------------------------
//
// Where:-
// 31-12 are bits 31 thru 12 of the physical address, ie
// the page number if the page is below 4GB.
// 32, 33, 34 and 35 are the respective bits of the physical
// address if the address is above 4GB.
// L Link.
// V Valid.
//
ASSERT((GartPagePhysical.HighPart & ~0xf) == 0);
HighPart = GartPagePhysical.HighPart & 0xf; Temp = (HighPart & 1) << 11;// bit 32 -> bit 11
Temp |= (HighPart & 2) << 9 ;// bit 33 -> bit 10
Temp |= (HighPart & 4) << 7 ;// bit 34 -> bit 9
Temp |= (HighPart & 8) << 5 ;// bit 35 -> bit 8
Dir[Index] = GartPagePhysical.LowPart | Temp;
}
} else {
//
// The chipset uses single level address translation.
// Allocate the contiguous GART.
//
//
// Try and get a chunk of contiguous memory big enough to map the
// entire aperture.
//
HighestAcceptable.QuadPart = 0xFFFFFFFF; LowestAcceptable.QuadPart = 0; BoundaryMultiple.QuadPart = 0;
Gart = MmAllocateContiguousMemorySpecifyCache(GartLength, LowestAcceptable, HighestAcceptable, BoundaryMultiple, MmNonCached); if (Gart == NULL) { AGPLOG(AGP_CRITICAL, ("AgpCPQCreateGart - MmAllocateContiguousMemory %lx failed\n", GartLength)); return(STATUS_INSUFFICIENT_RESOURCES); }
//
// We successfully allocated a contiguous chunk of memory.
// It should be page aligned already.
//
ASSERT(((ULONG_PTR)Gart & (PAGE_SIZE-1)) == 0);
//
// Get the physical address.
//
GartPhysical = MmGetPhysicalAddress(Gart); AGPLOG(AGP_NOISE, ("AgpCPQCreateGart - GART of length %lx created at VA %08lx, PA %08lx\n", GartLength, Gart, GartPhysical.LowPart)); ASSERT(GartPhysical.HighPart == 0); ASSERT((GartPhysical.LowPart & (PAGE_SIZE-1)) == 0);
}
//
// Initialize all the GART PTEs to free
//
for (Index=0; Index<GartLength/sizeof(GART_PTE); Index++) { Gart[Index].Soft.State = GART_ENTRY_FREE; }
//
// Update our extension to reflect the current state.
//
AgpContext->Gart = Gart; AgpContext->GartLength = GartLength; if (AgpContext->MMIO->Capabilities.TwoLevelAddrTransSupported == 1) { AgpContext->Dir = Dir; GartPointer=DirPhysical; } else { AgpContext->Dir = NULL; GartPointer=GartPhysical; }
//
// Stash GartPointer for resuming from s3 or s4
//
AgpContext->GartPointer = GartPointer.LowPart;
//
// Tell the chipset where the GART base is.
//
if (AgpContext->IsHPSA) DnbSetShadowBit(0); AgpContext->MMIO->GartBase.Page = (GartPointer.LowPart >> PAGE_SHIFT); if (AgpContext->IsHPSA) DnbSetShadowBit(1);
return(STATUS_SUCCESS); }
PGART_PTE AgpCPQFindRangeInGart( IN PGART_PTE StartPte, IN PGART_PTE EndPte, IN ULONG Length, IN BOOLEAN SearchBackward, IN ULONG SearchState ) /*++
Routine Description:
Finds a contiguous range in the GART. This routine can search either from the beginning of the GART forwards or the end of the GART backwards.
Arguments:
StartIndex - Supplies the first GART pte to search
EndPte - Supplies the last GART to search (inclusive)
Length - Supplies the number of contiguous free entries to search for.
SearchBackward - TRUE indicates that the search should begin at EndPte and search backwards. FALSE indicates that the search should begin at StartPte and search forwards
SearchState - Supplies the PTE state to look for.
Return Value:
Pointer to the first PTE in the GART if a suitable range is found.
NULL if no suitable range exists.
--*/
{ PGART_PTE Current; PGART_PTE Last; LONG Delta; ULONG Found; PGART_PTE Candidate;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQFindRangeInGart entered.\n"));
ASSERT(EndPte >= StartPte); ASSERT(Length <= (ULONG)(EndPte - StartPte + 1)); ASSERT(Length != 0);
if (SearchBackward) { Current = EndPte; Last = StartPte-1; Delta = -1; } else { Current = StartPte; Last = EndPte+1; Delta = 1; }
Found = 0; while (Current != Last) { if (Current->Soft.State == SearchState) { if (++Found == Length) { //
// A suitable range was found, return it
//
if (SearchBackward) { return(Current); } else { return(Current - Length + 1); } } } else { Found = 0; } Current += Delta; }
//
// A suitable range was not found.
//
return(NULL); }
VOID AgpCPQMaintainGARTCacheCoherency( IN PAGPCPQ_EXTENSION AgpContext, IN PHYSICAL_ADDRESS MemoryBase, IN ULONG NumberOfEntries, IN BOOLEAN InvalidateAll ) /*******************************************************************************
* * Routine Functional Description: * * Invalidates the entire GART [&DIR] Cache, or individual Entries in the GART * cache, depending on which would provide better overall performance. * * Arguments: * * AgpContext -- Supplies the AGP Context, i.e. the AGP Extension. * * MemoryBase -- Supplies the 'physical' address, in the AGP aperture, * corresponding to the first GART Entry to flush * from the GART Entry Cache. * * NumberOfEntries -- Supplies the number of Cached Entries which need to be * invalidated. * * InvalidateAll -- Supplies a flag that, if TRUE, indicates that this routine * should invalidate the entire GART [&DIR] cache, rather than the individual * Cached Entries. If FALSE, then this routine decides how best to do it. * * Return Value: * * None * *******************************************************************************/
{ ULONG PolledValue, AperturePage, Index, Retry; GART_CACHE_ENTRY_CONTROL CacheEntryControlValue;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQMaintainGARTCacheCoherency entered.\n"));
if (InvalidateAll || (NumberOfEntries > MAX_CACHED_ENTRIES_TO_INVALIDATE)) { //
// Invalidate the entire GART [&DIR] Cache
//
if (AgpContext->IsHPSA) DnbSetShadowBit(0); AgpContext->MMIO->CacheControl.GartAndDirCacheInvalidate = 1; if (AgpContext->IsHPSA) DnbSetShadowBit(1); for (Retry = 2000; Retry; Retry--) { PolledValue = AgpContext->MMIO->CacheControl.GartAndDirCacheInvalidate; if (PolledValue == 0) { break; } } ASSERT(PolledValue == 0); // This bit should get reset by the chipset.
} else { //
// Invalidate the individual cached GART enties
//
AperturePage = MemoryBase.LowPart >> PAGE_SHIFT; for (Index=0; Index<NumberOfEntries; Index++, AperturePage++) { CacheEntryControlValue.AsBits.GartEntryInvalidate = 1; CacheEntryControlValue.AsBits.GartEntryOffset = AperturePage; if (AgpContext->IsHPSA) DnbSetShadowBit(0); AgpContext->MMIO->CacheEntryControl.AsDword = CacheEntryControlValue.AsDword; if (AgpContext->IsHPSA) DnbSetShadowBit(1); for (Retry = 1000; Retry; Retry--) { PolledValue = AgpContext->MMIO->CacheEntryControl.AsBits.GartEntryInvalidate; if (PolledValue == 0) { break; } } ASSERT(PolledValue == 0); } }
return; }
PIO_RESOURCE_LIST AgpCPQGetApSizeRequirements( ULONG MaxSize, ULONG Count ) /*******************************************************************************
* * Routine Functional Description: * * Creates and fills in an IO_RESOURCE_LIST structure, which describes * the possible aperture sizes supported by the chipset. * * Arguments: * * MaxSize -- The Maximum possible size, in Bytes, for the aperture * * Count -- The number of different aperture sizes. This routine assumes * that the aperture size is a multiple of two * times the smallest aperture size. For example, 256MB, 128MB, 64MB * 32MB. MaxSize would be 256M, and count would be 4. * * Return Value: * * Pointer to the newly created IO_RESOURCE_LIST. * *******************************************************************************/
{ PVOID RequirementsPointer; PIO_RESOURCE_LIST Requirements; ULONG Length, Index;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQGetApSizeRequirements entered.\n"));
RequirementsPointer = ExAllocatePoolWithTag(PagedPool, sizeof(IO_RESOURCE_LIST) + (Count-1)*sizeof(IO_RESOURCE_DESCRIPTOR), 'RpgA');
if (RequirementsPointer == NULL) { AGPLOG(AGP_NOISE, ("AgpAgpCPQGetApSizeRequirements - Failed to Allocate memory for a Resource Descriptor.\n")); return(NULL); } else { Requirements = (PIO_RESOURCE_LIST)RequirementsPointer; }
//
// Compaq supports several different aperture sizes, all must be
// naturally aligned. Start with the largest aperture and
// work downwards so that we get the biggest possible aperture.
//
Requirements->Version = Requirements->Revision = 1; Requirements->Count = Count; Length = MaxSize; for (Index=0; Index < Count; Index++) { Requirements->Descriptors[Index].Option = IO_RESOURCE_ALTERNATIVE; Requirements->Descriptors[Index].Type = CmResourceTypeMemory; Requirements->Descriptors[Index].ShareDisposition = CmResourceShareDeviceExclusive; Requirements->Descriptors[Index].Flags = CM_RESOURCE_MEMORY_READ_WRITE | CM_RESOURCE_MEMORY_PREFETCHABLE;
Requirements->Descriptors[Index].u.Memory.Length = Length; Requirements->Descriptors[Index].u.Memory.Alignment = Length; Requirements->Descriptors[Index].u.Memory.MinimumAddress.QuadPart = 0; Requirements->Descriptors[Index].u.Memory.MaximumAddress.QuadPart = (ULONG)-1;
Length = Length/2; }
return(Requirements); }
NTSTATUS AgpCPQSetApSizeInChipset ( IN UCHAR NewSetApSize, IN UCHAR NewSetAgpValid ) /*******************************************************************************
* * Routine Functional Description: * * Modifes the Device Address Space (Aperture) Size register in the chipset's * PCI-PCI bridge. * * Arguments: * * NewSetApSize -- The value to set in bits 3:1 of the DAS_SIZE register. * NewSetAgpValid -- Value to set in bit 0 of the DAS_SIZE register. * * Return Value: * * NT Status value. * *******************************************************************************/
{ NTSTATUS Status = STATUS_SUCCESS; UCHAR ApSizeRegisterOffset; BUS_SLOT_ID CpqP2PBusSlotID; AGP_AP_SIZE_REG ApSizeRegister;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQSetApSizeInChipset entered.\n"));
ApSizeRegisterOffset = OFFSET_AP_SIZE; CpqP2PBusSlotID.BusId = AGP_CPQ_BUS_ID; CpqP2PBusSlotID.SlotId = AGP_CPQ_PCIPCI_SLOT_ID;
ApSizeRegister.AsBits.ApSize = NewSetApSize; ApSizeRegister.AsBits.AgpValid = NewSetAgpValid;
Status = ApGetSetBusData(&CpqP2PBusSlotID, FALSE, &ApSizeRegister.AsByte, ApSizeRegisterOffset, sizeof(UCHAR));
return(Status); }
NTSTATUS AgpCPQSetApBaseInChipset ( IN PHYSICAL_ADDRESS NewBase ) { ULONG ApBase;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQSetApBaseInChipset entered.\n"));
//
// Write the value of the aperture base in BAR0.
//
ApBase = NewBase.LowPart & PCI_ADDRESS_MEMORY_ADDRESS_MASK; WriteCPQConfig(&ApBase, OFFSET_BAR0, sizeof(ApBase));
#if DBG
//
// Read back what we wrote, make sure it worked
//
{ ULONG DbgBase;
ReadCPQConfig(&DbgBase, OFFSET_BAR0, sizeof(ApBase)); ASSERT((DbgBase & PCI_ADDRESS_MEMORY_ADDRESS_MASK) == ApBase); } #endif
return(STATUS_SUCCESS); }
VOID AgpFindFreeRun( IN PVOID AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages, OUT ULONG *FreePages, OUT ULONG *FreeOffset ) /*++
Routine Description:
Finds the first contiguous run of free pages in the specified part of the reserved range.
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the AGP range
NumberOfPages - Supplies the size of the region to be searched for free pages
OffsetInPages - Supplies the start of the region to be searched for free pages
FreePages - Returns the length of the first contiguous run of free pages
FreeOffset - Returns the start of the first contiguous run of free pages
Return Value:
None. FreePages == 0 if there are no free pages in the specified range.
--*/
{ PGART_PTE Pte; ULONG i; AGPLOG(AGP_NOISE, ("AgpCpq: AgpFindFreeRun entered.\n"));
Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
//
// Find the first free PTE
//
for (i=0; i<NumberOfPages; i++) { if (Pte[i].Hard.Valid == 0) { //
// Found a free PTE, count the contiguous ones.
//
*FreeOffset = i + OffsetInPages; *FreePages = 0; while ((i<NumberOfPages) && (Pte[i].Hard.Valid == 0)) { *FreePages += 1; ++i; } return; } }
//
// No free PTEs in the specified range
//
*FreePages = 0; return; }
VOID AgpGetMappedPages( IN PVOID AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages, OUT PMDL Mdl ) /*++
Routine Description:
Returns the list of physical pages mapped into the specified range in the GART.
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the AGP range
NumberOfPages - Supplies the number of pages to be returned
OffsetInPages - Supplies the start of the region
Mdl - Returns the list of physical pages mapped in the specified range.
Return Value:
None
--*/
{ PGART_PTE Pte; ULONG i; PULONG Pages; AGPLOG(AGP_NOISE, ("AgpCpq: AgpGetMappedPages entered.\n"));
ASSERT(NumberOfPages * PAGE_SIZE == Mdl->ByteCount);
Pages = (PULONG)(Mdl + 1); Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
for (i=0; i<NumberOfPages; i++) { ASSERT(Pte[i].Hard.Valid == 1); Pages[i] = Pte[i].Hard.Page; } return;
}
NTSTATUS AgpSpecialTarget( IN PAGPCPQ_EXTENSION AgpContext, IN ULONGLONG DeviceFlags ) /*++
Routine Description:
This routine makes "special" tweaks to the AGP chipset
Arguments:
AgpContext - Supplies the AGP context
DeviceFlags - Flags indicating what tweaks to perform
Return Value:
STATUS_SUCCESS, or error
--*/ { NTSTATUS Status;
//
// Should we change the AGP rate?
//
if (DeviceFlags & AGP_FLAG_SPECIAL_RESERVE) {
Status = AgpCPQSetRate(AgpContext, (ULONG)((DeviceFlags & AGP_FLAG_SPECIAL_RESERVE) >> AGP_FLAG_SET_RATE_SHIFT)); if (!NT_SUCCESS(Status)) { return Status; } }
//
// Add more tweaks here...
//
AgpContext->SpecialTarget |=DeviceFlags;
return STATUS_SUCCESS; }
NTSTATUS AgpCPQSetRate( IN PAGPCPQ_EXTENSION AgpContext, IN ULONG AgpRate ) /*++
Routine Description:
This routine sets the AGP rate
Arguments:
AgpContext - Supplies the AGP context
AgpRate - Rate to set
note: this routine assumes that AGP has already been enabled, and that whatever rate we've been asked to set is supported by master
Return Value:
STATUS_SUCCESS, or error status
--*/ { NTSTATUS Status; ULONG TargetEnable; ULONG MasterEnable; PCI_AGP_CAPABILITY TargetCap; PCI_AGP_CAPABILITY MasterCap; BOOLEAN ReverseInit;
//
// Read capabilities
//
Status = AgpLibGetPciDeviceCapability(0, 0, &TargetCap);
if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AgpCpqSetRate: AgpLibGetPciDeviceCapability " "failed %08lx\n", Status)); return Status; }
Status = AgpLibGetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AgpCpqSetRate: AgpLibGetMasterCapability " "failed %08lx\n", Status)); return Status; }
//
// Verify the requested rate is supported by both master and target
//
if (!(AgpRate & TargetCap.AGPStatus.Rate & MasterCap.AGPStatus.Rate)) { return STATUS_INVALID_PARAMETER; }
//
// Disable AGP while the pull the rug out from underneath
//
TargetEnable = TargetCap.AGPCommand.AGPEnable; TargetCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetPciDeviceCapability(0, 0, &TargetCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AgpCpqSetRate: AgpLibSetPciDeviceCapability %08lx for " "Target failed %08lx\n", &TargetCap, Status)); return Status; } MasterEnable = MasterCap.AGPCommand.AGPEnable; MasterCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AgpCpqSetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); return Status; }
//
// Fire up AGP with new rate
//
ReverseInit = (AgpContext->SpecialTarget & AGP_FLAG_REVERSE_INITIALIZATION) == AGP_FLAG_REVERSE_INITIALIZATION; if (ReverseInit) { MasterCap.AGPCommand.Rate = AgpRate; MasterCap.AGPCommand.AGPEnable = MasterEnable; Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AgpCpqSetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); } }
TargetCap.AGPCommand.Rate = AgpRate; TargetCap.AGPCommand.AGPEnable = TargetEnable; Status = AgpLibSetPciDeviceCapability(0, 0, &TargetCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AgpCpqSetRate: AgpLibSetPciDeviceCapability %08lx for " "Target failed %08lx\n", &TargetCap, Status)); return Status; }
if (!ReverseInit) { MasterCap.AGPCommand.Rate = AgpRate; MasterCap.AGPCommand.AGPEnable = MasterEnable; Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AgpCpqSetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); } }
return Status; }
|