Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1065 lines
29 KiB

  1. /*++
  2. Copyright (c) 1997 Microsoft Corporation
  3. Module Name:
  4. init.c
  5. Abstract:
  6. Common initialization routine for the AGP filter driver
  7. Author:
  8. John Vert (jvert) 10/22/1997
  9. Revision History:
  10. Elliot Shmukler (elliots) 3/24/1999 - Added support for "favored" memory
  11. ranges for AGP physical memory allocation,
  12. fixed some bugs.
  13. --*/
  14. #include "agplib.h"
  15. //
  16. // Local function prototypes
  17. //
  18. NTSTATUS
  19. AgpAddDevice(
  20. IN PDRIVER_OBJECT DriverObject,
  21. IN PDEVICE_OBJECT PhysicalDeviceObject
  22. );
  23. NTSTATUS
  24. AgpBuildHackTable(
  25. IN OUT PAGP_HACK_TABLE_ENTRY *AgpHackTable,
  26. IN HANDLE HackTableKey
  27. );
  28. NTSTATUS
  29. DriverEntry(
  30. IN PDRIVER_OBJECT DriverObject,
  31. IN PUNICODE_STRING RegistryPath
  32. );
  33. VOID
  34. AgpDriverUnload(
  35. IN PDRIVER_OBJECT DriverObject
  36. );
  37. VOID
  38. AgpInitFavoredMemoryRanges(
  39. IN PTARGET_EXTENSION Extension);
  40. #ifdef ALLOC_PRAGMA
  41. #pragma alloc_text(PAGE, AgpAddDevice)
  42. #pragma alloc_text(PAGE, DriverEntry)
  43. #pragma alloc_text(PAGE, AgpDriverUnload)
  44. #pragma alloc_text(PAGE, AgpAttachDeviceRelations)
  45. #pragma alloc_text(INIT, AgpBuildHackTable)
  46. #pragma alloc_text(PAGE, AgpInitFavoredMemoryRanges)
  47. #endif
  48. ULONG AgpLogLevel = 0;
  49. ULONG AgpStopLevel = 0;
  50. PDRIVER_OBJECT AgpDriver;
  51. GLOBALS Globals;
  52. //
  53. // Table of hacks for broken hardware read from the registry at init
  54. //
  55. PAGP_HACK_TABLE_ENTRY AgpDeviceHackTable = NULL;
  56. PAGP_HACK_TABLE_ENTRY AgpGlobalHackTable = NULL;
  57. #define HACKFMT_VENDORDEV (sizeof(L"VVVVDDDD") - sizeof(UNICODE_NULL))
  58. #define HACKFMT_VENDORDEVREVISION (sizeof(L"VVVVDDDDRR") - sizeof(UNICODE_NULL))
  59. #define HACKFMT_SUBSYSTEM (sizeof(L"VVVVDDDDSSSSssss") - sizeof(UNICODE_NULL))
  60. #define HACKFMT_SUBSYSTEMREVISION (sizeof(L"VVVVDDDDSSSSssssRR") - sizeof(UNICODE_NULL))
  61. #define HACKFMT_MAX_LENGTH HACKFMT_SUBSYSTEMREVISION
  62. #define HACKFMT_DEVICE_OFFSET 4
  63. #define HACKFMT_SUBVENDOR_OFFSET 8
  64. #define HACKFMT_SUBSYSTEM_OFFSET 12
  65. NTSTATUS
  66. AgpAddDevice(
  67. IN PDRIVER_OBJECT DriverObject,
  68. IN PDEVICE_OBJECT PhysicalDeviceObject
  69. )
  70. {
  71. NTSTATUS Status;
  72. PDEVICE_OBJECT Device;
  73. PTARGET_EXTENSION Extension;
  74. PAGED_CODE();
  75. //
  76. // Create our device
  77. //
  78. Status = IoCreateDevice(DriverObject,
  79. sizeof(TARGET_EXTENSION) + AgpExtensionSize - sizeof(ULONGLONG),
  80. NULL,
  81. FILE_DEVICE_BUS_EXTENDER,
  82. FILE_DEVICE_SECURE_OPEN, // Not really necessary in our case as we don't support create
  83. FALSE,
  84. &Device);
  85. if (!NT_SUCCESS(Status)) {
  86. AGPLOG(AGP_CRITICAL,("AgpAddDevice: IoCreateDevice failed %08lx\n",Status));
  87. return(Status);
  88. }
  89. //
  90. // Initialize the device extension
  91. //
  92. Extension = Device->DeviceExtension;
  93. Extension->CommonExtension.Type = AgpTargetFilter;
  94. Extension->CommonExtension.Deleted = FALSE;
  95. Extension->CommonExtension.Signature = TARGET_SIG;
  96. Status = ApQueryBusInterface(PhysicalDeviceObject, &Extension->CommonExtension.BusInterface);
  97. if (!NT_SUCCESS(Status)) {
  98. AGPLOG(AGP_CRITICAL,
  99. ("AgpAddDevice: query for bus interface failed %08lx\n", Status));
  100. IoDeleteDevice(Device);
  101. return(STATUS_NO_SUCH_DEVICE);
  102. }
  103. Extension->ChildDevice = NULL;
  104. Extension->Resources = NULL;
  105. Extension->ResourcesTranslated = NULL;
  106. Extension->FavoredMemory.NumRanges = 0;
  107. Extension->FavoredMemory.Ranges = NULL;
  108. Extension->GartBase.QuadPart = 0;
  109. Extension->GartLengthInPages = 0;
  110. Extension->Lock = ExAllocatePoolWithTag(NonPagedPool, sizeof(FAST_MUTEX), 'MFgA');
  111. if (Extension->Lock == NULL) {
  112. AGPLOG(AGP_CRITICAL,
  113. ("AgpAddDevice: allocation of fast mutext failed\n"));
  114. RELEASE_BUS_INTERFACE(Extension);
  115. IoDeleteDevice(Device);
  116. return(STATUS_INSUFFICIENT_RESOURCES);
  117. }
  118. ExInitializeFastMutex(Extension->Lock);
  119. //
  120. // Attach to the supplied PDO
  121. //
  122. Extension->CommonExtension.AttachedDevice = IoAttachDeviceToDeviceStack(Device, PhysicalDeviceObject);
  123. if (Extension->CommonExtension.AttachedDevice == NULL) {
  124. //
  125. // The attach failed.
  126. //
  127. AGPLOG(AGP_CRITICAL,
  128. ("AgpAddDevice: IoAttachDeviceToDeviceStack from %08lx to %08lx failed\n",
  129. Device,
  130. PhysicalDeviceObject));
  131. RELEASE_BUS_INTERFACE(Extension);
  132. IoDeleteDevice(Device);
  133. return(STATUS_INSUFFICIENT_RESOURCES);
  134. }
  135. //
  136. // Figure out our favored memory ranges
  137. //
  138. AgpInitFavoredMemoryRanges(Extension);
  139. //
  140. // Finally call the chipset-specific code for target initialization
  141. //
  142. Status = AgpInitializeTarget(GET_AGP_CONTEXT(Extension));
  143. if (!NT_SUCCESS(Status)) {
  144. AGPLOG(AGP_CRITICAL,
  145. ("AgpAttachDeviceRelations: AgpInitializeTarget on device %08lx failed %08lx\n",
  146. Device,
  147. Status));
  148. IoDetachDevice(Extension->CommonExtension.AttachedDevice);
  149. RELEASE_BUS_INTERFACE(Extension);
  150. IoDeleteDevice(Device);
  151. return(Status);
  152. }
  153. Extension->PDO = PhysicalDeviceObject;
  154. Extension->Self = Device;
  155. Status = AgpWmiRegistration(Extension);
  156. if (!NT_SUCCESS(Status)) {
  157. AGPLOG(AGP_CRITICAL, ("AgpWmiRegistration failed %08lx\n", Status));
  158. IoDetachDevice(Extension->CommonExtension.AttachedDevice);
  159. RELEASE_BUS_INTERFACE(Extension);
  160. IoDeleteDevice(Device);
  161. return Status;
  162. }
  163. Device->Flags &= ~DO_DEVICE_INITIALIZING;
  164. return(STATUS_SUCCESS);
  165. }
  166. NTSTATUS
  167. AgpBuildHackTable(
  168. IN OUT PAGP_HACK_TABLE_ENTRY *AgpHackTable,
  169. IN HANDLE HackTableKey
  170. )
  171. {
  172. NTSTATUS status;
  173. PKEY_FULL_INFORMATION keyInfo = NULL;
  174. ULONG hackCount, size, index;
  175. USHORT temp;
  176. PAGP_HACK_TABLE_ENTRY entry;
  177. ULONGLONG data;
  178. PKEY_VALUE_FULL_INFORMATION valueInfo = NULL;
  179. ULONG valueInfoSize = sizeof(KEY_VALUE_FULL_INFORMATION)
  180. + HACKFMT_MAX_LENGTH +
  181. + sizeof(ULONGLONG);
  182. //
  183. // Get the key info so we know how many hack values there are.
  184. // This does not change during system initialization.
  185. //
  186. status = ZwQueryKey(HackTableKey,
  187. KeyFullInformation,
  188. NULL,
  189. 0,
  190. &size
  191. );
  192. if (status != STATUS_BUFFER_TOO_SMALL) {
  193. ASSERT(!NT_SUCCESS(status));
  194. goto cleanup;
  195. }
  196. ASSERT(size > 0);
  197. keyInfo = ExAllocatePool(PagedPool, size);
  198. if (!keyInfo) {
  199. status = STATUS_INSUFFICIENT_RESOURCES;
  200. goto cleanup;
  201. }
  202. status = ZwQueryKey(HackTableKey,
  203. KeyFullInformation,
  204. keyInfo,
  205. size,
  206. &size
  207. );
  208. if (!NT_SUCCESS(status)) {
  209. goto cleanup;
  210. }
  211. hackCount = keyInfo->Values;
  212. ExFreePool(keyInfo);
  213. keyInfo = NULL;
  214. //
  215. // Allocate and initialize the hack table
  216. //
  217. *AgpHackTable = ExAllocatePool(NonPagedPool,
  218. (hackCount + 1) * sizeof(AGP_HACK_TABLE_ENTRY)
  219. );
  220. if (!*AgpHackTable) {
  221. status = STATUS_INSUFFICIENT_RESOURCES;
  222. goto cleanup;
  223. }
  224. //
  225. // Allocate a valueInfo buffer big enough for the biggest valid
  226. // format and a ULONGLONG worth of data.
  227. //
  228. valueInfo = ExAllocatePool(PagedPool, valueInfoSize);
  229. if (!valueInfo) {
  230. status = STATUS_INSUFFICIENT_RESOURCES;
  231. goto cleanup;
  232. }
  233. entry = *AgpHackTable;
  234. for (index = 0; index < hackCount; index++) {
  235. status = ZwEnumerateValueKey(HackTableKey,
  236. index,
  237. KeyValueFullInformation,
  238. valueInfo,
  239. valueInfoSize,
  240. &size
  241. );
  242. if (!NT_SUCCESS(status)) {
  243. if (status == STATUS_BUFFER_OVERFLOW || status == STATUS_BUFFER_TOO_SMALL) {
  244. //
  245. // All out data is of fixed length and the buffer is big enough
  246. // so this can't be for us.
  247. //
  248. continue;
  249. } else {
  250. goto cleanup;
  251. }
  252. }
  253. //
  254. // Get pointer to the data if its of the right type
  255. //
  256. if ((valueInfo->Type == REG_BINARY) &&
  257. (valueInfo->DataLength == sizeof(ULONGLONG))) {
  258. data = *(ULONGLONG UNALIGNED *)(((PUCHAR)valueInfo) + valueInfo->DataOffset);
  259. } else {
  260. //
  261. // We only deal in ULONGLONGs
  262. //
  263. continue;
  264. }
  265. //
  266. // Now see if the name is formatted like we expect it to be:
  267. // VVVVDDDD
  268. // VVVVDDDDRR
  269. // VVVVDDDDSSSSssss
  270. // VVVVDDDDSSSSssssRR
  271. if ((valueInfo->NameLength != HACKFMT_VENDORDEV) &&
  272. (valueInfo->NameLength != HACKFMT_VENDORDEVREVISION) &&
  273. (valueInfo->NameLength != HACKFMT_SUBSYSTEM) &&
  274. (valueInfo->NameLength != HACKFMT_SUBSYSTEMREVISION)) {
  275. //
  276. // This isn't ours
  277. //
  278. AGPLOG(
  279. AGP_CRITICAL,
  280. ("Skipping hack entry with invalid length name\n"
  281. ));
  282. continue;
  283. }
  284. //
  285. // This looks plausable - try to parse it and fill in a hack table
  286. // entry
  287. //
  288. RtlZeroMemory(entry, sizeof(AGP_HACK_TABLE_ENTRY));
  289. //
  290. // Look for DeviceID and VendorID (VVVVDDDD)
  291. //
  292. if (!AgpStringToUSHORT(valueInfo->Name, &entry->VendorID)) {
  293. continue;
  294. }
  295. if (!AgpStringToUSHORT(valueInfo->Name + HACKFMT_DEVICE_OFFSET,
  296. &entry->DeviceID)) {
  297. continue;
  298. }
  299. //
  300. // Look for SubsystemVendorID/SubSystemID (SSSSssss)
  301. //
  302. if ((valueInfo->NameLength == HACKFMT_SUBSYSTEM) ||
  303. (valueInfo->NameLength == HACKFMT_SUBSYSTEMREVISION)) {
  304. if (!AgpStringToUSHORT(valueInfo->Name + HACKFMT_SUBVENDOR_OFFSET,
  305. &entry->SubVendorID)) {
  306. continue;
  307. }
  308. if (!AgpStringToUSHORT(valueInfo->Name + HACKFMT_SUBSYSTEM_OFFSET,
  309. &entry->SubSystemID)) {
  310. continue;
  311. }
  312. entry->Flags |= AGP_HACK_FLAG_SUBSYSTEM;
  313. }
  314. //
  315. // Look for RevisionID (RR)
  316. //
  317. if ((valueInfo->NameLength == HACKFMT_VENDORDEVREVISION) ||
  318. (valueInfo->NameLength == HACKFMT_SUBSYSTEMREVISION)) {
  319. if (AgpStringToUSHORT(valueInfo->Name +
  320. (valueInfo->NameLength/sizeof(WCHAR) - 4), &temp)) {
  321. entry->RevisionID = temp & 0xFF;
  322. entry->Flags |= AGP_HACK_FLAG_REVISION;
  323. } else {
  324. continue;
  325. }
  326. }
  327. ASSERT(entry->VendorID != 0xFFFF);
  328. //
  329. // Fill in the entry
  330. //
  331. entry->DeviceFlags = data;
  332. AGPLOG(
  333. AGP_CRITICAL,
  334. ("Adding Hack entry for Vendor:0x%04x Device:0x%04x ",
  335. entry->VendorID, entry->DeviceID
  336. ));
  337. if (entry->Flags & AGP_HACK_FLAG_SUBSYSTEM) {
  338. AGPLOG(
  339. AGP_CRITICAL,
  340. ("SybSys:0x%04x SubVendor:0x%04x ",
  341. entry->SubSystemID, entry->SubVendorID
  342. ));
  343. }
  344. if (entry->Flags & AGP_HACK_FLAG_REVISION) {
  345. AGPLOG(
  346. AGP_CRITICAL,
  347. ("Revision:0x%02x",
  348. (ULONG) entry->RevisionID
  349. ));
  350. }
  351. AGPLOG(
  352. AGP_CRITICAL,
  353. (" = 0x%I64x\n",
  354. entry->DeviceFlags
  355. ));
  356. entry++;
  357. }
  358. ASSERT(entry < (*AgpHackTable + hackCount + 1));
  359. //
  360. // Terminate the table with an invalid VendorID
  361. //
  362. entry->VendorID = 0xFFFF;
  363. ExFreePool(valueInfo);
  364. return STATUS_SUCCESS;
  365. cleanup:
  366. ASSERT(!NT_SUCCESS(status));
  367. if (keyInfo) {
  368. ExFreePool(keyInfo);
  369. }
  370. if (valueInfo) {
  371. ExFreePool(valueInfo);
  372. }
  373. if (*AgpHackTable) {
  374. ExFreePool(*AgpHackTable);
  375. *AgpHackTable = NULL;
  376. }
  377. return status;
  378. }
  379. VOID
  380. AgpInitFavoredMemoryRanges(
  381. IN PTARGET_EXTENSION Extension)
  382. /*++
  383. Routine Description:
  384. Determines the optimum memory ranges for AGP physical memory
  385. allocation by calling the ACPI BANK method provided by the
  386. AGP northbridge in order to determine which physical memory
  387. ranges are decoded by that northbridge.
  388. Initializes the FavoredMemory sturcture in the target extension
  389. with the proper ranges.
  390. If this routine fails, then the FavoredMemory structure
  391. is left untouched in its initialized state (i.e. no favored memory
  392. ranges found).
  393. Arguments:
  394. Extension - The target extension.
  395. Return Value:
  396. NONE. Upon failure,
  397. --*/
  398. {
  399. PDEVICE_OBJECT LowerPdo;
  400. IO_STATUS_BLOCK IoStatus;
  401. PIRP Irp;
  402. KEVENT event;
  403. NTSTATUS Status;
  404. ACPI_EVAL_INPUT_BUFFER inputBuffer;
  405. UCHAR ResultBuffer[sizeof(ACPI_EVAL_OUTPUT_BUFFER) + MAX_MBAT_SIZE];
  406. PACPI_EVAL_OUTPUT_BUFFER outputBuffer;
  407. PACPI_METHOD_ARGUMENT MethodArg;
  408. PMBAT Mbat;
  409. UCHAR i;
  410. USHORT j;
  411. PHYSICAL_ADDRESS MaxMemory;
  412. //
  413. // Maximum memory address for limiting AGP memory to below 4GB
  414. //
  415. MAX_MEM(MaxMemory.QuadPart);
  416. //
  417. // Get an event to wait on
  418. //
  419. KeInitializeEvent(&event, NotificationEvent, FALSE);
  420. // Get a PDO where we will send the request IRP.
  421. LowerPdo = Extension->CommonExtension.AttachedDevice;
  422. //
  423. // Initialize the input parameters and the output buffer.
  424. //
  425. RtlZeroMemory( &inputBuffer, sizeof(ACPI_EVAL_INPUT_BUFFER) );
  426. inputBuffer.MethodNameAsUlong = CM_BANK_METHOD;
  427. inputBuffer.Signature = ACPI_EVAL_INPUT_BUFFER_SIGNATURE;
  428. outputBuffer = (PACPI_EVAL_OUTPUT_BUFFER)ResultBuffer;
  429. //
  430. // Build the request to call the BANK method.
  431. //
  432. Irp = IoBuildDeviceIoControlRequest(
  433. IOCTL_ACPI_EVAL_METHOD,
  434. LowerPdo,
  435. &inputBuffer,
  436. sizeof(ACPI_EVAL_INPUT_BUFFER),
  437. outputBuffer,
  438. sizeof(ResultBuffer),
  439. FALSE,
  440. &event,
  441. &IoStatus
  442. );
  443. if (!Irp)
  444. {
  445. return;
  446. }
  447. //
  448. // Send to the ACPI driver
  449. //
  450. Status = IoCallDriver ( LowerPdo, Irp);
  451. if (Status == STATUS_PENDING)
  452. {
  453. KeWaitForSingleObject( &event, Executive, KernelMode, FALSE, NULL);
  454. Status = IoStatus.Status;
  455. }
  456. if (NT_SUCCESS(Status))
  457. {
  458. AGPLOG(AGP_NOISE, ("AGPLIB: ACPI BANK Method Executed.\n"));
  459. //
  460. // Sanity check method results
  461. //
  462. MethodArg = outputBuffer->Argument;
  463. if ((outputBuffer->Signature == ACPI_EVAL_OUTPUT_BUFFER_SIGNATURE) &&
  464. (MethodArg->DataLength >= sizeof(MBAT)) &&
  465. (MethodArg->Type == ACPI_METHOD_ARGUMENT_BUFFER))
  466. {
  467. AGPLOG(AGP_NOISE, ("AGPLIB: MBAT appears valid.\n"));
  468. //
  469. // Grab the MBAT and see if we can parse it
  470. //
  471. Mbat = (PMBAT)MethodArg->Data;
  472. if (Mbat->TableVersion == MBAT_VERSION) {
  473. AGPLOG(AGP_NOISE, ("AGPLIB: Parsing MBAT.\n"));
  474. //
  475. // Calculate the number of favored ranges mentioned
  476. // in the MBAT
  477. //
  478. i=Mbat->ValidEntryBitmap;
  479. while(i)
  480. {
  481. Extension->FavoredMemory.NumRanges++;
  482. i = i & (i-1);
  483. }
  484. AGPLOG(AGP_NOISE, ("AGPLIB: %u favored ranges found.\n",
  485. Extension->FavoredMemory.NumRanges));
  486. if(Extension->FavoredMemory.NumRanges == 0) return;
  487. //
  488. // Allocate the favored memory range structure in our device
  489. // extension
  490. //
  491. Extension->FavoredMemory.Ranges =
  492. ExAllocatePool(NonPagedPool, sizeof(AGP_MEMORY_RANGE) *
  493. Extension->FavoredMemory.NumRanges);
  494. if (Extension->FavoredMemory.Ranges == NULL) {
  495. Extension->FavoredMemory.NumRanges = 0;
  496. return;
  497. }
  498. //
  499. // Initialize the favored memory ranges in our extension
  500. // based upon the MBAT
  501. //
  502. i=0;
  503. j=0;
  504. while(Mbat->ValidEntryBitmap)
  505. {
  506. if (Mbat->ValidEntryBitmap & 1)
  507. {
  508. if (Mbat->DecodeRange[i].Lower.QuadPart > MaxMemory.QuadPart) {
  509. // This range is invalid since its lower address is above
  510. // the highest allowable address
  511. AGPLOG(AGP_NOISE, ("AGPLIB: Invalid MBAT Range ==> %I64x - %I64x\n",
  512. Mbat->DecodeRange[i].Lower.QuadPart,
  513. Mbat->DecodeRange[i].Upper.QuadPart));
  514. // Pretend like this range never existed ...
  515. //
  516. Extension->FavoredMemory.NumRanges--;
  517. }
  518. else
  519. {
  520. // This is a valid range.
  521. Extension->FavoredMemory.Ranges[j].Lower.QuadPart =
  522. Mbat->DecodeRange[i].Lower.QuadPart;
  523. Extension->FavoredMemory.Ranges[j].Upper.QuadPart =
  524. Mbat->DecodeRange[i].Upper.QuadPart;
  525. AGPLOG(AGP_NOISE, ("AGPLIB: MBAT Range ==> %I64x - %I64x\n",
  526. Mbat->DecodeRange[i].Lower.QuadPart,
  527. Mbat->DecodeRange[i].Upper.QuadPart));
  528. if(Extension->FavoredMemory.Ranges[j].Upper.QuadPart >
  529. MaxMemory.QuadPart)
  530. {
  531. AGPLOG(AGP_NOISE, ("AGPLIB: Adjusting range to fit within maximum allowable address.\n"));
  532. Extension->FavoredMemory.Ranges[j].Upper.QuadPart =
  533. MaxMemory.QuadPart;
  534. }
  535. j++;
  536. }
  537. }
  538. Mbat->ValidEntryBitmap >>= 1;
  539. i++;
  540. }
  541. } else {
  542. AGPLOG(AGP_WARNING, ("AGPLIB: Unknown MBAT version.\n"));
  543. }
  544. }
  545. }
  546. }
  547. NTSTATUS
  548. DriverEntry(
  549. IN PDRIVER_OBJECT DriverObject,
  550. IN PUNICODE_STRING RegistryPath
  551. )
  552. /*++
  553. Routine Description:
  554. Entrypoint needed to initialize the AGP filter.
  555. Arguments:
  556. DriverObject - Pointer to the driver object created by the system.
  557. RegistryPath - Pointer to the unicode registry service path.
  558. Return Value:
  559. NT status.
  560. --*/
  561. {
  562. NTSTATUS Status;
  563. HANDLE serviceKey, paramsKey;
  564. UNICODE_STRING UnicodeString;
  565. OBJECT_ATTRIBUTES attributes;
  566. PAGED_CODE();
  567. //
  568. // Save the RegistryPath for WMI
  569. //
  570. Globals.RegistryPath.MaximumLength =
  571. RegistryPath->Length + sizeof(UNICODE_NULL);
  572. Globals.RegistryPath.Length = RegistryPath->Length;
  573. Globals.RegistryPath.Buffer =
  574. ExAllocatePoolWithTag(PagedPool,
  575. Globals.RegistryPath.MaximumLength,
  576. 'GpgA'
  577. );
  578. if (!Globals.RegistryPath.Buffer) {
  579. return STATUS_INSUFFICIENT_RESOURCES;
  580. }
  581. RtlCopyUnicodeString(&Globals.RegistryPath, RegistryPath);
  582. AgpDriver = DriverObject;
  583. DriverObject->DriverExtension->AddDevice = AgpAddDevice;
  584. DriverObject->DriverUnload = AgpDriverUnload;
  585. DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = AgpDispatchDeviceControl;
  586. DriverObject->MajorFunction[IRP_MJ_PNP] = AgpDispatchPnp;
  587. DriverObject->MajorFunction[IRP_MJ_POWER] = AgpDispatchPower;
  588. DriverObject->MajorFunction[IRP_MJ_SYSTEM_CONTROL] = AgpDispatchWmi;
  589. RtlInitUnicodeString(&UnicodeString,
  590. L"\\REGISTRY\\MACHINE\\SYSTEM\\CURRENTCONTROLSET\\"
  591. L"Control");
  592. //
  593. // Open the global hack key and retrieve the gloabl hack table
  594. //
  595. InitializeObjectAttributes(&attributes,
  596. &UnicodeString,
  597. OBJ_CASE_INSENSITIVE,
  598. NULL,
  599. NULL
  600. );
  601. Status = ZwOpenKey(&serviceKey,
  602. KEY_READ,
  603. &attributes
  604. );
  605. //
  606. // We must succeed here, there are devices that can freeze a system,
  607. // and something is really wrong if we can't access these values
  608. //
  609. if (!NT_SUCCESS(Status)) {
  610. return Status;
  611. }
  612. AgpOpenKey(L"AGP", serviceKey, &paramsKey, &Status);
  613. ZwClose(serviceKey);
  614. if (!NT_SUCCESS(Status)) {
  615. return Status;
  616. }
  617. Status = AgpBuildHackTable(&AgpGlobalHackTable, paramsKey);
  618. ZwClose(paramsKey);
  619. if (!NT_SUCCESS(Status)) {
  620. return Status;
  621. }
  622. //
  623. // Open our service key and retrieve any platform hack(s)
  624. //
  625. InitializeObjectAttributes(&attributes,
  626. RegistryPath,
  627. OBJ_CASE_INSENSITIVE,
  628. NULL,
  629. NULL
  630. );
  631. Status = ZwOpenKey(&serviceKey,
  632. KEY_READ,
  633. &attributes
  634. );
  635. //
  636. // Maybe their chipset is so burly, it doesn't require any hacks!
  637. //
  638. if (!NT_SUCCESS(Status)) {
  639. return STATUS_SUCCESS;
  640. }
  641. AgpOpenKey(L"Parameters", serviceKey, &paramsKey, &Status);
  642. ZwClose(serviceKey);
  643. //
  644. // Don't care
  645. //
  646. if (!NT_SUCCESS(Status)) {
  647. return STATUS_SUCCESS;
  648. }
  649. //
  650. // Again, disregard status
  651. //
  652. AgpBuildHackTable(&AgpDeviceHackTable, paramsKey);
  653. ZwClose(paramsKey);
  654. return STATUS_SUCCESS;
  655. }
  656. VOID
  657. AgpDriverUnload(
  658. IN PDRIVER_OBJECT DriverObject
  659. )
  660. /*++
  661. Routine Description:
  662. Entrypoint used to unload the AGP driver
  663. Arguments:
  664. DriverObject - Pointer to the driver object created by the system
  665. Return Value:
  666. None
  667. --*/
  668. {
  669. if (AgpDeviceHackTable != NULL) {
  670. ExFreePool(AgpDeviceHackTable);
  671. AgpDeviceHackTable = NULL;
  672. }
  673. if (AgpGlobalHackTable != NULL) {
  674. ExFreePool(AgpGlobalHackTable);
  675. AgpGlobalHackTable = NULL;
  676. }
  677. if (Globals.RegistryPath.Buffer != NULL) {
  678. ExFreePool(Globals.RegistryPath.Buffer);
  679. Globals.RegistryPath.Buffer = NULL;
  680. }
  681. }
  682. NTSTATUS
  683. AgpAttachDeviceRelations(
  684. IN PDEVICE_OBJECT DeviceObject,
  685. IN PIRP Irp,
  686. IN PTARGET_EXTENSION Extension
  687. )
  688. /*++
  689. Routine Description:
  690. Completion routine for BusRelations IRP_MN_QUERY_DEVICE_RELATIONS irps sent
  691. to the PCI-PCI bridge PDO. In order to handle QUERY_INTERFACE irps sent
  692. from the AGP device, we must attach to its PDO. That means we attach to
  693. all the child PDOs of the PCI-PCI bridge.
  694. Arguments:
  695. DeviceObject - Supplies the device object
  696. Irp - Supplies the IRP_MN_QUERY_DEVICE_RELATIONS irp
  697. Extension - Supplies the AGP device extension.
  698. Return Value:
  699. NTSTATUS
  700. --*/
  701. {
  702. NTSTATUS Status;
  703. PDEVICE_RELATIONS Relations;
  704. ULONG i;
  705. PDEVICE_OBJECT NewDevice;
  706. PMASTER_EXTENSION NewExtension;
  707. AGP_CRITICAL_ROUTINE_CONTEXT routineContext;
  708. #if DBG
  709. ULONG MasterCount=0;
  710. #endif
  711. PAGED_CODE();
  712. //
  713. // If we have already attached, don't do it again.
  714. //
  715. if (Extension->ChildDevice != NULL) {
  716. return(STATUS_SUCCESS);
  717. }
  718. Relations = (PDEVICE_RELATIONS)Irp->IoStatus.Information;
  719. //
  720. // If somebody completed the IRP with success, but never
  721. // filled in the Relations field, then assume there are
  722. // no children and we don't have to do anything.
  723. //
  724. if (Relations == NULL) {
  725. return(STATUS_SUCCESS);
  726. }
  727. for (i=0; i<Relations->Count; i++) {
  728. //
  729. // Create a device object to attach to this PDO.
  730. //
  731. Status = IoCreateDevice(AgpDriver,
  732. sizeof(MASTER_EXTENSION),
  733. NULL,
  734. FILE_DEVICE_BUS_EXTENDER,
  735. 0,
  736. FALSE,
  737. &NewDevice);
  738. if (!NT_SUCCESS(Status)) {
  739. AGPLOG(AGP_CRITICAL,("AgpAttachDeviceRelations: IoCreateDevice failed %08lx\n",Status));
  740. continue;
  741. }
  742. //
  743. // Initialize the device extension
  744. //
  745. NewExtension = NewDevice->DeviceExtension;
  746. NewExtension->CommonExtension.Deleted = FALSE;
  747. NewExtension->CommonExtension.Type = AgpMasterFilter;
  748. NewExtension->CommonExtension.Signature = MASTER_SIG;
  749. Status = ApQueryBusInterface(Relations->Objects[i], &NewExtension->CommonExtension.BusInterface);
  750. if (!NT_SUCCESS(Status)) {
  751. AGPLOG(AGP_CRITICAL,
  752. ("AgpAttachDeviceRelations: query for bus interface failed %08lx\n", Status));
  753. IoDeleteDevice(NewDevice);
  754. continue;
  755. }
  756. NewExtension->Target = Extension;
  757. NewExtension->InterfaceCount = 0;
  758. NewExtension->ReservedPages = 0;
  759. NewExtension->StopPending = FALSE;
  760. NewExtension->RemovePending = FALSE;
  761. NewExtension->DisableCount = 1; // biased so that we don't give anything out
  762. // until we see the IRP_MN_START
  763. Extension->ChildDevice = NewExtension;
  764. //
  765. // Attach to the specified device
  766. //
  767. NewExtension->CommonExtension.AttachedDevice = IoAttachDeviceToDeviceStack(NewDevice, Relations->Objects[i]);
  768. if (NewExtension->CommonExtension.AttachedDevice == NULL) {
  769. //
  770. // The attach failed. Not really fatal, AGP just won't work for that device.
  771. //
  772. AGPLOG(AGP_CRITICAL,
  773. ("AgpAttachDeviceRelations: IoAttachDeviceToDeviceStack from %08lx to %08lx failed\n",
  774. NewDevice,
  775. Relations->Objects[i]));
  776. RELEASE_BUS_INTERFACE(NewExtension);
  777. IoDeleteDevice(NewDevice);
  778. Extension->ChildDevice = NULL;
  779. continue;
  780. }
  781. //
  782. // Propagate the PDO's requirements
  783. //
  784. NewDevice->StackSize = NewExtension->CommonExtension.AttachedDevice->StackSize + 1;
  785. NewDevice->AlignmentRequirement = NewExtension->CommonExtension.AttachedDevice->AlignmentRequirement;
  786. if (NewExtension->CommonExtension.AttachedDevice->Flags & DO_POWER_PAGABLE) {
  787. NewDevice->Flags |= DO_POWER_PAGABLE;
  788. }
  789. //
  790. // Finally call the chipset-specific code for master initialization
  791. //
  792. routineContext.Gate = 1;
  793. routineContext.Barrier = 1;
  794. routineContext.Routine = (PCRITICALROUTINE)AgpInitializeMaster;
  795. routineContext.Extension = GET_AGP_CONTEXT(Extension);
  796. routineContext.Context = &NewExtension->Capabilities;
  797. Status = (NTSTATUS)KeIpiGenericCall(AgpExecuteCriticalSystemRoutine,
  798. (ULONG_PTR)&routineContext
  799. );
  800. if (!NT_SUCCESS(Status)) {
  801. AGPLOG(AGP_CRITICAL,
  802. ("AgpAttachDeviceRelations: AgpInitializeMaster on device %08lx failed %08lx\n",
  803. NewDevice,
  804. Status));
  805. IoDetachDevice(NewExtension->CommonExtension.AttachedDevice);
  806. RELEASE_BUS_INTERFACE(NewExtension);
  807. IoDeleteDevice(NewDevice);
  808. Extension->ChildDevice = NULL;
  809. continue;
  810. }
  811. NewDevice->Flags &= ~DO_DEVICE_INITIALIZING;
  812. //
  813. // We can't do this if DBG because looping through here to catch/ASSERT
  814. // multiple AGP masters will *always* screw up our target context
  815. //
  816. #if 0
  817. //
  818. // Check to make sure there is only one AGP master on the bus. There can be more
  819. // than one device (multifunction device) but only one must have AGP capabilities
  820. //
  821. MasterCount++;
  822. ASSERT(MasterCount == 1);
  823. #else
  824. break;
  825. #endif
  826. }
  827. return(STATUS_SUCCESS);
  828. }