|
|
.file "tanhf.s"
// Copyright (c) 2000, 2001, Intel Corporation // All rights reserved. // // Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story, // and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation. // // WARRANTY DISCLAIMER // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://developer.intel.com/opensource. // // History //============================================================== // 5/30/01 Initial version // // API //============================================================== // float tanhf(float) // // Overview of operation //============================================================== // Background // // // There are 9 paths: // 1. x = +/-0.0 // Return tanhf(x) = +/-0.0 // // 2. 0.0 < |x| < 0.3125 // Return tanhf(x) = x + x^3*Pol3(x^2), // where Pol3(x^2) = C3*x^6 + C2*x^4 + C1*x^2 + C0 // // 3. 0.3125 <= |x| < 8.0 // Return tanhf(x) = sign(x)*PolD(x)*PolC(|x|) + sign(x)*PolA(|x|), // where sign(x)*PolD(x) = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4), // PolC(|x|) = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0, // PolA(|x|) = A3|x|^3 + A2*x^2 + A1*|x| + A0 // // Actually range 0.3125<=|x|< 8.0 is split to 5 subranges. // For each subrange there is particular set of coefficients. // Below is the list of subranges: // 3.1 0.3125 <= |x| < 0.5 // 3.2 0.5 <= |x| < 1.0 // 3.3 1.0 <= |x| < 2.0 // 3.4 2.0 <= |x| < 4.0 // 3.5 4.0 <= |x| < 8.0 // // 4. 8.0 <= |x| < 9.125 // Return tanhf(x) = sign(x)*(A3|x|^3 + A2*x^2 + A1*|x| + A0) // // 5. 9.125 <= |x| < +INF // Return tanhf(x) = sign(x)*(1.0d - 2^(-52)) // // 6. |x| = INF // Return tanhf(x) = sign(x) * 1.0 // // 7. x = [S,Q]NaN // Return tanhf(x) = QNaN // // 8. x is positive denormal // Return tanhf(x) = x - x^2 // // 9. x is negative denormal // Return tanhf(x) = x + x^2 // // Registers used //============================================================== // Floating Point registers used: // f8, input // f32 -> f59
// General registers used: // r32 -> r46, r2, r3
// Predicate registers used: // p0, p6 -> p15
// p6 to filter out case when x = [Q,S]NaN or +/-0 // p7 to filter out case when x = denormal // p8 set if |x| >= 0.3125, used also to process denormal input // p9 to filter out case when |x| = inf // p10 to filter out case when |x| < 0.3125 // p11 to filter out case when 0.3125 <= |x| < 9.125 // p12 to filter out case when |x| >= 9.125 // p13 to filter out case when 8.0 <= |x| < 9.125 // p14 set to 1 for positive x // p15 set to 1 for negative x
// Assembly macros //============================================================== rDataPtr = r2 rDataPtr1 = r3
rBias = r33 rCoeffAddr3 = r34 rNearSaturation = r35 rCoeffAddr1 = r36 rCoeffAddr2 = r37 rOffset2 = r38 rBias2 = r39 rMask = r40 rArg = r41 rBound = r42 rSignBit = r43 rAbsArg = r44 rDataPtr2 = r45 rSaturation = r46
//============================================================== fA0 = f32 fA1 = f33 fA2 = f34 fA3 = f35 fC0 = f36 fC1 = f37 fC2 = f38 fC3 = f39 fD0 = f40 fD1 = f41 fD2 = f42 fB0 = f43 fArgSqr = f44 fAbsArg = f45 fSignumX = f46 fArg4 = f47 fArg4Sgn = f48 fArg3 = f49 fArg3Sgn = f50 fArg7Sgn = f51 fArg6Sgn = f52 fPolC = f53 fPolCTmp = f54 fPolA = f55 fPolATmp = f56 fPolD = f57 fPolDTmp = f58 fArgSqrSgn = f59
// Data tables //==============================================================
.data
.align 16
tanhf_data: // Polynomial coefficients for the tanh(x), 0.3125 <= |x| < 0.5 data8 0x3F9BEEDFDD177D7B // C0 data8 0x3F970D10C7F32458 // C1 data8 0x3F766D6B051F3A38 // C2 data8 0xBF732F2001B23402 // C3 data8 0xBF854BE1CE1ED499 // D0 data8 0x4013C944F3999A16 // D1 data8 0xC01106C6975222C0 // D2 data8 0x3F783D5ACCF9EBE8 // B0 // Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0 data8 0xBF5D631440786869 // C0 data8 0xBF575D79A0D52069 // C1 data8 0xBF7E2237B7EFC705 // C2 data8 0x3F6A7ACBC273041F // C3 data8 0xC040E32EA52D91EB // D0 data8 0x403D19463E5DB4D7 // D1 data8 0xC02216F61F759F39 // D2 data8 0xBF55B4EA0B844BE7 // B0 // Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0 data8 0x3F8637DBE5B3E690 // C0 data8 0xBF7F7FEC158C07F5 // C1 data8 0x3F711C586706838A // C2 data8 0xBF50EF7EF605554E // C3 data8 0xC054D45448354E25 // D0 data8 0x404ADFEEA282E730 // D1 data8 0xC028AEE456D59549 // D2 data8 0x3F25232D1BED59A8 // B0 // Polynomial coefficients for the tanh(x), 2.0 <= |x| < 4.0 data8 0xBF52602285F2D06C // C0 data8 0x3F2E57C298FFE1E0 // C1 data8 0xBF15ED575DB3C811 // C2 data8 0x3EE428878A08525C // C3 data8 0xC0895A26849039C1 // D0 data8 0x406E3C60BBFBB575 // D1 data8 0xC03A06F62867C75A // D2 data8 0xBEB114C70F1C723E // B0 // Polynomial coefficients for the tanh(x), 4.0 <= |x| < 8.0 data8 0x3EF4B22BD17039A3 // C0 data8 0xBEB704ADC040C57F // C1 data8 0x3E937A98288AFE1A // C2 data8 0xBE4F33B2C9FFE7E7 // C3 data8 0xC0BE48CFADE2431E // D0 data8 0x4090E74249760FDD // D1 data8 0xC04B6F537FCF2F1E // D2 data8 0x3E0DCD879C91ADEA // B0 // Polynomial coefficients for the tanh(x), -0.3125 < x < 0.3125 data8 0xBFD555551E8245B7 // A0 data8 0x3FC110E63F52E689 // A1 data8 0xBFAB8CD6A5B7BAFA // A2 data8 0x3F945D467FCEB553 // A3
// Polynomial coefficients for the tanh(x), 0.3125 <= |x| < 0.5 data8 0xBE3DCC92FCAECBB6 // A0 data8 0x3FF0000043B7D267 // A1 data8 0xBED18BF28ACFC4B1 // A2 data8 0xBFD554A56F82837E // A3 // Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0 data8 0x3EFD6054758539F9 // A0 data8 0x3FEFFBFC77198EBE // A1 data8 0x3F700327CA98D237 // A2 data8 0xBFD68955F5BB2FA1 // A3 // Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0 data8 0xBF71A53F229DF01B // A0 data8 0x3FF0AECFD730DE50 // A1 data8 0xBFC882F88E5DF3BA // A2 data8 0x3FC6EDF212CA2A8D // A3 // Polynomial coefficients for the tanh(x), 2.0 <= |x| < 4.0 data8 0xBFAF0B712E9EDA47 // A0 data8 0x3FF1C208080BEA64 // A1 data8 0x3FC3D29B20C8946E // A2 data8 0xBFF04514ED900A6A // A3 // Polynomial coefficients for the tanh(x), 4.0 <= |x| < 8.0 data8 0xBFB1DEA49A831CBC // A0 data8 0x3FFA729FC7085674 // A1 data8 0xBFF2F44D923A8FA4 // A2 data8 0x3FE092FC5712227E // A3 // Polynomial coefficients for the tanh(x), 8.0 <= |x| <= 9.125 data8 0x3FEFFF5769EE3041 // A0 data8 0x3EFBBF148D850891 // A1 data8 0xBEC86BCEF0F5C2FE // A2 data8 0x3E7CBA4F3A885A5C // A3
data8 0x3FEFFFFFFFFFFFFF // 1.0 - epsilon .align 64 .global tanhf#
.section .text .proc tanhf#
.align 64 tanhf:
{ .mfi alloc r32 = ar.pfs, 1, 14, 0, 0 fmerge.s fAbsArg = f1, f8 // |x| addl rMask = 0x806, r0 } { .mfi addl rDataPtr = @ltoff(tanhf_data), gp fma.s1 fArgSqr = f8, f8, f0 // x^2 adds rSignBit = 0x1, r0 } ;;
{ .mfi getf.s rArg = f8 // x in GR fclass.m p7,p0 = f8, 0x0b // is x denormal ? // sign bit and 2 most bits in significand shl rMask = rMask, 20 } { .mfi ld8 rDataPtr = [rDataPtr] nop.f 0 adds rBias2 = 0x1F4, r0 } ;;
{ .mfi adds rNearSaturation = 0x14, r0 fmerge.s fSignumX = f8, f1 // signum(x) shl rSignBit = rSignBit, 31 // mask for sign bit } { .mfi adds rBound = 0x3EA, r0 nop.f 0 addl rSaturation = 0x4112, r0 } ;;
{ .mfi andcm rOffset2 = rArg, rMask fclass.m p6,p0 = f8, 0xc7 // is x [S,Q]NaN or +/-0 ? shl rBound = rBound, 20 // 1.0f in GR } { .mfb andcm rAbsArg = rArg, rSignBit // |x| in GR nop.f 0 (p7) br.cond.spnt tanhf_denormal // branch out if x is denormal } ;;
{ .mfi adds rCoeffAddr2 = 352, rDataPtr fclass.m p9,p0 = f8, 0x23 // is x +/- inf? shr rOffset2 = rOffset2, 21 } { .mfi cmp.lt p10, p8 = rAbsArg, rBound // |x| < 0.3125? nop.f 0 adds rCoeffAddr3 = 16, rDataPtr } ;;
{ .mfi (p8) sub rBias = rOffset2, rBias2 fma.s1 fArg4 = fArgSqr, fArgSqr, f0 // x^4 shl rSaturation = rSaturation, 16 } { .mfb (p10) adds rBias = 0x14, r0 (p6) fma.s.s0 f8 = f8,f1,f8 // NaN or +/-0 (p6) br.ret.spnt b0 // exit for x = NaN or +/-0 } ;;
{ .mfi shladd rCoeffAddr1 = rBias, 4, rDataPtr fma.s1 fArg3Sgn = fArgSqr, f8, f0 // sign(x)*|x|^3 // is |x| < 9.125? cmp.lt p11, p12 = rAbsArg, rSaturation } { .mfi shladd rCoeffAddr3 = rBias, 4, rCoeffAddr3 fma.s1 fArg3 = fArgSqr, fAbsArg, f0 // |x|^3 shladd rCoeffAddr2 = rBias, 3, rCoeffAddr2 } ;;
{ .mfi (p11) ldfpd fC0, fC1 = [rCoeffAddr1] (p9) fmerge.s f8 = f8,f1 // +/- inf (p12) adds rDataPtr = 544, rDataPtr } { .mfb (p11) ldfpd fC2, fC3 = [rCoeffAddr3], 16 nop.f 0 (p9) br.ret.spnt b0 // exit for x = +/- inf } ;;
{ .mfi (p11) ldfpd fA0, fA1 = [rCoeffAddr2], 16 nop.f 0 (p8) cmp.eq.unc p13, p0 = rBias, rNearSaturation } { .mfi add rCoeffAddr1 = 48, rCoeffAddr1 nop.f 0 nop.i 0 } ;;
{ .mfi (p11) ldfpd fD0, fD1 = [rCoeffAddr3] nop.f 0 nop.i 0 } { .mfb (p11) ldfpd fD2, fB0 = [rCoeffAddr1] // sign(x)*|x|^2 fma.s1 fArgSqrSgn = fArgSqr, fSignumX, f0 (p10) br.cond.spnt tanhf_near_zero } ;;
{ .mfi (p11) ldfpd fA2, fA3 = [rCoeffAddr2], 16 fcmp.lt.s1 p15, p14 = f8,f0 nop.i 0 } { .mfb (p12) ldfd fA0 = [rDataPtr] fma.s1 fArg4Sgn = fArg4, fSignumX, f0 // sign(x)*|x|^4 (p12) br.cond.spnt tanhf_saturation } ;;
{ .mfi nop.m 0 fma.s1 fArg7Sgn = fArg4, fArg3Sgn, f0 // sign(x)*|x|^7 nop.i 0 } { .mfb nop.m 0 fma.s1 fArg6Sgn = fArg3, fArg3Sgn, f0 // sign(x)*|x|^6 (p13) br.cond.spnt tanhf_close_to_saturation } ;;
{ .mfi nop.m 0 fma.s1 fPolC = fC3, fAbsArg, fC2 // C3*|x| + C2 nop.i 0 } { .mfi nop.m 0 fma.s1 fPolCTmp = fC1, fAbsArg, fC0 // C1*|x| + C0 nop.i 0 };;
{ .mfi nop.m 0 fma.s1 fPolA = fA1, fAbsArg, fA0 // A1*|x| + A0 nop.i 0 } ;;
{ .mfi nop.m 0 fma.s1 fPolD = fD1, fAbsArg, fD0 // D1*|x| + D0 nop.i 0 } { .mfi nop.m 0 // sign(x)*(|x|^7 + D2*x^6) fma.s1 fPolDTmp = fArg6Sgn, fD2, fArg7Sgn nop.i 0 };;
{ .mfi nop.m 0 fma.s1 fPolATmp = fA3, fAbsArg, fA2 // A3*|x| + A2 nop.i 0 } { .mfi nop.m 0 fma.s1 fB0 = fB0, fArg4, f0 // B0*x^4 nop.i 0 };;
{ .mfi nop.m 0 // C3*|x|^3 + C2*x^2 + C1*|x| + C0 fma.s1 fPolC = fPolC, fArgSqr, fPolCTmp nop.i 0 } ;;
{ .mfi nop.m 0 // PolD = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4) fma.d.s1 fPolD = fPolD, fArg4Sgn, fPolDTmp nop.i 0 } ;;
{ .mfi nop.m 0 // PolA = A3|x|^3 + A2*x^2 + A1*|x| + A0 fma.d.s1 fPolA = fPolATmp, fArgSqr, fPolA nop.i 0 } ;;
{ .mfi nop.m 0 // PolC = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0 fma.d.s1 fPolC = fPolC, f1, fB0 nop.i 0 } ;;
{ .mfi nop.m 0 (p14) fma.s.s0 f8 = fPolC, fPolD, fPolA // for positive x nop.i 0 } { .mfb nop.m 0 (p15) fms.s.s0 f8 = fPolC, fPolD, fPolA // for negative x br.ret.sptk b0 // Exit for 0.3125 <=|x|< 8.0 };;
// Here if |x| < 0.3125 tanhf_near_zero: { .mfi nop.m 0 fma.s1 fPolC = fC3, fArgSqr, fC2 // C3*x^2 + C2 nop.i 0 } { .mfi nop.m 0 fma.s1 fPolCTmp = fC1, fArgSqr, fC0 // C1*x^2 + C0 nop.i 0 };;
{ .mfi nop.m 0 fma.s1 fPolC = fPolC, fArg4, fPolCTmp // C3*x^6 + C2*x^4 + C1*x^2 + C0 nop.i 0 };;
{ .mfb nop.m 0 // x + x^3*(C3*x^6 + C2*x^4 + C1*x^2 + C0) fma.s.s0 f8 = fPolC, fArg3Sgn, f8 br.ret.sptk b0 // Exit for |x| < 0.3125 };;
// Here if 9.125 <= |x| < +inf tanhf_saturation: { .mfb nop.m 0 fma.s.s0 f8 = fA0, fSignumX, f0 // sign(x)*(1.0d - 2^(-52)) // Exit for 9.125 <= |x| < +inf br.ret.sptk b0 // Exit for 9.125 <=|x|< +inf } ;;
// Here if 8.0 <= |x| < 9.125 tanhf_close_to_saturation: { .mfi nop.m 0 fma.s1 fPolATmp = fA1, fAbsArg, fA0 // A1*|x| + A0 nop.i 0 } { .mfi nop.m 0 fma.s1 fPolA = fA3, fAbsArg, fA2 // A3*|x| + A2 nop.i 0 } ;;
.pred.rel "mutex", p14, p15 { .mfi nop.m 0 // for positive x (p14) fma.s.s0 f8 = fPolA, fArgSqr, fPolATmp nop.i 0 } { .mfb nop.m 0 // for negative x (p15) fms.s.s0 f8 = fPolA, fArgSqrSgn, fPolATmp br.ret.sptk b0 // Exit for 8.0 <=|x|< 9.125 };;
// Here if x is single precision denormal tanhf_denormal: { .mfi nop.m 0 fclass.m p7,p8 = f8, 0x0a // is x -denormal ? nop.i 0 } ;;
{ .mfi nop.m 0 (p7) fma.s.s0 f8 = f8,f8,f8 // -denormal nop.i 0 } { .mfb nop.m 0 (p8) fnma.s.s0 f8 = f8,f8,f8 // +denormal br.ret.sptk b0 // Exit for denormal } ;;
.endp tanhf
|