|
|
/*++
Copyright (c) 1996-2000 Microsoft Corporation
Module Name:
AllocSup.c
Abstract:
This module implements mappings to physical blocks on UDF media. The basic structure used here is the Pcb, which contains lookup information for each partition reference in the volume.
// @@BEGIN_DDKSPLIT
Author:
Dan Lovinger [DanLo] 5-Sep-1996 Revision History:
Tom Jolly [TomJolly] 21-Jan-2000 CcPurge and append at vmcb end Tom Jolly [TomJolly] 1-March-2000 UDF 2.01 support
// @@END_DDKSPLIT
--*/
#include "UdfProcs.h"
//
// The Bug check file id for this module
//
#define BugCheckFileId (UDFS_BUG_CHECK_ALLOCSUP)
//
// The local debug trace level
//
#define Dbg (UDFS_DEBUG_LEVEL_ALLOCSUP)
//
// Local support routines.
//
PPCB UdfCreatePcb ( IN ULONG NumberOfPartitions );
NTSTATUS UdfLoadSparingTables( PIRP_CONTEXT IrpContext, PVCB Vcb, PPCB Pcb, ULONG Reference );
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, UdfAddToPcb)
#pragma alloc_text(PAGE, UdfCompletePcb)
#pragma alloc_text(PAGE, UdfCreatePcb)
#pragma alloc_text(PAGE, UdfDeletePcb)
#pragma alloc_text(PAGE, UdfEquivalentPcb)
#pragma alloc_text(PAGE, UdfInitializePcb)
#pragma alloc_text(PAGE, UdfLookupAllocation)
#pragma alloc_text(PAGE, UdfLookupMetaVsnOfExtent)
#pragma alloc_text(PAGE, UdfLookupPsnOfExtent)
#endif
BOOLEAN UdfLookupAllocation ( IN PIRP_CONTEXT IrpContext, IN PFCB Fcb, IN PCCB Ccb, IN LONGLONG FileOffset, OUT PLONGLONG DiskOffset, OUT PULONG ByteCount )
/*++
Routine Description:
This routine looks through the mapping information for the file to find the logical diskoffset and number of bytes at that offset.
This routine assumes we are looking up a valid range in the file. If a mapping does not exist,
Arguments:
Fcb - Fcb representing this stream.
FileOffset - Lookup the allocation beginning at this point.
DiskOffset - Address to store the logical disk offset.
ByteCount - Address to store the number of contiguous bytes beginning at DiskOffset above.
Return Value:
BOOLEAN - whether the extent is unrecorded data
--*/
{ PVCB Vcb;
BOOLEAN Recorded = TRUE;
BOOLEAN Result;
LARGE_INTEGER LocalPsn; LARGE_INTEGER LocalSectorCount;
PAGED_CODE();
//
// Check inputs
//
ASSERT_IRP_CONTEXT( IrpContext ); ASSERT_FCB( Fcb );
//
// We will never be looking up the allocations of embedded objects.
//
ASSERT( !FlagOn( Fcb->FcbState, FCB_STATE_EMBEDDED_DATA ));
Vcb = Fcb->Vcb;
LocalPsn.QuadPart = LocalSectorCount.QuadPart = 0;
//
// Lookup the entry containing this file offset.
//
if (FlagOn( Fcb->FcbState, FCB_STATE_VMCB_MAPPING )) {
//
// Map this offset into the metadata stream.
//
ASSERT( SectorOffset( Vcb, FileOffset ) == 0 );
Result = UdfVmcbVbnToLbn( &Vcb->Vmcb, SectorsFromLlBytes( Vcb, FileOffset ), &LocalPsn.LowPart, &LocalSectorCount.LowPart ); } else {
//
// Map this offset in a regular stream.
//
ASSERT( FlagOn( Fcb->FcbState, FCB_STATE_MCB_INITIALIZED ));
Result = FsRtlLookupLargeMcbEntry( &Fcb->Mcb, LlSectorsFromBytes( Vcb, FileOffset ), &LocalPsn.QuadPart, &LocalSectorCount.QuadPart, NULL, NULL, NULL ); }
//
// If within the Mcb then we use the data out of this entry and are nearly done.
//
if (Result) {
if ( LocalPsn.QuadPart == -1 ) {
//
// Regular files can have holey allocations which represent unrecorded extents. For
// such extents which are sandwiched in between recorded extents of the file, the Mcb
// package tells us that it found a valid mapping but that it doesn't correspond to
// any extents on the media yet. In this case, simply fake the disk offset. The
// returned sector count is accurate.
//
*DiskOffset = 0;
Recorded = FALSE;
} else {
//
// Now mimic the effects of physical sector sparing. This may shrink the size of the
// returned run if sparing interrupted the extent on disc.
//
ASSERT( LocalPsn.HighPart == 0 );
if (Vcb->Pcb->SparingMcb) {
LONGLONG SparingPsn; LONGLONG SparingSectorCount;
if (FsRtlLookupLargeMcbEntry( Vcb->Pcb->SparingMcb, LocalPsn.LowPart, &SparingPsn, &SparingSectorCount, NULL, NULL, NULL )) {
//
// Only emit noise if we will really change anything as a result
// of the sparing table.
//
if (SparingPsn != -1 || SparingSectorCount < LocalSectorCount.QuadPart) {
DebugTrace(( 0, Dbg, "UdfLookupAllocation, spared [%x, +%x) onto [%x, +%x)\n", LocalPsn.LowPart, LocalSectorCount.LowPart, (ULONG) SparingPsn, (ULONG) SparingSectorCount )); }
//
// If we did not land in a hole, map the sector.
//
if (SparingPsn != -1) {
LocalPsn.QuadPart = SparingPsn; }
//
// The returned sector count now reduces the previous sector count.
// If we landed in a hole, this indicates that the trailing edge of
// the extent is spared, if not this indicates that the leading
// edge is spared.
//
if (SparingSectorCount < LocalSectorCount.QuadPart) {
LocalSectorCount.QuadPart = SparingSectorCount; } } }
*DiskOffset = LlBytesFromSectors( Vcb, LocalPsn.QuadPart ) + SectorOffset( Vcb, FileOffset );
//
// Now we can apply method 2 fixups, which will again interrupt the size of the extent.
//
if (FlagOn( Vcb->VcbState, VCB_STATE_METHOD_2_FIXUP )) {
LARGE_INTEGER SectorsToRunout;
SectorsToRunout.QuadPart= UdfMethod2NextRunoutInSectors( Vcb, *DiskOffset );
if (SectorsToRunout.QuadPart < LocalSectorCount.QuadPart) {
LocalSectorCount.QuadPart = SectorsToRunout.QuadPart; }
*DiskOffset = UdfMethod2TransformByteOffset( Vcb, *DiskOffset ); } }
} else {
//
// We know that prior to this call the system has restricted IO to points within the
// the file data. Since we failed to find a mapping this is an unrecorded extent at
// the end of the file, so just conjure up a proper representation.
//
if ((Ccb != NULL) && FlagOn( Ccb->Flags, CCB_FLAG_ALLOW_EXTENDED_DASD_IO )) { LocalSectorCount.QuadPart = LlSectorsFromBytes( Vcb, ByteCount ); *DiskOffset = FileOffset; Recorded = TRUE; } else { ASSERT( FileOffset < Fcb->FileSize.QuadPart ); LocalSectorCount.QuadPart = LlSectorsFromBytes( Vcb, Fcb->FileSize.QuadPart ) - LlSectorsFromBytes( Vcb, FileOffset ) + 1; *DiskOffset = 0; Recorded = FALSE;
} }
//
// Restrict to MAXULONG bytes of allocation
//
if (LocalSectorCount.QuadPart > SectorsFromBytes( Vcb, MAXULONG )) {
*ByteCount = MAXULONG;
} else {
*ByteCount = BytesFromSectors( Vcb, LocalSectorCount.LowPart ); }
*ByteCount -= SectorOffset( Vcb, FileOffset );
return Recorded; }
VOID UdfDeletePcb ( IN PPCB Pcb )
/*++
Routine Description:
This routine deallocates a Pcb and all ancilliary structures.
Arguments:
Pcb - Pcb being deleted
Return Value:
None
--*/
{ PUDF_PARTITION Partition;
if (Pcb->SparingMcb) {
FsRtlUninitializeLargeMcb( Pcb->SparingMcb ); UdfFreePool( &Pcb->SparingMcb ); }
for (Partition = Pcb->Partition; Partition < &Pcb->Partition[Pcb->Partitions]; Partition++) {
switch (Partition->Type) {
case Physical:
UdfFreePool( &Partition->Physical.PartitionDescriptor ); UdfFreePool( &Partition->Physical.SparingMap );
break;
case Virtual: case Uninitialized: break;
default:
ASSERT( FALSE ); break; } }
ExFreePool( Pcb ); }
NTSTATUS UdfInitializePcb ( IN PIRP_CONTEXT IrpContext, IN PVCB Vcb, IN OUT PPCB *Pcb, IN PNSR_LVOL LVD )
/*++
Routine Description:
This routine walks through the partition map of a Logical Volume Descriptor and builds an intializing Pcb from it. The Pcb will be ready to be used in searching for the partition descriptors of a volume.
Arguments:
Vcb - The volume this Pcb will pertain to
Pcb - Caller's pointer to the Pcb
LVD - The Logical Volume Descriptor being used
Return Value:
STATUS_SUCCESS if the partition map is good and the Pcb is built
STATUS_DISK_CORRUPT_ERROR if corrupt maps are found
STATUS_UNRECOGNIZED_VOLUME if noncompliant maps are found
--*/
{ PPARTMAP_UDF_GENERIC Map; PUDF_PARTITION Partition;
BOOLEAN Found;
PAGED_CODE();
//
// Check the input parameters
//
ASSERT_OPTIONAL_PCB( *Pcb );
DebugTrace(( +1, Dbg, "UdfInitializePcb, Lvd %08x\n", LVD ));
//
// Delete a pre-existing (partially initialized from a failed
// crawl of a VDS) Pcb.
//
if (*Pcb != NULL) {
UdfDeletePcb( *Pcb ); *Pcb = NULL; }
*Pcb = UdfCreatePcb( LVD->MapTableCount );
//
// Walk the table of partition maps intializing the Pcb for the descriptor
// initialization pass.
//
for (Map = (PPARTMAP_UDF_GENERIC) LVD->MapTable, Partition = (*Pcb)->Partition;
Partition < &(*Pcb)->Partition[(*Pcb)->Partitions];
Map = Add2Ptr( Map, Map->Length, PPARTMAP_UDF_GENERIC ), Partition++) {
//
// Now check that this LVD can actually contain this map entry. First check that
// the descriptor can contain the first few fields, then check that it can hold
// all of the bytes claimed by the descriptor.
//
if (Add2Ptr( Map, sizeof( PARTMAP_GENERIC ), PCHAR ) > Add2Ptr( LVD, ISONsrLvolSize( LVD ), PCHAR ) || Add2Ptr( Map, Map->Length, PCHAR ) > Add2Ptr( LVD, ISONsrLvolSize( LVD ), PCHAR )) {
DebugTrace(( 0, Dbg, "UdfInitializePcb, map at +%04x beyond Lvd size %04x\n", (PCHAR) Map - (PCHAR) LVD, ISONsrLvolSize( LVD )));
DebugTrace(( -1, Dbg, "UdfInitializePcb -> STATUS_DISK_CORRUPT_ERROR\n" ));
return STATUS_DISK_CORRUPT_ERROR; }
//
// Now load up this map entry.
//
switch (Map->Type) {
case PARTMAP_TYPE_PHYSICAL:
{ PPARTMAP_PHYSICAL MapPhysical = (PPARTMAP_PHYSICAL) Map;
//
// Type 1 - Physical Partition
//
DebugTrace(( 0, Dbg, "UdfInitializePcb, map reference %02x is Physical (Partition # %08x)\n", (Partition - (*Pcb)->Partition)/sizeof(UDF_PARTITION), MapPhysical->Partition ));
//
// It must be the case that the volume the partition is on is the first
// one since we only do single disc UDF. This will have already been
// checked by the caller.
//
if (MapPhysical->VolSetSeq > 1) {
DebugTrace(( 0, Dbg, "UdfInitializePcb, ... but physical partition resides on volume set volume # %08x (> 1)!\n", MapPhysical->VolSetSeq ));
DebugTrace(( -1, Dbg, "UdfInitializePcb -> STATUS_DISK_CORRUPT_ERROR\n" ));
return STATUS_DISK_CORRUPT_ERROR; }
SetFlag( (*Pcb)->Flags, PCB_FLAG_PHYSICAL_PARTITION ); Partition->Type = Physical; Partition->Physical.PartitionNumber = MapPhysical->Partition; }
break;
case PARTMAP_TYPE_PROXY:
//
// Type 2 - a Proxy Partition, something not explicitly physical.
//
DebugTrace(( 0, Dbg, "UdfInitializePcb, map reference %02x is a proxy\n", (Partition - (*Pcb)->Partition)/sizeof(UDF_PARTITION)));
//
// Handle the various types of proxy partitions we recognize
//
if (UdfDomainIdentifierContained( &Map->PartID, &UdfVirtualPartitionDomainIdentifier, UDF_VERSION_150, UDF_VERSION_RECOGNIZED )) {
{ PPARTMAP_VIRTUAL MapVirtual = (PPARTMAP_VIRTUAL) Map;
//
// Only one of these guys can exist, since there can be only one VAT per media surface.
//
if (FlagOn( (*Pcb)->Flags, PCB_FLAG_VIRTUAL_PARTITION )) {
DebugTrace(( 0, Dbg, "UdfInitializePcb, ... but this is a second virtual partition!?!!\n" ));
DebugTrace(( -1, Dbg, "UdfInitializePcb -> STATUS_UNCRECOGNIZED_VOLUME\n" ));
return STATUS_UNRECOGNIZED_VOLUME; }
DebugTrace(( 0, Dbg, "UdfInitializePcb, ... Virtual (Partition # %08x)\n", MapVirtual->Partition ));
SetFlag( (*Pcb)->Flags, PCB_FLAG_VIRTUAL_PARTITION ); Partition->Type = Virtual;
//
// We will convert the partition number to a partition reference
// before returning.
//
Partition->Virtual.RelatedReference = MapVirtual->Partition; }
} else if (UdfDomainIdentifierContained( &Map->PartID, &UdfSparablePartitionDomainIdentifier, UDF_VERSION_150, UDF_VERSION_RECOGNIZED )) {
{ NTSTATUS Status; PPARTMAP_SPARABLE MapSparable = (PPARTMAP_SPARABLE) Map;
//
// It must be the case that the volume the partition is on is the first
// one since we only do single disc UDF. This will have already been
// checked by the caller.
//
if (MapSparable->VolSetSeq > 1) {
DebugTrace(( 0, Dbg, "UdfInitializePcb, ... but sparable partition resides on volume set volume # %08x (> 1)!\n", MapSparable->VolSetSeq ));
DebugTrace(( -1, Dbg, "UdfInitializePcb -> STATUS_DISK_CORRUPT_ERROR\n" ));
return STATUS_DISK_CORRUPT_ERROR; }
DebugTrace(( 0, Dbg, "UdfInitializePcb, ... Sparable (Partition # %08x)\n", MapSparable->Partition ));
//
// We pretend that sparable partitions are basically the same as
// physical partitions. Since we are not r/w (and will never be
// on media that requires host-based sparing in any case), this
// is a good simplification.
//
SetFlag( (*Pcb)->Flags, PCB_FLAG_SPARABLE_PARTITION ); Partition->Type = Physical; Partition->Physical.PartitionNumber = MapSparable->Partition;
//
// Save this map for use when the partition descriptor is found.
// We can't load the sparing table at this time because we have
// to turn the Lbn->Psn mapping into a Psn->Psn mapping. UDF
// believes that the way sparing will be used in concert with
// the Lbn->Psn mapping engine (like UdfLookupPsnOfExtent).
//
// Unfortunately, this would be a bit painful at this time.
// The users of UdfLookupPsnOfExtent would need to iterate
// over a new interface (not so bad) but the Vmcb package
// would need to be turned inside out so that it didn't do
// the page-filling alignment of blocks in the metadata
// stream - instead, UdfLookupMetaVsnOfExtent would need to
// do this itself. I choose to lay the sparing engine into
// the read path and raw sector read engine instead.
//
Partition->Physical.SparingMap = FsRtlAllocatePoolWithTag( PagedPool, sizeof(PARTMAP_SPARABLE), TAG_NSR_FSD); RtlCopyMemory( Partition->Physical.SparingMap, MapSparable, sizeof(PARTMAP_SPARABLE)); }
} else {
DebugTrace(( 0, Dbg, "UdfInitializePcb, ... but we don't recognize this proxy!\n" ));
DebugTrace(( -1, Dbg, "UdfInitializePcb -> STATUS_UNRECOGNIZED_VOLUME\n" ));
return STATUS_UNRECOGNIZED_VOLUME; }
break;
default:
DebugTrace(( 0, Dbg, "UdfInitializePcb, map reference %02x is of unknown type %02x\n", Map->Type ));
DebugTrace(( -1, Dbg, "UdfInitializePcb -> STATUS_UNRECOGNIZED_VOLUME\n" ));
return STATUS_UNRECOGNIZED_VOLUME; break; } }
if (!FlagOn( (*Pcb)->Flags, PCB_FLAG_PHYSICAL_PARTITION | PCB_FLAG_SPARABLE_PARTITION )) {
DebugTrace(( 0, Dbg, "UdfInitializePcb, no physical partition seen on this logical volume!\n" ));
DebugTrace(( -1, Dbg, "UdfInitializePcb -> STATUS_UNRECOGNIZED_VOLUME\n" ));
return STATUS_UNRECOGNIZED_VOLUME; }
if (FlagOn( (*Pcb)->Flags, PCB_FLAG_VIRTUAL_PARTITION )) {
PUDF_PARTITION Host;
//
// Confirm the validity of any type 2 virtual maps on this volume
// and convert partition numbers to partition references that will
// immediately index an element of the Pcb.
//
for (Partition = (*Pcb)->Partition; Partition < &(*Pcb)->Partition[(*Pcb)->Partitions]; Partition++) {
if (Partition->Type == Virtual) {
//
// Go find the partition this thing is talking about
//
Found = FALSE;
for (Host = (*Pcb)->Partition; Host < &(*Pcb)->Partition[(*Pcb)->Partitions]; Host++) {
if (Host->Type == Physical && Host->Physical.PartitionNumber == Partition->Virtual.RelatedReference) {
Partition->Virtual.RelatedReference = (USHORT)(Host - (*Pcb)->Partition)/sizeof(UDF_PARTITION); Found = TRUE; break; } }
//
// Failure to find a physical partition for this virtual guy
// is not a good sign.
//
if (!Found) {
return STATUS_DISK_CORRUPT_ERROR; } } } }
DebugTrace(( -1, Dbg, "UdfInitializePcb -> STATUS_SUCCESS\n" ));
return STATUS_SUCCESS; }
VOID UdfAddToPcb ( IN PPCB Pcb, IN PNSR_PART PartitionDescriptor )
/*++
Routine Description:
This routine possibly adds a partition descriptor into a Pcb if it turns out to be of higher precendence than a descriptor already present. Used in building a Pcb already initialized in preperation for UdfCompletePcb.
Arguments:
Vcb - Vcb of the volume the Pcb describes
Pcb - Pcb being filled in
Return Value:
None. An old partition descriptor may be returned in the input field.
--*/
{ USHORT Reference;
PAGED_CODE();
//
// Check inputs
//
ASSERT_PCB( Pcb ); ASSERT( PartitionDescriptor );
for (Reference = 0; Reference < Pcb->Partitions; Reference++) {
DebugTrace(( 0, Dbg, "UdfAddToPcb, considering partition reference %d (type %d)\n", (ULONG)Reference, Pcb->Partition[Reference].Type)); switch (Pcb->Partition[Reference].Type) {
case Physical:
//
// Now possibly store this descriptor in the Pcb if it is
// the partition number for this partition reference.
//
if (Pcb->Partition[Reference].Physical.PartitionNumber == PartitionDescriptor->Number) {
//
// It seems to be legal (if questionable) for multiple partition maps to reference
// the same partition descriptor. So we make a copy of the descriptor for each
// referencing partitionmap to make life easier when it comes to freeing it.
//
UdfStoreVolumeDescriptorIfPrevailing( (PNSR_VD_GENERIC *) &Pcb->Partition[Reference].Physical.PartitionDescriptor, (PNSR_VD_GENERIC) PartitionDescriptor ); } break;
case Virtual: break;
default:
ASSERT(FALSE); break; } } }
NTSTATUS UdfCompletePcb ( IN PIRP_CONTEXT IrpContext, IN PVCB Vcb, IN PPCB Pcb )
/*++
Routine Description:
This routine completes initialization of a Pcb which has been filled in with partition descriptors. Initialization-time data such as the physical partition descriptors will be returned to the system.
Arguments:
Vcb - Vcb of the volume the Pcb describes
Pcb - Pcb being completed
Return Value:
NTSTATUS according to whether intialization completion was succesful
--*/
{ ULONG Reference;
NTSTATUS Status;
PAGED_CODE();
//
// Check inputs
//
ASSERT_IRP_CONTEXT( IrpContext ); ASSERT_VCB( Vcb ); ASSERT_PCB( Pcb );
DebugTrace(( +1, Dbg, "UdfCompletePcb, Vcb %08x Pcb %08x\n", Vcb, Pcb ));
//
// Complete intialization all physical partitions
//
for (Reference = 0; Reference < Pcb->Partitions; Reference++) {
DebugTrace(( 0, Dbg, "UdfCompletePcb, Examining Ref %u (type %u)!\n", Reference, Pcb->Partition[Reference].Type));
switch (Pcb->Partition[Reference].Type) {
case Physical:
if (Pcb->Partition[Reference].Physical.PartitionDescriptor == NULL) {
DebugTrace(( 0, Dbg, "UdfCompletePcb, ... but didn't find Partition# %u!\n", Pcb->Partition[Reference].Physical.PartitionNumber ));
DebugTrace(( -1, Dbg, "UdfCompletePcb -> STATUS_DISK_CORRUPT_ERROR\n" ));
return STATUS_DISK_CORRUPT_ERROR; }
Pcb->Partition[Reference].Physical.Start = Pcb->Partition[Reference].Physical.PartitionDescriptor->Start; Pcb->Partition[Reference].Physical.Length = Pcb->Partition[Reference].Physical.PartitionDescriptor->Length;
//
// Retrieve the sparing information at this point if appropriate.
// We have to do this when we can map logical -> physical blocks.
//
if (Pcb->Partition[Reference].Physical.SparingMap) {
Status = UdfLoadSparingTables( IrpContext, Vcb, Pcb, Reference );
if (!NT_SUCCESS( Status )) {
DebugTrace(( -1, Dbg, "UdfCompletePcb -> %08x\n", Status )); return Status; } }
DebugTrace(( 0, Dbg, "Start Psn: 0x%X, sectors: 0x%x\n", Pcb->Partition[Reference].Physical.Start, Pcb->Partition[Reference].Physical.Length));
//
// We will not need the descriptor or sparing map anymore, so drop them.
//
UdfFreePool( &Pcb->Partition[Reference].Physical.PartitionDescriptor ); UdfFreePool( &Pcb->Partition[Reference].Physical.SparingMap ); break;
case Virtual: break;
default:
ASSERT(FALSE); break; } }
DebugTrace(( -1, Dbg, "UdfCompletePcb -> STATUS_SUCCESS\n" ));
return STATUS_SUCCESS; }
BOOLEAN UdfEquivalentPcb ( IN PIRP_CONTEXT IrpContext, IN PPCB Pcb1, IN PPCB Pcb2 )
/*++
Routine Description:
This routine compares two completed Pcbs to see if they appear equivalent.
Arguments:
Pcb1 - Pcb being compared
Pcb2 - Pcb being compared
Return Value:
BOOLEAN according to whether they are equivalent (TRUE, else FALSE)
--*/
{ ULONG Index;
PAGED_CODE();
//
// Check input.
//
ASSERT_IRP_CONTEXT( IrpContext );
if (Pcb1->Partitions != Pcb2->Partitions) {
return FALSE; }
for (Index = 0; Index < Pcb1->Partitions; Index++) {
//
// First check that the partitions are of the same type.
//
if (Pcb1->Partition[Index].Type != Pcb2->Partition[Index].Type) {
return FALSE; }
//
// Now the map content must be the same ...
//
switch (Pcb1->Partition[Index].Type) {
case Physical:
if (Pcb1->Partition[Index].Physical.PartitionNumber != Pcb2->Partition[Index].Physical.PartitionNumber || Pcb1->Partition[Index].Physical.Length != Pcb2->Partition[Index].Physical.Length || Pcb1->Partition[Index].Physical.Start != Pcb2->Partition[Index].Physical.Start) {
return FALSE; } break;
case Virtual:
if (Pcb1->Partition[Index].Virtual.RelatedReference != Pcb2->Partition[Index].Virtual.RelatedReference) {
return FALSE; } break;
default:
ASSERT( FALSE); return FALSE; break; } }
//
// All map elements were equivalent.
//
return TRUE; }
ULONG UdfLookupPsnOfExtent ( IN PIRP_CONTEXT IrpContext, IN PVCB Vcb, IN USHORT Reference, IN ULONG Lbn, IN ULONG Len )
/*++
Routine Description:
This routine maps the input logical block extent on a given partition to a starting physical sector. It doubles as a bounds checker - if the routine does not raise, the caller is guaranteed that the extent lies within the partition.
Arguments:
Vcb - Vcb of logical volume
Reference - Partition reference to use in the mapping
Lbn - Logical block number
Len - Length of extent in bytes
Return Value:
ULONG physical sector number
--*/
{ PPCB Pcb = Vcb->Pcb; ULONG Psn;
PBCB Bcb; LARGE_INTEGER Offset; PULONG MappedLbn;
PAGED_CODE();
//
// Check inputs
//
ASSERT_IRP_CONTEXT( IrpContext ); ASSERT_VCB( Vcb ); ASSERT_PCB( Pcb );
DebugTrace(( +1, Dbg, "UdfLookupPsnOfExtent, [%04x/%08x, +%08x)\n", Reference, Lbn, Len ));
if (Reference < Pcb->Partitions) {
while (TRUE) {
switch (Pcb->Partition[Reference].Type) {
case Physical:
//
// Check that the input extent lies inside the partition. Calculate the
// Lbn of the last block and see that it is interior.
//
if (SectorsFromBlocks( Vcb, Lbn ) + SectorsFromBytes( Vcb, Len ) > Pcb->Partition[Reference].Physical.Length) {
goto NoGood; }
Psn = Pcb->Partition[Reference].Physical.Start + SectorsFromBlocks( Vcb, Lbn );
DebugTrace(( -1, Dbg, "UdfLookupPsnOfExtent -> %08x\n", Psn )); return Psn;
case Virtual:
//
// Bounds check. Per UDF 2.00 2.3.10 and implied in UDF 1.50, virtual
// extent lengths cannot be greater than one block in size. Lbn must also
// fall within the VAT!
//
if ((Lbn >= Vcb->VATEntryCount) || (Len > BlockSize( Vcb ))) {
DebugTrace(( 0, Dbg, "UdfLookupPsnOfExtent() - Either Lbn (0x%x) > VatLbns (0x%X), or len (0x%x) > blocksize (0x%x)\n", Lbn, Vcb->VATEntryCount, Len, BlockSize(Vcb))); goto NoGood; }
try {
Bcb = NULL; //
// Calculate the location of the mapping element in the VAT
// and retrieve. Bias by the size of the VAT header, if any.
//
Offset.QuadPart = Vcb->OffsetToFirstVATEntry + Lbn * sizeof(ULONG);
CcMapData( Vcb->VatFcb->FileObject, &Offset, sizeof(ULONG), TRUE, &Bcb, &MappedLbn );
//
// Now rewrite the inputs in terms of the virtual mapping. We
// will reloop to perform the logical -> physical mapping.
//
DebugTrace(( 0, Dbg, "UdfLookupPsnOfExtent, Mapping V %04x/%08x -> L %04x/%08x\n", Reference, Lbn, Pcb->Partition[Reference].Virtual.RelatedReference, *MappedLbn ));
Lbn = *MappedLbn; Reference = Pcb->Partition[Reference].Virtual.RelatedReference;
} finally {
DebugUnwind( UdfLookupPsnOfExtent );
UdfUnpinData( IrpContext, &Bcb ); }
//
// An Lbn of ~0 in the VAT is defined to indicate that the sector is unused,
// so we should never see such a thing.
//
if (Lbn == ~0) {
goto NoGood; }
break;
default:
ASSERT(FALSE); break; } } }
NoGood:
//
// Some people have misinterpreted a partition number to equal a
// partition reference, or perhaps this is just corrupt media.
//
UdfRaiseStatus( IrpContext, STATUS_FILE_CORRUPT_ERROR ); }
ULONG UdfLookupMetaVsnOfExtent ( IN PIRP_CONTEXT IrpContext, IN PVCB Vcb, IN USHORT Reference, IN ULONG Lbn, IN ULONG Len, IN BOOLEAN ExactEnd )
/*++
Routine Description:
This routine maps the input logical block extent on a given partition to a starting virtual block in the metadata stream. If a mapping does not exist, one will be created and the metadata stream extended.
Callers must hold NO mappings into the VMCB stream when calling this function. Arguments:
Vcb - Vcb of logical volume
Reference - Partition reference to use in the mapping
Lbn - Logical block number
Len - Length of extent in bytes ExactEnd - Indicates the extension policy if these blocks are not mapped.
Return Value:
ULONG virtual sector number
Raised status if the Lbn extent is split across multiple Vbn extents.
--*/
{ ULONG Vsn; ULONG Psn; ULONG SectorCount;
BOOLEAN Result;
BOOLEAN UnwindExtension = FALSE; BOOLEAN UnwindVmcb = FALSE; LONGLONG UnwindAllocationSize;
PFCB Fcb = NULL;
//
// Check inputs
//
ASSERT_IRP_CONTEXT( IrpContext ); ASSERT_VCB( Vcb );
//
// The extent must be a multiple of blocksize
//
if ((0 == Len) || BlockOffset( Vcb, Len)) {
UdfRaiseStatus( IrpContext, STATUS_FILE_CORRUPT_ERROR ); }
//
// Get the physical mapping of the extent. The Mcb package operates on ULONG/ULONG
// keys and values so we must render our 48bit address into 32. We can do this since
// this is a single surface implementation, and it is guaranteed that a surface cannot
// contain more than MAXULONG physical sectors.
//
Psn = UdfLookupPsnOfExtent( IrpContext, Vcb, Reference, Lbn, Len );
//
// Use try-finally for cleanup
//
try {
//
// We must safely establish a mapping and extend the metadata stream so that cached
// reads can occur on this new extent. This lock was moved out here (rather than just
// protecting the actual Fcb changes) to protect against mappings being made
// by other threads between this thread extending the vmcb and calling CcSetFileSizes.
// this would result in zeroed pages being mapped...
//
Fcb = Vcb->MetadataFcb; UdfLockFcb( IrpContext, Fcb );
//
// Add / lookup the mapping. We know that it is being added to the end of the stream.
//
UnwindVmcb = UdfAddVmcbMapping(IrpContext, &Vcb->Vmcb, Psn, SectorsFromBytes( Vcb, Len ), ExactEnd, &Vsn, &SectorCount );
ASSERT( SectorCount >= SectorsFromBytes( Vcb, Len));
//
// If this was a new mapping, then we need to extend the Vmcb file size
//
if (UnwindVmcb) {
UnwindAllocationSize = Fcb->AllocationSize.QuadPart; UnwindExtension = TRUE;
Fcb->AllocationSize.QuadPart = Fcb->FileSize.QuadPart = Fcb->ValidDataLength.QuadPart = LlBytesFromSectors( Vcb, Vsn + SectorCount);
CcSetFileSizes( Fcb->FileObject, (PCC_FILE_SIZES) &Fcb->AllocationSize ); UnwindExtension = FALSE; }
} finally {
if (UnwindExtension) {
ULONG FirstZappedVsn;
//
// Strip off the additional mappings we made.
//
Fcb->AllocationSize.QuadPart = Fcb->FileSize.QuadPart = Fcb->ValidDataLength.QuadPart = UnwindAllocationSize;
FirstZappedVsn = SectorsFromLlBytes( Vcb, UnwindAllocationSize );
if (UnwindVmcb) { UdfRemoveVmcbMapping( &Vcb->Vmcb, FirstZappedVsn, Vsn + SectorCount - FirstZappedVsn ); }
CcSetFileSizes( Fcb->FileObject, (PCC_FILE_SIZES) &Fcb->AllocationSize ); }
if (Fcb) { UdfUnlockFcb( IrpContext, Fcb ); } }
return Vsn; }
//
// Local support routine.
//
PPCB UdfCreatePcb ( IN ULONG NumberOfPartitions )
/*++
Routine Description:
This routine creates a new Pcb of the indicated size.
Arguments:
NumberOfPartitions - Number of partitions this Pcb will describe
Return Value:
PPCB - the Pcb created
--*/
{ PPCB Pcb; ULONG Size = sizeof(PCB) + sizeof(UDF_PARTITION)*NumberOfPartitions;
PAGED_CODE();
ASSERT( NumberOfPartitions ); ASSERT( NumberOfPartitions < MAXUSHORT );
Pcb = (PPCB) FsRtlAllocatePoolWithTag( UdfPagedPool, Size, TAG_PCB );
RtlZeroMemory( Pcb, Size );
Pcb->NodeTypeCode = UDFS_NTC_PCB; Pcb->NodeByteSize = (USHORT) Size;
Pcb->Partitions = (USHORT)NumberOfPartitions;
return Pcb; }
//
// Internal support routine
//
NTSTATUS UdfLoadSparingTables( PIRP_CONTEXT IrpContext, PVCB Vcb, PPCB Pcb, ULONG Reference )
/*++
Routine Description:
This routine reads the sparing tables for a partition and fills in the sparing Mcb.
Arguments:
Vcb - the volume hosting the spared partition
Pcb - the partion block corresponding to the volume
Reference - the partition reference being pulled in
Return Value:
NTSTATUS according to whether the sparing tables were loaded
--*/
{ NTSTATUS Status;
ULONG SparingTable; PULONG SectorBuffer; ULONG Psn;
ULONG RemainingBytes; ULONG ByteOffset; ULONG TotalBytes;
BOOLEAN Complete;
PSPARING_TABLE_HEADER Header; PSPARING_TABLE_ENTRY Entry;
PUDF_PARTITION Partition = &Pcb->Partition[Reference]; PPARTMAP_SPARABLE Map = Partition->Physical.SparingMap;
ASSERT_IRP_CONTEXT( IrpContext ); ASSERT_VCB( Vcb );
ASSERT( Map != NULL );
DebugTrace(( +1, Dbg, "UdfLoadSparingTables, Vcb %08x, PcbPartition %08x, Map @ %08x\n", Vcb, Partition, Map ));
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, Map sez: PacketLen %u, NTables %u, TableSize %u\n", Map->PacketLength, Map->NumSparingTables, Map->TableSize));
//
// Check that the sparable map appears sane. If there are no sparing tables that
// is pretty OK, and it'll wind up looking like a regular physical partition.
//
if (Map->NumSparingTables == 0) {
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, no sparing tables claimed!\n" )); DebugTrace(( -1, Dbg, "UdfLoadSparingTables -> STATUS_SUCCESS\n" )); return STATUS_SUCCESS; }
if (Map->NumSparingTables > sizeof(Map->TableLocation)/sizeof(ULONG)) {
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, too many claimed tables to fit! (max %u)\n", sizeof(Map->TableLocation)/sizeof(ULONG))); DebugTrace(( -1, Dbg, "UdfLoadSparingTables -> STATUS_DISK_CORRUPT_ERROR\n" )); return STATUS_DISK_CORRUPT_ERROR; }
if ((Map->PacketLength != UDF_SPARING_PACKET_LENGTH_CDRW) && (Map->PacketLength != UDF_SPARING_PACKET_LENGTH_DVDRW)) {
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, packet size is %u!\n", Map->PacketLength)); DebugTrace(( -1, Dbg, "UdfLoadSparingTables -> STATUS_DISK_CORRUPT_ERROR\n" )); return STATUS_DISK_CORRUPT_ERROR; }
if (Map->TableSize < sizeof(SPARING_TABLE_HEADER) || (Map->TableSize - sizeof(SPARING_TABLE_HEADER)) % sizeof(SPARING_TABLE_ENTRY) != 0) {
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, sparing table size is too small or unaligned!\n" )); DebugTrace(( -1, Dbg, "UdfLoadSparingTables -> STATUS_DISK_CORRUPT_ERROR\n" )); return STATUS_DISK_CORRUPT_ERROR; }
#ifdef UDF_SANITY
DebugTrace(( 0, Dbg, "UdfLoadSparingTables" )); for (SparingTable = 0; SparingTable < Map->NumSparingTables; SparingTable++) {
DebugTrace(( 0, Dbg, ", Table %u @ %x", SparingTable, Map->TableLocation[SparingTable] )); } DebugTrace(( 0, Dbg, "\n" )); #endif
//
// If a sparing mcb doesn't exist, manufacture one.
//
if (Pcb->SparingMcb == NULL) {
Pcb->SparingMcb = FsRtlAllocatePoolWithTag( PagedPool, sizeof(LARGE_MCB), TAG_SPARING_MCB ); FsRtlInitializeLargeMcb( Pcb->SparingMcb, PagedPool ); }
SectorBuffer = FsRtlAllocatePoolWithTag( PagedPool, PAGE_SIZE, TAG_NSR_FSD );
//
// Now loop across the sparing tables and pull the data in.
//
try {
for (Complete = FALSE, SparingTable = 0;
SparingTable < Map->NumSparingTables;
SparingTable++) {
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, loading sparing table %u!\n", SparingTable ));
ByteOffset = 0; TotalBytes = 0; RemainingBytes = 0;
do {
if (RemainingBytes == 0) {
(VOID) UdfReadSectors( IrpContext, BytesFromSectors( Vcb, Map->TableLocation[SparingTable] ) + ByteOffset, SectorSize( Vcb ), FALSE, SectorBuffer, Vcb->TargetDeviceObject );
//
// Verify the descriptor at the head of the sparing table. If it is not
// valid, we just break out for a chance at the next table, if any.
//
if (ByteOffset == 0) {
Header = (PSPARING_TABLE_HEADER) SectorBuffer;
if (!UdfVerifyDescriptor( IrpContext, &Header->Destag, 0, SectorSize( Vcb ), Header->Destag.Lbn, TRUE )) {
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, sparing table %u didn't verify destag!\n", SparingTable )); break; }
if (!UdfUdfIdentifierContained( &Header->RegID, &UdfSparingTableIdentifier, UDF_VERSION_150, UDF_VERSION_RECOGNIZED, OSCLASS_INVALID, OSIDENTIFIER_INVALID)) {
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, sparing table %u didn't verify regid!\n", SparingTable )); break; }
//
// Calculate the total number bytes this map spans and check it against what
// we were told the sparing table sizes are.
//
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, Sparing table %u has %u entries\n", SparingTable, Header->TableEntries ));
TotalBytes = sizeof(SPARING_TABLE_HEADER) + Header->TableEntries * sizeof(SPARING_TABLE_ENTRY);
if (Map->TableSize < TotalBytes) {
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, sparing table #ents %u overflows allocation!\n", Header->TableEntries )); break; }
//
// So far so good, advance past the header.
//
ByteOffset = sizeof(SPARING_TABLE_HEADER); Entry = Add2Ptr( SectorBuffer, sizeof(SPARING_TABLE_HEADER), PSPARING_TABLE_ENTRY );
} else {
//
// Pick up in the new sector.
//
Entry = (PSPARING_TABLE_ENTRY) SectorBuffer; }
RemainingBytes = Min( SectorSize( Vcb ), TotalBytes - ByteOffset ); }
//
// Add the mapping. Since sparing tables are an Lbn->Psn mapping,
// very odd, and I want to simplify things by putting the sparing
// in right at IO dispatch, translate this to a Psn->Psn mapping.
//
if (Entry->Original != UDF_SPARING_AVALIABLE && Entry->Original != UDF_SPARING_DEFECTIVE) {
Psn = Partition->Physical.Start + SectorsFromBlocks( Vcb, Entry->Original );
DebugTrace(( 0, Dbg, "UdfLoadSparingTables, mapping from Psn %x (Lbn %x) -> Psn %x\n", Psn, Entry->Original, Entry->Mapped ));
FsRtlAddLargeMcbEntry( Pcb->SparingMcb, Psn, Entry->Mapped, Map->PacketLength); }
//
// Advance to the next, and drop out if we've hit the end.
//
ByteOffset += sizeof(SPARING_TABLE_ENTRY); RemainingBytes -= sizeof(SPARING_TABLE_ENTRY); Entry++;
} while ( ByteOffset < TotalBytes ); }
} finally {
DebugUnwind( UdfLoadSparingTables );
UdfFreePool( &SectorBuffer ); }
DebugTrace(( -1, Dbg, "UdfLoadSparingTables -> STATUS_SUCCESS\n" ));
return STATUS_SUCCESS; }
|