|
|
#include "vdmp.h"
#include <ntos.h>
#include <zwapi.h>
#include <ntconfig.h>
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, VdmpInitialize)
#endif
#define KEY_VALUE_BUFFER_SIZE 1024
#if DEVL
ULONG VdmBopCount; #endif
NTSTATUS VdmpInitialize ( PVDM_INITIALIZE_DATA VdmInitData )
/*++
Routine Description:
Initialize the address space of a VDM.
Arguments:
VdmInitData - Supplies the captured initialization data.
Return Value:
NTSTATUS.
--*/
{ PETHREAD CurrentThread; PVOID OriginalVdmObjects; NTSTATUS Status, StatusCopy; OBJECT_ATTRIBUTES ObjectAttributes; UNICODE_STRING SectionName; UNICODE_STRING WorkString; ULONG ViewSize; LARGE_INTEGER ViewBase; PVOID BaseAddress; PVOID destination; HANDLE SectionHandle, RegistryHandle; PEPROCESS Process = PsGetCurrentProcess(); ULONG ResultLength; ULONG Index; PCM_FULL_RESOURCE_DESCRIPTOR ResourceDescriptor; PCM_PARTIAL_RESOURCE_DESCRIPTOR PartialResourceDescriptor; PKEY_VALUE_FULL_INFORMATION KeyValueBuffer; PCM_ROM_BLOCK BiosBlock; ULONG LastMappedAddress; PVDM_PROCESS_OBJECTS pVdmObjects; PVDMICAUSERDATA pIcaUserData; PVOID TrapcHandler;
PAGED_CODE();
NtCurrentTeb()->Vdm = NULL;
//
// Simple check to sure it is not already initialized. A final synchronized
// check is made farther down.
//
if (Process->VdmObjects) { return STATUS_UNSUCCESSFUL; }
RtlInitUnicodeString (&SectionName, L"\\Device\\PhysicalMemory");
InitializeObjectAttributes (&ObjectAttributes, &SectionName, OBJ_CASE_INSENSITIVE|OBJ_KERNEL_HANDLE, (HANDLE) NULL, (PSECURITY_DESCRIPTOR) NULL);
Status = ZwOpenSection (&SectionHandle, SECTION_ALL_ACCESS, &ObjectAttributes);
if (!NT_SUCCESS(Status)) { return Status; }
pIcaUserData = VdmInitData->IcaUserData; TrapcHandler = VdmInitData->TrapcHandler;
//
// Copy the first page of memory into the VDM's address space
//
BaseAddress = 0; destination = 0; ViewSize = 0x1000; ViewBase.LowPart = 0; ViewBase.HighPart = 0;
Status = ZwMapViewOfSection (SectionHandle, NtCurrentProcess(), &BaseAddress, 0, ViewSize, &ViewBase, &ViewSize, ViewUnmap, 0, PAGE_READWRITE);
if (!NT_SUCCESS(Status)) { ZwClose (SectionHandle); return Status; }
StatusCopy = STATUS_SUCCESS;
try { RtlCopyMemory (destination, BaseAddress, ViewSize); } except(EXCEPTION_EXECUTE_HANDLER) { StatusCopy = GetExceptionCode (); }
Status = ZwUnmapViewOfSection (NtCurrentProcess(), BaseAddress);
if (!NT_SUCCESS(Status) || !NT_SUCCESS(StatusCopy)) { ZwClose (SectionHandle); return (NT_SUCCESS(Status) ? StatusCopy : Status); }
//
// Map Rom into address space
//
BaseAddress = (PVOID) 0x000C0000; ViewSize = 0x40000; ViewBase.LowPart = 0x000C0000; ViewBase.HighPart = 0;
//
// First unmap the reserved memory. This must be done here to prevent
// the virtual memory in question from being consumed by some other
// alloc vm call.
//
Status = ZwFreeVirtualMemory (NtCurrentProcess(), &BaseAddress, &ViewSize, MEM_RELEASE);
//
// N.B. This should probably take into account the fact that there are
// a handful of error conditions that are ok (such as no memory to
// release).
//
if (!NT_SUCCESS(Status)) { ZwClose (SectionHandle); return Status; }
//
// Set up and open KeyPath
//
InitializeObjectAttributes (&ObjectAttributes, &CmRegistryMachineHardwareDescriptionSystemName, OBJ_CASE_INSENSITIVE|OBJ_KERNEL_HANDLE, (HANDLE)NULL, NULL);
Status = ZwOpenKey (&RegistryHandle, KEY_READ, &ObjectAttributes);
if (!NT_SUCCESS(Status)) { ZwClose(SectionHandle); return Status; }
//
// Allocate space for the data
//
KeyValueBuffer = ExAllocatePoolWithTag (PagedPool, KEY_VALUE_BUFFER_SIZE, ' MDV');
if (KeyValueBuffer == NULL) { ZwClose(RegistryHandle); ZwClose(SectionHandle); return STATUS_NO_MEMORY; }
//
// Get the data for the rom information
//
RtlInitUnicodeString (&WorkString, L"Configuration Data");
Status = ZwQueryValueKey (RegistryHandle, &WorkString, KeyValueFullInformation, KeyValueBuffer, KEY_VALUE_BUFFER_SIZE, &ResultLength);
if (!NT_SUCCESS(Status)) { ExFreePool(KeyValueBuffer); ZwClose(RegistryHandle); ZwClose(SectionHandle); return Status; }
ResourceDescriptor = (PCM_FULL_RESOURCE_DESCRIPTOR) ((PUCHAR) KeyValueBuffer + KeyValueBuffer->DataOffset);
if ((KeyValueBuffer->DataLength < sizeof(CM_FULL_RESOURCE_DESCRIPTOR)) || (ResourceDescriptor->PartialResourceList.Count < 2)) {
//
// No rom blocks.
//
ExFreePool(KeyValueBuffer); ZwClose(RegistryHandle); ZwClose(SectionHandle); return STATUS_SUCCESS; }
PartialResourceDescriptor = (PCM_PARTIAL_RESOURCE_DESCRIPTOR) ((PUCHAR)ResourceDescriptor + sizeof(CM_FULL_RESOURCE_DESCRIPTOR) + ResourceDescriptor->PartialResourceList.PartialDescriptors[0] .u.DeviceSpecificData.DataSize);
if (KeyValueBuffer->DataLength < ((PUCHAR)PartialResourceDescriptor - (PUCHAR)ResourceDescriptor + sizeof(CM_PARTIAL_RESOURCE_DESCRIPTOR) + sizeof(CM_ROM_BLOCK))) {
ExFreePool(KeyValueBuffer); ZwClose(RegistryHandle); ZwClose(SectionHandle); return STATUS_ILL_FORMED_SERVICE_ENTRY; }
BiosBlock = (PCM_ROM_BLOCK)((PUCHAR)PartialResourceDescriptor + sizeof(CM_PARTIAL_RESOURCE_DESCRIPTOR));
Index = PartialResourceDescriptor->u.DeviceSpecificData.DataSize / sizeof(CM_ROM_BLOCK);
//
// N.B. Rom blocks begin on 2K (not necessarily page) boundaries
// They end on 512 byte boundaries. This means that we have
// to keep track of the last page mapped, and round the next
// Rom block up to the next page boundary if necessary.
//
LastMappedAddress = 0xC0000;
while (Index) {
#if 0
DbgPrint ("Bios Block, PhysAddr = %lx, size = %lx\n", BiosBlock->Address, BiosBlock->Size); #endif
if ((Index > 1) && ((BiosBlock->Address + BiosBlock->Size) == BiosBlock[1].Address)) {
//
// Coalesce adjacent blocks
//
BiosBlock[1].Address = BiosBlock[0].Address; BiosBlock[1].Size += BiosBlock[0].Size; Index -= 1; BiosBlock += 1; continue; }
BaseAddress = (PVOID)(BiosBlock->Address); ViewSize = BiosBlock->Size;
if ((ULONG)BaseAddress < LastMappedAddress) { if (ViewSize > (LastMappedAddress - (ULONG)BaseAddress)) { ViewSize = ViewSize - (LastMappedAddress - (ULONG)BaseAddress); BaseAddress = (PVOID)LastMappedAddress; } else { ViewSize = 0; } }
ViewBase.LowPart = (ULONG)BaseAddress;
if (ViewSize > 0) {
Status = ZwMapViewOfSection (SectionHandle, NtCurrentProcess(), &BaseAddress, 0, ViewSize, &ViewBase, &ViewSize, ViewUnmap, MEM_DOS_LIM, PAGE_READWRITE);
if (!NT_SUCCESS(Status)) { break; }
LastMappedAddress = (ULONG)BaseAddress + ViewSize; }
Index -= 1; BiosBlock += 1; }
//
// Free up the handles
//
ExFreePool(KeyValueBuffer); ZwClose(SectionHandle); ZwClose(RegistryHandle);
//
// Create VdmObjects structure
//
// N.B. We don't use ExAllocatePoolWithQuota because it
// takes a reference to the process (which ExFreePool
// dereferences). Since we expect to clean up on
// process deletion, we don't need or want the reference
// (which will prevent the process from being deleted)
//
pVdmObjects = ExAllocatePoolWithTag (NonPagedPool, sizeof(VDM_PROCESS_OBJECTS), ' MDV');
if (pVdmObjects == NULL) { return STATUS_NO_MEMORY; }
Status = PsChargeProcessPoolQuota (Process, NonPagedPool, sizeof(VDM_PROCESS_OBJECTS));
if (!NT_SUCCESS (Status)) { ExFreePool (pVdmObjects); return Status; }
RtlZeroMemory (pVdmObjects, sizeof(VDM_PROCESS_OBJECTS));
ExInitializeFastMutex (&pVdmObjects->DelayIntFastMutex); KeInitializeSpinLock (&pVdmObjects->DelayIntSpinLock); InitializeListHead (&pVdmObjects->DelayIntListHead);
pVdmObjects->pIcaUserData = ExAllocatePoolWithTag (PagedPool, sizeof(VDMICAUSERDATA), ' MDV');
if (pVdmObjects->pIcaUserData == NULL) { PsReturnPoolQuota (Process, NonPagedPool, sizeof(VDM_PROCESS_OBJECTS)); ExFreePool (pVdmObjects); return STATUS_NO_MEMORY; }
Status = PsChargeProcessPoolQuota (Process, PagedPool, sizeof(VDMICAUSERDATA));
if (!NT_SUCCESS (Status)) { PsReturnPoolQuota (Process, NonPagedPool, sizeof(VDM_PROCESS_OBJECTS)); ExFreePool (pVdmObjects->pIcaUserData); ExFreePool (pVdmObjects); return Status; }
try {
//
// Copy Ica addresses from service data (in user space) into
// pVdmObjects->pIcaUserData
//
ProbeForRead(pIcaUserData, sizeof(VDMICAUSERDATA), sizeof(UCHAR)); *pVdmObjects->pIcaUserData = *pIcaUserData;
//
// Probe static addresses in IcaUserData.
//
pIcaUserData = pVdmObjects->pIcaUserData;
ProbeForWriteHandle (pIcaUserData->phWowIdleEvent); ProbeForWriteHandle (pIcaUserData->phMainThreadSuspended);
ProbeForWrite (pIcaUserData->pIcaLock, sizeof(RTL_CRITICAL_SECTION), sizeof(UCHAR));
ProbeForWrite (pIcaUserData->pIcaMaster, sizeof(VDMVIRTUALICA), sizeof(UCHAR));
ProbeForWrite (pIcaUserData->pIcaSlave, sizeof(VDMVIRTUALICA), sizeof(UCHAR));
ProbeForWriteUlong(pIcaUserData->pIretHooked); ProbeForWriteUlong(pIcaUserData->pDelayIrq); ProbeForWriteUlong(pIcaUserData->pUndelayIrq); ProbeForWriteUlong(pIcaUserData->pDelayIret); // We only reference the ULONG which contains the address of the
// IretBop Table to push the address to the user stack and never
// actually reference the table.
ProbeForWriteUlong(pIcaUserData->pAddrIretBopTable); ProbeForReadSmallStructure( pIcaUserData->pIcaTimeout, sizeof(LARGE_INTEGER), sizeof(ULONG));
} except(EXCEPTION_EXECUTE_HANDLER) { Status = GetExceptionCode(); PsReturnPoolQuota (Process, NonPagedPool, sizeof(VDM_PROCESS_OBJECTS)); PsReturnPoolQuota(Process, PagedPool, sizeof(VDMICAUSERDATA)); ExFreePool (pVdmObjects->pIcaUserData); ExFreePool (pVdmObjects); return Status; }
//
// Save a pointer to the main thread for the delayed interrupt DPC routine.
// To keep the pointer to the main thread valid, reference the thread
// and don't dereference it until process exit.
//
CurrentThread = PsGetCurrentThread ();
ObReferenceObject (CurrentThread);
pVdmObjects->MainThread = CurrentThread;
ASSERT (pVdmObjects->VdmTib == NULL);
//
// Carefully mark the process as a vdm (as other threads may be racing to
// do the same marking).
//
OriginalVdmObjects = InterlockedCompareExchangePointer (&Process->VdmObjects, pVdmObjects, NULL);
if (OriginalVdmObjects != NULL) { PsReturnPoolQuota (Process, NonPagedPool, sizeof(VDM_PROCESS_OBJECTS)); PsReturnPoolQuota(Process, PagedPool, sizeof(VDMICAUSERDATA)); ExFreePool (pVdmObjects->pIcaUserData); ExFreePool (pVdmObjects); ObDereferenceObject (CurrentThread); return STATUS_UNSUCCESSFUL; }
ASSERT (Process->VdmObjects == pVdmObjects);
Process->Pcb.VdmTrapcHandler = TrapcHandler;
return Status; }
|