|
|
/*++
Copyright (c) 1996 Microsoft Corporation
Module Name:
perfheap.c
Abstract:
This file implements an Performance Object that presents Heap performance object data
Created:
Adrian Marinescu 9-Mar-2000
Revision History:
--*/ //
// Include Files
//
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <windows.h>
#include <assert.h>
#include <winperf.h>
#include <ntprfctr.h>
#define PERF_HEAP hLibHeap
#include <perfutil.h>
#include "perfsprc.h"
#include "perfmsg.h"
#include "dataheap.h"
//
// Redefinition for heap data
//
#define MAX_HEAP_COUNT 200
#define HEAP_MAXIMUM_FREELISTS 128
#define HEAP_MAXIMUM_SEGMENTS 64
#define HEAP_OP_COUNT 2
#define HEAP_OP_ALLOC 0
#define HEAP_OP_FREE 1
typedef struct _HEAP_ENTRY { USHORT Size; USHORT PreviousSize; UCHAR SegmentIndex; UCHAR Flags; UCHAR UnusedBytes; UCHAR SmallTagIndex; #if defined(_WIN64)
ULONGLONG Reserved1; #endif
} HEAP_ENTRY, *PHEAP_ENTRY;
typedef struct _HEAP_SEGMENT { HEAP_ENTRY Entry;
ULONG Signature; ULONG Flags; struct _HEAP *Heap; SIZE_T LargestUnCommittedRange;
PVOID BaseAddress; ULONG NumberOfPages; PHEAP_ENTRY FirstEntry; PHEAP_ENTRY LastValidEntry;
ULONG NumberOfUnCommittedPages; ULONG NumberOfUnCommittedRanges; PVOID UnCommittedRanges; USHORT AllocatorBackTraceIndex; USHORT Reserved; PHEAP_ENTRY LastEntryInSegment; } HEAP_SEGMENT, *PHEAP_SEGMENT;
typedef struct _HEAP { HEAP_ENTRY Entry;
ULONG Signature; ULONG Flags; ULONG ForceFlags; ULONG VirtualMemoryThreshold;
SIZE_T SegmentReserve; SIZE_T SegmentCommit; SIZE_T DeCommitFreeBlockThreshold; SIZE_T DeCommitTotalFreeThreshold;
SIZE_T TotalFreeSize; SIZE_T MaximumAllocationSize; USHORT ProcessHeapsListIndex; USHORT HeaderValidateLength; PVOID HeaderValidateCopy;
USHORT NextAvailableTagIndex; USHORT MaximumTagIndex; PVOID TagEntries; PVOID UCRSegments; PVOID UnusedUnCommittedRanges;
ULONG AlignRound; ULONG AlignMask;
LIST_ENTRY VirtualAllocdBlocks;
PHEAP_SEGMENT Segments[ HEAP_MAXIMUM_SEGMENTS ];
union { ULONG FreeListsInUseUlong[ HEAP_MAXIMUM_FREELISTS / 32 ]; UCHAR FreeListsInUseBytes[ HEAP_MAXIMUM_FREELISTS / 8 ]; } u;
USHORT FreeListsInUseTerminate; USHORT AllocatorBackTraceIndex; ULONG NonDedicatedListLength; PVOID LargeBlocksIndex; PVOID PseudoTagEntries;
LIST_ENTRY FreeLists[ HEAP_MAXIMUM_FREELISTS ];
PVOID LockVariable; PVOID CommitRoutine;
PVOID Lookaside; ULONG LookasideLockCount;
} HEAP, *PHEAP;
typedef struct _HEAP_PERF_DATA {
UINT64 CountFrequence; UINT64 OperationTime[HEAP_OP_COUNT];
//
// The data bellow are only for sampling
//
ULONG Sequence;
UINT64 TempTime[HEAP_OP_COUNT]; ULONG TempCount[HEAP_OP_COUNT];
} HEAP_PERF_DATA, *PHEAP_PERF_DATA;
//
// The heap index structure
//
typedef struct _HEAP_INDEX { ULONG ArraySize; ULONG VirtualMemorySize;
HEAP_PERF_DATA PerfData;
union { PULONG FreeListsInUseUlong; PUCHAR FreeListsInUseBytes; } u;
PVOID *FreeListHints;
} HEAP_INDEX, *PHEAP_INDEX;
typedef struct _HEAP_LOOKASIDE { SLIST_HEADER ListHead;
USHORT Depth; USHORT MaximumDepth;
ULONG TotalAllocates; ULONG AllocateMisses; ULONG TotalFrees; ULONG FreeMisses;
ULONG LastTotalAllocates; ULONG LastAllocateMisses;
ULONG Counters[2];
} HEAP_LOOKASIDE, *PHEAP_LOOKASIDE;
//
// Local variables
//
static HEAP_LOOKASIDE LookasideBuffer[HEAP_MAXIMUM_FREELISTS]; static DWORD PageSize = 0;
//
// Implementation for heap query function
//
BOOLEAN ReadHeapData ( IN HANDLE hProcess, IN ULONG HeapNumber, IN PHEAP Heap, OUT PHEAP_COUNTER_DATA pHCD )
/*++
Routine Description: The routine loads into the given heap couter structure the data from the heap structure
Arguments: hProcess - The process containing the heap Heap - the heap address pPerfInstanceDefinition - Performance instance definition data pHCD - Counter data
Returns: Returns TRUE if query succeeds.
--*/
{ HEAP_SEGMENT CrtSegment; HEAP CrtHeap; ULONG SegmentIndex; RTL_CRITICAL_SECTION CriticalSection; HEAP_INDEX HeapIndex;
ULONG i;
//
// Read the heap structure from the process address space
//
if (!ReadProcessMemory(hProcess, Heap, &CrtHeap, sizeof(CrtHeap), NULL)) {
return FALSE; }
//
// We won't display data for heaps w/o index.
//
if ((CrtHeap.LargeBlocksIndex == NULL) && (HeapNumber != 0)) {
//
// We are not handling small heaps
//
return FALSE; }
pHCD->FreeSpace = CrtHeap.TotalFreeSize; pHCD->FreeListLength = CrtHeap.NonDedicatedListLength;
pHCD->CommittedBytes = 0; pHCD->ReservedBytes = 0; pHCD->VirtualBytes = 0; pHCD->UncommitedRangesLength = 0;
//
// Walking the heap segments and get the virtual address counters
//
for (SegmentIndex = 0; SegmentIndex < HEAP_MAXIMUM_SEGMENTS; SegmentIndex++) {
if ((CrtHeap.Segments[SegmentIndex] == NULL) || !ReadProcessMemory(hProcess, CrtHeap.Segments[SegmentIndex], &CrtSegment, sizeof(CrtSegment), NULL)) {
break; }
pHCD->ReservedBytes += CrtSegment.NumberOfPages * PageSize; pHCD->CommittedBytes += (CrtSegment.NumberOfPages - CrtSegment.NumberOfUnCommittedPages) * PageSize; pHCD->VirtualBytes += CrtSegment.NumberOfPages * PageSize - CrtSegment.LargestUnCommittedRange; pHCD->UncommitedRangesLength += CrtSegment.NumberOfUnCommittedRanges; }
if (pHCD->CommittedBytes == 0) { pHCD->CommittedBytes = 1; }
if (pHCD->VirtualBytes == 0) { pHCD->VirtualBytes = 1; } //
// Compute the heap fragmentation counters
//
pHCD->BlockFragmentation = (ULONG)(pHCD->FreeSpace * 100 / pHCD->CommittedBytes); pHCD->VAFragmentation =(ULONG)(((pHCD->VirtualBytes - pHCD->CommittedBytes)*100)/pHCD->VirtualBytes);
//
// Read the lock contention
//
pHCD->LockContention = 0;
if (ReadProcessMemory(hProcess, CrtHeap.LockVariable, &CriticalSection, sizeof(CriticalSection), NULL)) { RTL_CRITICAL_SECTION_DEBUG DebugInfo;
if (ReadProcessMemory(hProcess, CriticalSection.DebugInfo, &DebugInfo, sizeof(DebugInfo), NULL)) {
pHCD->LockContention = DebugInfo.ContentionCount; } }
//
// Walk the lookaside to count the blocks
//
pHCD->LookasideAllocs = 0; pHCD->LookasideFrees = 0; pHCD->LookasideBlocks = 0; pHCD->LargestLookasideDepth = 0; pHCD->SmallAllocs = 0; pHCD->SmallFrees = 0; pHCD->MedAllocs = 0; pHCD->MedFrees = 0; pHCD->LargeAllocs = 0; pHCD->LargeFrees = 0; if (ReadProcessMemory(hProcess, CrtHeap.Lookaside, &LookasideBuffer, sizeof(LookasideBuffer), NULL)) {
for (i = 0; i < HEAP_MAXIMUM_FREELISTS; i++) { pHCD->SmallAllocs += LookasideBuffer[i].TotalAllocates; pHCD->SmallFrees += LookasideBuffer[i].TotalFrees; pHCD->LookasideAllocs += LookasideBuffer[i].TotalAllocates - LookasideBuffer[i].AllocateMisses; pHCD->LookasideFrees += LookasideBuffer[i].TotalFrees - LookasideBuffer[i].FreeMisses;
if (LookasideBuffer[i].Depth > pHCD->LargestLookasideDepth) {
pHCD->LargestLookasideDepth = LookasideBuffer[i].Depth; }
if (i == 0) { } else if (i < 8) { pHCD->MedAllocs += LookasideBuffer[i].Counters[0]; pHCD->MedFrees += LookasideBuffer[i].Counters[1]; } else { pHCD->LargeAllocs += LookasideBuffer[i].Counters[0]; pHCD->LargeFrees += LookasideBuffer[i].Counters[1]; } } } pHCD->LookasideBlocks = pHCD->LookasideFrees - pHCD->LookasideAllocs;
//
// Calculate the totals
//
pHCD->TotalAllocs = pHCD->SmallAllocs + pHCD->MedAllocs + pHCD->LargeAllocs; pHCD->TotalFrees = pHCD->SmallFrees + pHCD->MedFrees + pHCD->LargeFrees; //
// Set the difference between allocs and frees
//
pHCD->DiffOperations = pHCD->TotalAllocs - pHCD->TotalFrees; pHCD->AllocTime = 0; pHCD->AllocTime = 0;
//
// Determine the alloc/free rates
//
if (ReadProcessMemory(hProcess, CrtHeap.LargeBlocksIndex, &HeapIndex, sizeof(HeapIndex), NULL)) {
if (HeapIndex.PerfData.OperationTime[0]) { pHCD->AllocTime = HeapIndex.PerfData.CountFrequence / HeapIndex.PerfData.OperationTime[0]; } if (HeapIndex.PerfData.OperationTime[1]) { pHCD->FreeTime = HeapIndex.PerfData.CountFrequence / HeapIndex.PerfData.OperationTime[1]; } } return TRUE; }
DWORD APIENTRY CollectHeapObjectData ( IN OUT LPVOID *lppData, IN OUT LPDWORD lpcbTotalBytes, IN OUT LPDWORD lpNumObjectTypes )
/*++
Routine Description:
This routine will return the data for the heap object
Arguments:
IN OUT LPVOID *lppData IN: pointer to the address of the buffer to receive the completed PerfDataBlock and subordinate structures. This routine will append its data to the buffer starting at the point referenced by *lppData. OUT: points to the first byte after the data structure added by this routine. This routine updated the value at lppdata after appending its data.
IN OUT LPDWORD lpcbTotalBytes IN: the address of the DWORD that tells the size in bytes of the buffer referenced by the lppData argument OUT: the number of bytes added by this routine is writted to the DWORD pointed to by this argument
IN OUT LPDWORD NumObjectTypes IN: the address of the DWORD to receive the number of objects added by this routine OUT: the number of objects added by this routine is writted to the DWORD pointed to by this argument
Returns:
0 if successful, else Win 32 error code of failure
--*/
{ LONG lReturn = ERROR_SUCCESS;
DWORD TotalLen; // Length of the total return block
PHEAP_DATA_DEFINITION pHeapDataDefinition; PPERF_INSTANCE_DEFINITION pPerfInstanceDefinition; PHEAP_COUNTER_DATA pHCD;
PSYSTEM_PROCESS_INFORMATION ProcessInfo; ULONG ProcessNumber; ULONG NumHeapInstances; ULONG HeapNumber; ULONG ProcessBufferOffset; UNICODE_STRING HeapName; WCHAR HeapNameBuffer[MAX_THREAD_NAME_LENGTH+1]; BOOL bMoreProcesses = FALSE; HeapName.Length = 0; HeapName.MaximumLength = (MAX_THREAD_NAME_LENGTH + 1) * sizeof(WCHAR); HeapName.Buffer = HeapNameBuffer;
pHeapDataDefinition = (HEAP_DATA_DEFINITION *) *lppData;
//
// Get the page size from the system
//
if (!PageSize) { SYSTEM_INFO SystemInfo; GetSystemInfo(&SystemInfo); PageSize = SystemInfo.dwPageSize;
}
//
// Check for sufficient space for Thread object type definition
//
TotalLen = sizeof(HEAP_DATA_DEFINITION) + sizeof(PERF_INSTANCE_DEFINITION) + sizeof(HEAP_COUNTER_DATA);
if ( *lpcbTotalBytes < TotalLen ) { *lpcbTotalBytes = (DWORD) 0; *lpNumObjectTypes = (DWORD) 0; return ERROR_MORE_DATA; }
//
// Define the heap data block
//
memcpy(pHeapDataDefinition, &HeapDataDefinition, sizeof(HEAP_DATA_DEFINITION));
pHeapDataDefinition->HeapObjectType.PerfTime = PerfTime;
ProcessBufferOffset = 0;
//
// Now collect data for each process
//
ProcessNumber = 0; NumHeapInstances = 0;
ProcessInfo = (PSYSTEM_PROCESS_INFORMATION)pProcessBuffer;
pPerfInstanceDefinition = (PPERF_INSTANCE_DEFINITION)&pHeapDataDefinition[1]; TotalLen = sizeof(HEAP_DATA_DEFINITION);
if (ProcessInfo) { if (ProcessInfo->NextEntryOffset != 0) { bMoreProcesses = TRUE; } } while ( bMoreProcesses && (ProcessInfo != NULL)) {
HANDLE hProcess; NTSTATUS Status; PROCESS_BASIC_INFORMATION BasicInfo;
//
// Get a handle to the process.
//
hProcess = OpenProcess( PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, (DWORD)(ULONGLONG)ProcessInfo->UniqueProcessId );
if ( hProcess ) { //
// Get the process PEB
//
Status = NtQueryInformationProcess( hProcess, ProcessBasicInformation, &BasicInfo, sizeof(BasicInfo), NULL );
if ( NT_SUCCESS(Status) ) { ULONG NumberOfHeaps; PVOID ProcessHeaps[MAX_HEAP_COUNT]; PVOID HeapBuffer; PPEB Peb; Peb = BasicInfo.PebBaseAddress;
//
// Read the heaps from the process PEB
//
if (!ReadProcessMemory(hProcess, &Peb->NumberOfHeaps, &NumberOfHeaps, sizeof(NumberOfHeaps), NULL)) {
goto READERROR; }
//
// Limit the number of heaps to be read
//
if (NumberOfHeaps > MAX_HEAP_COUNT) {
NumberOfHeaps = MAX_HEAP_COUNT; }
if (!ReadProcessMemory(hProcess, &Peb->ProcessHeaps, &HeapBuffer, sizeof(HeapBuffer), NULL)) {
goto READERROR; } if (!ReadProcessMemory(hProcess, HeapBuffer, &ProcessHeaps[0], NumberOfHeaps * sizeof(PVOID), NULL)) {
goto READERROR; }
//
// Loop through the heaps and retireve the data
//
for (HeapNumber = 0; HeapNumber < NumberOfHeaps; HeapNumber++) {
TotalLen += sizeof(PERF_INSTANCE_DEFINITION) + (MAX_THREAD_NAME_LENGTH+1+sizeof(DWORD))* sizeof(WCHAR) + sizeof (HEAP_COUNTER_DATA);
if ( *lpcbTotalBytes < TotalLen ) { *lpcbTotalBytes = (DWORD) 0; *lpNumObjectTypes = (DWORD) 0; CloseHandle( hProcess ); return ERROR_MORE_DATA; } //
// Build the monitor instance based on the process name and
// heap address
//
Status = RtlIntegerToUnicodeString( (ULONG)(ULONGLONG)ProcessHeaps[HeapNumber], 16, &HeapName);
if (!NT_SUCCESS(Status)) { // just in case
HeapName.Length = 2 * sizeof(WCHAR); memcpy(HeapNameBuffer, L"-1", HeapName.Length); HeapName.Buffer[2] = UNICODE_NULL; } MonBuildInstanceDefinition(pPerfInstanceDefinition, (PVOID *) &pHCD, PROCESS_OBJECT_TITLE_INDEX, ProcessNumber, (DWORD)-1, HeapName.Buffer);
pHCD->CounterBlock.ByteLength = QWORD_MULTIPLE(sizeof(HEAP_COUNTER_DATA)); //
// Get the data from the heap
//
if (ReadHeapData ( hProcess, HeapNumber, (PHEAP)ProcessHeaps[HeapNumber], pHCD) ) {
pPerfInstanceDefinition = (PERF_INSTANCE_DEFINITION *)&pHCD[1]; NumHeapInstances++; } } } READERROR: CloseHandle( hProcess ); }
ProcessNumber++; //
// Move to the next process, if any
//
if (ProcessInfo->NextEntryOffset == 0) { bMoreProcesses = FALSE; continue; }
ProcessBufferOffset += ProcessInfo->NextEntryOffset; ProcessInfo = (PSYSTEM_PROCESS_INFORMATION) &pProcessBuffer[ProcessBufferOffset]; }
// Note number of heap instances
pHeapDataDefinition->HeapObjectType.NumInstances = NumHeapInstances;
//
// Now we know how large an area we used for the
// heap definition, so we can update the offset
// to the next object definition
//
*lpcbTotalBytes = pHeapDataDefinition->HeapObjectType.TotalByteLength = QWORD_MULTIPLE( (DWORD)((PCHAR) pPerfInstanceDefinition - (PCHAR) pHeapDataDefinition));
#if DBG
if (*lpcbTotalBytes > TotalLen ) { DbgPrint ("\nPERFPROC: Heap Perf Ctr. Instance Size Underestimated:"); DbgPrint ("\nPERFPROC: Estimated size: %d, Actual Size: %d", TotalLen, *lpcbTotalBytes); } #endif
*lppData = (LPVOID) ((PCHAR) pHeapDataDefinition + *lpcbTotalBytes);
*lpNumObjectTypes = 1;
return lReturn; }
|