|
|
/******************************Module*Header**********************************\
* * ******************* * * GDI SAMPLE CODE * * ******************* * * Module Name: enable.c * * Content: * * This module contains the functions that enable and disable the * driver, the pdev, and the surface. * * Copyright (c) 1994-1999 3Dlabs Inc. Ltd. All rights reserved. * Copyright (c) 1995-2003 Microsoft Corporation. All rights reserved. \*****************************************************************************/
#include "precomp.h"
#include "glint.h"
DWORD g_dwTag = (DWORD) 0;
HSEMAPHORE g_cs = (HSEMAPHORE)0;
/******************************Public*Structure****************************\
* GDIINFO ggdiDefault * * This contains the default GDIINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/
GDIINFO ggdiDefault = { GDI_DRIVER_VERSION, // ulVersion
DT_RASDISPLAY, // ulTechnology
0, // ulHorzSize (filled in later)
0, // ulVertSize (filled in later)
0, // ulHorzRes (filled in later)
0, // ulVertRes (filled in later)
0, // cBitsPixel (filled in later)
0, // cPlanes (filled in later)
20, // ulNumColors (palette managed)
0, // flRaster (DDI reserved field)
0, // ulLogPixelsX (filled in later)
0, // ulLogPixelsY (filled in later)
TC_RA_ABLE, // flTextCaps -- If we had wanted console windows
// to scroll by repainting the entire window,
// instead of doing a screen-to-screen blt, we
// would have set TC_SCROLLBLT (yes, the flag is
// bass-ackwards).
0, // ulDACRed (filled in later)
0, // ulDACGreen (filled in later)
0, // ulDACBlue (filled in later)
0x0024, // ulAspectX
0x0024, // ulAspectY
0x0033, // ulAspectXY (one-to-one aspect ratio)
1, // xStyleStep
1, // yStyleSte;
3, // denStyleStep -- Styles have a one-to-one aspect
// ratio, and every 'dot' is 3 pixels long
{ 0, 0 }, // ptlPhysOffset
{ 0, 0 }, // szlPhysSize
256, // ulNumPalReg
// These fields are for halftone initialization. The actual values are
// a bit magic, but seem to work well on our display.
{ // ciDevice
{ 6700, 3300, 0 }, // Red
{ 2100, 7100, 0 }, // Green
{ 1400, 800, 0 }, // Blue
{ 1750, 3950, 0 }, // Cyan
{ 4050, 2050, 0 }, // Magenta
{ 4400, 5200, 0 }, // Yellow
{ 3127, 3290, 0 }, // AlignmentWhite
20000, // RedGamma
20000, // GreenGamma
20000, // BlueGamma
0, 0, 0, 0, 0, 0 // No dye correction for raster displays
},
0, // ulDevicePelsDPI (for printers only)
PRIMARY_ORDER_CBA, // ulPrimaryOrder
HT_PATSIZE_4x4_M, // ulHTPatternSize
HT_FORMAT_8BPP, // ulHTOutputFormat
HT_FLAG_ADDITIVE_PRIMS, // flHTFlags
0, // ulVRefresh
0, // ulPanningHorzRes
0, // ulPanningVertRes
0, // ulBltAlignment
};
/******************************Public*Structure****************************\
* DEVINFO gdevinfoDefault * * This contains the default DEVINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/
#define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"System"} #define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"} #define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\ FIXED_PITCH | FF_DONTCARE, L"Courier"}
DEVINFO gdevinfoDefault = { (GCAPS_OPAQUERECT | GCAPS_DITHERONREALIZE | GCAPS_PALMANAGED | GCAPS_ALTERNATEFILL | GCAPS_WINDINGFILL | GCAPS_MONO_DITHER | #if WNT_DDRAW
GCAPS_DIRECTDRAW | #endif // WNT_DDRAW
GCAPS_COLOR_DITHER | GCAPS_ASYNCMOVE), // NOTE: Only enable ASYNCMOVE if your code
// and hardware can handle DrvMovePointer
// calls at any time, even while another
// thread is in the middle of a drawing
// call such as DrvBitBlt.
// flGraphicsFlags
SYSTM_LOGFONT, // lfDefaultFont
HELVE_LOGFONT, // lfAnsiVarFont
COURI_LOGFONT, // lfAnsiFixFont
0, // cFonts
BMF_8BPP, // iDitherFormat
8, // cxDither
8, // cyDither
0, // hpalDefault (filled in later)
#if(_WIN32_WINNT >= 0x500)
GCAPS2_CHANGEGAMMARAMP, // flGraphicsCaps2
#endif // (_WIN32_WINNT >= 0x500)
};
/******************************Public*Structure****************************\
* DFVFN gadrvfn[] * * Build the driver function table gadrvfn with function index/address * pairs. This table tells GDI which DDI calls we support, and their * location (GDI does an indirect call through this table to call us). * * Why haven't we implemented DrvSaveScreenBits? To save code. * * When the driver doesn't hook DrvSaveScreenBits, USER simulates on- * the-fly by creating a temporary device-format-bitmap, and explicitly * calling DrvCopyBits to save/restore the bits. Since we already hook * DrvCreateDeviceBitmap, we'll end up using off-screen memory to store * the bits anyway (which would have been the main reason for implementing * DrvSaveScreenBits). So we may as well save some working set. \**************************************************************************/
#if DBG || !SYNCHRONIZEACCESS_WORKS
// gadrvfn [] - these entries must be in ascending index order, bad things
// will happen if they aren't.
// In this debug version we always thunk because we have to explicitly
// lock between 2D and 3D operations. DrvEscape doesn't lock.
DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DbgEnablePDEV }, // 0
{ INDEX_DrvCompletePDEV, (PFN) DbgCompletePDEV }, // 1
{ INDEX_DrvDisablePDEV, (PFN) DbgDisablePDEV }, // 2
{ INDEX_DrvEnableSurface, (PFN) DbgEnableSurface }, // 3
{ INDEX_DrvDisableSurface, (PFN) DbgDisableSurface }, // 4
{ INDEX_DrvAssertMode, (PFN) DbgAssertMode }, // 5
{ INDEX_DrvResetPDEV, (PFN) DbgResetPDEV, }, // 7
{ INDEX_DrvDisableDriver, (PFN) DbgDisableDriver, }, // 8
{ INDEX_DrvCreateDeviceBitmap, (PFN) DbgCreateDeviceBitmap }, // 10
{ INDEX_DrvDeleteDeviceBitmap, (PFN) DbgDeleteDeviceBitmap }, // 11
{ INDEX_DrvRealizeBrush, (PFN) DbgRealizeBrush }, // 12
{ INDEX_DrvDitherColor, (PFN) DbgDitherColor }, // 13
{ INDEX_DrvStrokePath, (PFN) DbgStrokePath }, // 14
{ INDEX_DrvFillPath, (PFN) DbgFillPath }, // 15
{ INDEX_DrvPaint, (PFN) DbgPaint }, // 17
{ INDEX_DrvBitBlt, (PFN) DbgBitBlt }, // 18
{ INDEX_DrvCopyBits, (PFN) DbgCopyBits }, // 19
// { INDEX_DrvStretchBlt, (PFN) DbgStretchBlt, }, // 20
{ INDEX_DrvSetPalette, (PFN) DbgSetPalette }, // 22 (SetPalette)
{ INDEX_DrvTextOut, (PFN) DbgTextOut }, // 23 (TextOut)
{ INDEX_DrvEscape, (PFN) DbgEscape }, // 24
{ INDEX_DrvSetPointerShape, (PFN) DbgSetPointerShape }, // 29
{ INDEX_DrvMovePointer, (PFN) DbgMovePointer }, // 30
{ INDEX_DrvLineTo, (PFN) DbgLineTo }, // 31
{ INDEX_DrvSynchronize, (PFN) DbgSynchronize }, // 38
{ INDEX_DrvGetModes, (PFN) DbgGetModes }, // 41
#if WNT_DDRAW
{ INDEX_DrvGetDirectDrawInfo, (PFN) DbgGetDirectDrawInfo }, // 59
{ INDEX_DrvEnableDirectDraw, (PFN) DbgEnableDirectDraw }, // 60
{ INDEX_DrvDisableDirectDraw, (PFN) DbgDisableDirectDraw }, // 61
#endif // WNT_DDRAW
#if(_WIN32_WINNT >= 0x500)
{ INDEX_DrvIcmSetDeviceGammaRamp, (PFN) DbgIcmSetDeviceGammaRamp }, // 67
//@@BEGIN_DDKSPLIT
// Currently we don't actually have any code to accelerate the following 3 new
// NT5 GDI features, and because P3 driver uses the NT4 driver's way to support
// device bitmap, hooking the entries here will cause failure if strectching is
// involved.
//@@END_DDKSPLIT
#if defined(_NT5GDI)
{ INDEX_DrvGradientFill, (PFN) DbgGradientFill }, // 68
{ INDEX_DrvAlphaBlend, (PFN) DbgAlphaBlend }, // 71
{ INDEX_DrvTransparentBlt, (PFN) DbgTransparentBlt }, // 74
#endif
{ INDEX_DrvNotify, (PFN) DbgNotify }, // 87
//azn { INDEX_DrvDeriveSurface, (PFN) DrvDeriveSurface },
#endif // (_WIN32_WINNT >= 0x500)
};
#else // DBG || !SYNCHRONIZEACCESS_WORKS
// gadrvfn [] - these entries must be in ascending index order, bad things
// will happen if they aren't.
// On Free builds, directly call the appropriate functions...
//
DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV }, // 0
{ INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV }, // 1
{ INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV }, // 2
{ INDEX_DrvEnableSurface, (PFN) DrvEnableSurface }, // 3
{ INDEX_DrvDisableSurface, (PFN) DrvDisableSurface }, // 4
{ INDEX_DrvAssertMode, (PFN) DrvAssertMode }, // 5
{ INDEX_DrvResetPDEV, (PFN) DrvResetPDEV, }, // 7
{ INDEX_DrvDisableDriver, (PFN) DrvDisableDriver, }, // 8
{ INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap }, // 10
{ INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap }, // 11
{ INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush }, // 12
{ INDEX_DrvDitherColor, (PFN) DrvDitherColor }, // 13
{ INDEX_DrvStrokePath, (PFN) DrvStrokePath }, // 14
{ INDEX_DrvFillPath, (PFN) DrvFillPath }, // 15
{ INDEX_DrvPaint, (PFN) DrvPaint }, // 17
{ INDEX_DrvBitBlt, (PFN) DrvBitBlt }, // 18
{ INDEX_DrvCopyBits, (PFN) DrvCopyBits }, // 19
// { INDEX_DrvStretchBlt, (PFN) DrvStretchBlt, }, // 20
{ INDEX_DrvSetPalette, (PFN) DrvSetPalette }, // 22 (SetPalette)
{ INDEX_DrvTextOut, (PFN) DrvTextOut }, // 23 (TextOut)
{ INDEX_DrvEscape, (PFN) DrvEscape }, // 24
{ INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape }, // 29
{ INDEX_DrvMovePointer, (PFN) DrvMovePointer }, // 30
{ INDEX_DrvLineTo, (PFN) DrvLineTo }, // 31
{ INDEX_DrvSynchronize, (PFN) DrvSynchronize }, // 38
{ INDEX_DrvGetModes, (PFN) DrvGetModes }, // 41
#if WNT_DDRAW
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo }, // 59
{ INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw }, // 60
{ INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw }, // 61
#endif // WNT_DDRAW
#if(_WIN32_WINNT >= 0x500)
{ INDEX_DrvIcmSetDeviceGammaRamp, (PFN) DrvIcmSetDeviceGammaRamp }, // 67
#if defined(_NT5GDI)
{ INDEX_DrvGradientFill, (PFN) DrvGradientFill }, // 68
{ INDEX_DrvAlphaBlend, (PFN) DrvAlphaBlend }, // 71
{ INDEX_DrvTransparentBlt, (PFN) DrvTransparentBlt }, // 74
#endif
{ INDEX_DrvNotify, (PFN) DrvNotify }, // 87
//azn { INDEX_DrvDeriveSurface, (PFN) DrvDeriveSurface },
#endif // (_WIN32_WINNT >= 0x500)
};
#endif // DBG || !SYNCHRONIZEACCESS_WORKS
ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN);
/******************************Public*Routine******************************\
* BOOL DrvResetPDEV * * Notifies the driver of a dynamic mode change. * \**************************************************************************/
BOOL DrvResetPDEV( DHPDEV dhpdevOld, DHPDEV dhpdevNew) { PDEV* ppdevNew = (PDEV*) dhpdevNew; PDEV* ppdevOld = (PDEV*) dhpdevOld; BOOL bRet = TRUE;
DISPDBG((DBGLVL, "DrvResetPDEV called: oldPDEV = 0x%x, newPDEV = 0x%x", ppdevOld, ppdevNew));
#if WNT_DDRAW
_DD_DDE_ResetPPDEV(ppdevOld, ppdevNew); #endif
return(bRet); }
/******************************Public*Routine******************************\
* BOOL DrvEnableDriver * * Enables the driver by retrieving the drivers function table and version. * \**************************************************************************/
// We define here DDI_DRIVER_VERSION_NT5_01 in order to be able to compile
// inside the DX DDK. In the Whistler DDK this shouldn't be necessary
#ifndef DDI_DRIVER_VERSION_NT5_01
#define DDI_DRIVER_VERSION_NT5_01 0x00030100
#endif
BOOL DrvEnableDriver( ULONG iEngineVersion, ULONG cj, DRVENABLEDATA* pded) { // Set up the indirect information, a multi-boardsystem will call
// the mul functions a single board system will use the one functions
DISPDBG((DBGLVL, "DrvEnableDriver called: gc %d, ga 0x%x", gcdrvfn, gadrvfn));
// Engine Version is passed down so future drivers can support previous
// engine versions. A next generation driver can support both the old
// and new engine conventions if told what version of engine it is
// working with. For the first version the driver does nothing with it.
// Fill in as much as we can.
if (cj >= (sizeof(ULONG) *3)) { pded->pdrvfn = gadrvfn; }
if (cj >= (sizeof(ULONG) * 2)) { pded->c = gcdrvfn; }
// DDI version this driver was targeted for is passed back to engine.
// Future graphic's engine may break calls down to old driver format.
if (cj >= sizeof(ULONG)) { // Ordered list of supported DDI versions
ULONG SupportedVersions[] = { DDI_DRIVER_VERSION_NT5, DDI_DRIVER_VERSION_NT5_01, }; int i = sizeof(SupportedVersions)/sizeof(SupportedVersions[0]);
// Look for highest version also supported by engine
while (--i >= 0) { if (SupportedVersions[i] <= iEngineVersion) { break; } }
// Fail if there is no common DDI support
if (i < 0) { return FALSE; }
pded->iDriverVersion = SupportedVersions[i]; }
// Initialize sync semaphore.
g_cs = EngCreateSemaphore();
if (g_cs) { return(TRUE); } else { return(FALSE); } }
/******************************Public*Routine******************************\
* VOID DrvDisableDriver * * Tells the driver it is being disabled. Release any resources allocated in * DrvEnableDriver. * \**************************************************************************/
VOID DrvDisableDriver(VOID) { DISPDBG((DBGLVL, "DrvDisableDriver called:")); return; }
/******************************Public*Routine******************************\
* DHPDEV DrvEnablePDEV * * Initializes a bunch of fields for GDI, based on the mode we've been asked * to do. This is the first thing called after DrvEnableDriver, when GDI * wants to get some information about us. * \**************************************************************************/
DHPDEV DrvEnablePDEV( DEVMODEW* pdm, // Contains data pertaining to requested mode
PWSTR pwszLogAddr, // Logical address
ULONG cPat, // Count of standard patterns
HSURF* phsurfPatterns, // Buffer for standard patterns
ULONG cjCaps, // Size of buffer for device caps 'pdevcaps'
ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo'
ULONG cjDevInfo, // Number of bytes in device info 'pdi'
DEVINFO* pdi, // Device information
HDEV hdev, // HDEV, used for callbacks
PWSTR pwszDeviceName, // Device name
HANDLE hDriver) // Kernel driver handle
{ PDEV* ppdev; ULONG cjOut;
// Future versions of NT had better supply 'devcaps' and 'devinfo'
// structures that are the same size or larger than the current
// structures:
if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO))) { DISPDBG((ERRLVL, "DrvEnablePDEV - Buffer size too small")); goto ReturnFailure0; }
// Allocate a physical device structure. Note that we definitely
// rely on the zero initialization:
ppdev = (PDEV*) ENGALLOCMEM(FL_ZERO_MEMORY, sizeof(PDEV), ALLOC_TAG_GDI(2)); if (ppdev == NULL) { DISPDBG((ERRLVL, "DrvEnablePDEV - Failed memory allocation")); goto ReturnFailure0; }
ppdev->hDriver = hDriver;
if (!bAllocateGlintInfo(ppdev)) { DISPDBG((ERRLVL, "DrvEnablePDEV - Failed bAllocateGlintInfo")); goto ReturnFailure1; }
// initially assume we are allowed to create our off-screen resources.
// If we decide not to create them, unset the appropriate bit. After,
// initialization, we can temporarily disable a resource by unsetting
// its ENABLE bit.
ppdev->flStatus = ENABLE_DEV_BITMAPS;
#if (_WIN32_WINNT >= 0x500 && WNT_DDRAW)
// Any DX capable card can support linear heaps. Assume we can support
// linear heaps here, this value may be updated in bEnableOffscreenHeap()
ppdev->flStatus |= ENABLE_LINEAR_HEAP;
#endif //(_WIN32_WINNT >= 0x500)
// Get the current screen mode information. Set up device caps and
// devinfo:
if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm)) { DISPDBG((ERRLVL, "DrvEnablePDEV - Failed bInitializeModeFields")); goto ReturnFailure1; }
// Initialize palette information.
if (!bInitializePalette(ppdev, pdi)) { DISPDBG((ERRLVL, "DrvEnablePDEV - Failed bInitializePalette")); goto ReturnFailure1; }
// initialize the image download scratch area and the TexelLUT palette
ppdev->pohImageDownloadArea = NULL; ppdev->cbImageDownloadArea = 0; ppdev->iPalUniq = (ULONG)-1; ppdev->cPalLUTInvalidEntries = 0;
#if WNT_DDRAW
// Create the DirectDraw structures associated with this new pdev
if (!_DD_DDE_CreatePPDEV(ppdev)) { goto ReturnFailure1; } #endif
return((DHPDEV) ppdev);
ReturnFailure1: DrvDisablePDEV((DHPDEV) ppdev);
ReturnFailure0: DISPDBG((ERRLVL, "Failed DrvEnablePDEV"));
return(0); }
/******************************Public*Routine******************************\
* DrvDisablePDEV * * Release the resources allocated in DrvEnablePDEV. If a surface has been * enabled DrvDisableSurface will have already been called. * * Note: In an error, we may call this before DrvEnablePDEV is done. * \**************************************************************************/
VOID DrvDisablePDEV( DHPDEV dhpdev) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
#if WNT_DDRAW
// Free the DirectDraw info associated with the pdev
_DD_DDE_DestroyPPDEV(ppdev); #endif
vUninitializePalette(ppdev);
ENGFREEMEM(ppdev); }
/******************************Public*Routine******************************\
* VOID DrvCompletePDEV * * Store the HPDEV, the engines handle for this PDEV, in the DHPDEV. * \**************************************************************************/
VOID DrvCompletePDEV( DHPDEV dhpdev, HDEV hdev) { ((PDEV*) dhpdev)->hdevEng = hdev; }
/******************************Public*Routine******************************\
* HSURF DrvEnableSurface * * Creates the drawing surface and initializes the hardware. This is called * after DrvEnablePDEV, and performs the final device initialization. * \**************************************************************************/
HSURF DrvEnableSurface( DHPDEV dhpdev) { PDEV* ppdev; HSURF hsurf; SIZEL sizl; DSURF* pdsurf; VOID* pvTmpBuffer;
ppdev = (PDEV*) dhpdev;
if (!bEnableHardware(ppdev)) goto ReturnFailure;
if (!bEnableOffscreenHeap(ppdev)) goto ReturnFailure;
/////////////////////////////////////////////////////////////////////
// First, create our private surface structure.
//
// Whenever we get a call to draw directly to the screen, we'll get
// passed a pointer to a SURFOBJ whose 'dhpdev' field will point
// to our PDEV structure, and whose 'dhsurf' field will point to the
// following DSURF structure.
//
// Every device bitmap we create in DrvCreateDeviceBitmap will also
// have its own unique DSURF structure allocated (but will share the
// same PDEV). To make our code more polymorphic for handling drawing
// to either the screen or an off-screen bitmap, we have the same
// structure for both.
pdsurf = ENGALLOCMEM(FL_ZERO_MEMORY, sizeof(DSURF), ALLOC_TAG_GDI(3)); if (pdsurf == NULL) { DISPDBG((ERRLVL, "DrvEnableSurface - Failed pdsurf memory allocation")); goto ReturnFailure; }
ppdev->pdsurfScreen = pdsurf; // Remember it for clean-up
pdsurf->poh = ppdev->pohScreen; // The screen is a surface, too
pdsurf->poh->pdsurf = pdsurf; pdsurf->dt = DT_SCREEN; // Not to be confused with a DIB DFB
pdsurf->bOffScreen = FALSE; // it's the screen, not offscreen
pdsurf->sizl.cx = ppdev->cxScreen; pdsurf->sizl.cy = ppdev->cyScreen; pdsurf->ppdev = ppdev;
/////////////////////////////////////////////////////////////////////
// Next, have GDI create the actual SURFOBJ.
//
// Our drawing surface is going to be 'device-managed', meaning that
// GDI cannot draw on the framebuffer bits directly, and as such we
// create the surface via EngCreateDeviceSurface. By doing this, we ensure
// that GDI will only ever access the bitmaps bits via the Drv calls
// that we've HOOKed.
sizl.cx = ppdev->cxScreen; sizl.cy = ppdev->cyScreen;
hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat); if (hsurf == 0) { DISPDBG((ERRLVL, "DrvEnableSurface - Failed EngCreateDeviceSurface")); goto ReturnFailure; }
ppdev->hsurfScreen = hsurf; // Remember it for clean-up
ppdev->bEnabled = TRUE; // We'll soon be in graphics mode
/////////////////////////////////////////////////////////////////////
// Now associate the surface and the PDEV.
//
// We have to associate the surface we just created with our physical
// device so that GDI can get information related to the PDEV when
// it's drawing to the surface (such as, for example, the length of
// styles on the device when simulating styled lines).
//
if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks)) { DISPDBG((ERRLVL, "DrvEnableSurface - Failed EngAssociateSurface")); goto ReturnFailure; }
// Create our generic temporary buffer, which may be used by any
// component. Because this may get swapped out of memory any time
// the driver is not active, we want to minimize the number of pages
// it takes up. We use 'VirtualAlloc' to get an exactly page-aligned
// allocation (which 'LocalAlloc' will not do):
pvTmpBuffer = ENGALLOCMEM(FL_ZERO_MEMORY, TMP_BUFFER_SIZE, ALLOC_TAG_GDI(4)); if (pvTmpBuffer == NULL) { DISPDBG((ERRLVL, "DrvEnableSurface - Failed TmpBuffer allocation")); goto ReturnFailure; }
ppdev->pvTmpBuffer = pvTmpBuffer; /////////////////////////////////////////////////////////////////////
// Now enable all the subcomponents.
//
// Note that the order in which these 'Enable' functions are called
// may be significant in low off-screen memory conditions, because
// the off-screen heap manager may fail some of the later
// allocations...
if (!bInitializeGlint(ppdev)) goto ReturnFailure;
// We could simply let GDI synchronize every time it draws on the screen
// but this would be even slower. So unset the sync hook if the rendering
// is done in software.
//
if (!bCreateScreenDIBForOH(ppdev, pdsurf->poh, HOOK_SYNCHRONIZE)) goto ReturnFailure;
if (!bEnablePalette(ppdev)) goto ReturnFailure;
if (!bEnablePointer(ppdev)) goto ReturnFailure;
//@@BEGIN_DDKSPLIT
#if 0
if (!bEnablePointerCache(ppdev)) { DISPDBG((ERRLVL, "Pointer cache failed to initialise")); } #endif
//@@END_DDKSPLIT
#if WNT_DDRAW
if (!_DD_DDE_bEnableDirectDraw(ppdev)) { goto ReturnFailure; } #endif // WNT_DDRAW
DISPDBG((DBGLVL, "Passed DrvEnableSurface"));
return(hsurf);
ReturnFailure: DrvDisableSurface((DHPDEV) ppdev);
DISPDBG((ERRLVL, "Failed DrvEnableSurface"));
return(0); }
/******************************Public*Routine******************************\
* VOID DrvDisableSurface * * Free resources allocated by DrvEnableSurface. Release the surface. * * Note: In an error case, we may call this before DrvEnableSurface is * completely done. * \**************************************************************************/
VOID DrvDisableSurface( DHPDEV dhpdev) { PDEV* ppdev; DSURF* pdsurf;
ppdev = (PDEV*) dhpdev; pdsurf = ppdev->pdsurfScreen;
// Note: In an error case, some of the following relies on the
// fact that the PDEV is zero-initialized, so fields like
// 'hsurfScreen' will be zero unless the surface has been
// sucessfully initialized, and makes the assumption that
// EngDeleteSurface can take '0' as a parameter.
#if WNT_DDRAW
_DD_DDE_vDisableDirectDraw(ppdev);
#endif // WNT_DDRAW
//@@BEGIN_DDKSPLIT
#if 0
vDisablePointerCache(ppdev); #endif
//@@END_DDKSPLIT
vDisablePalette(ppdev); vDisablePointer(ppdev); if (pdsurf != NULL) vDeleteScreenDIBFromOH(pdsurf->poh); vDisableGlint(ppdev); vDisableOffscreenHeap(ppdev); vDisableHardware(ppdev);
ENGFREEMEM(ppdev->pvTmpBuffer); EngDeleteSurface(ppdev->hsurfScreen); ENGFREEMEM(pdsurf); }
/******************************Public*Routine******************************\
* BOOL/VOID DrvAssertMode * * This asks the device to reset itself to the mode of the pdev passed in. * \**************************************************************************/
BOOL DrvAssertMode( DHPDEV dhpdev, BOOL bEnable) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
if (!bEnable) { //////////////////////////////////////////////////////////////
// Disable - Switch to full-screen mode
#if WNT_DDRAW
_DD_DDE_vAssertModeDirectDraw(ppdev, FALSE); #endif WNT_DDRAW
vAssertModePalette(ppdev, FALSE); vAssertModePointer(ppdev, FALSE);
if (bAssertModeOffscreenHeap(ppdev, FALSE)) { vAssertModeGlint(ppdev, FALSE);
if (bAssertModeHardware(ppdev, FALSE)) { ppdev->bEnabled = FALSE;
return(TRUE); }
//////////////////////////////////////////////////////////
// We failed to switch to full-screen. So undo everything:
vAssertModeGlint(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
} // return code with TRUE
vAssertModePointer(ppdev, TRUE); vAssertModePalette(ppdev, TRUE); #if WNT_DDRAW
_DD_DDE_vAssertModeDirectDraw(ppdev, TRUE); #endif WNT_DDRAW
} else { //////////////////////////////////////////////////////////////
// Enable - Switch back to graphics mode
// We have to enable every subcomponent in the reverse order
// in which it was disabled:
if (bAssertModeHardware(ppdev, TRUE)) { vAssertModeGlint(ppdev, TRUE); bAssertModeOffscreenHeap(ppdev, TRUE); vAssertModePointer(ppdev, TRUE); vAssertModePalette(ppdev, TRUE); #if WNT_DDRAW
_DD_DDE_vAssertModeDirectDraw(ppdev, TRUE); #endif // WNT_DDRAW
#if (_WIN32_WINNT >= 0x500 && FALSE)
// There is probably a neater way to do this, but: currently the display driver isn't notified
// about entering / exiting hibernation so it can't save away those GC registers that it has
// initialized at the start of day and hasn't bothered to context switch. DrvAssertMode(TRUE)
// is the first display driver call made upon return from hibernation so we take the
// opportunity to re-initialize these registers now. Reinitializing these registers at other
// times when DrvAssertMode(TRUE) is called (e.g. mode change) should do no harm. Non-GC
// registers are dealt with in the miniport's PowerOnReset() and HibernationMode() functions
{ extern void ReinitialiseGlintExtContext(PDEV *ppdev);
// currently, only the extension context initializes but doesn't context switch certain registers
ReinitialiseGlintExtContext(ppdev); } #endif //(_WIN32_WINNT >= 0x500)
ppdev->bEnabled = TRUE;
return(TRUE); } }
return(FALSE); }
/******************************Public*Routine******************************\
* ULONG DrvGetModes * * Returns the list of available modes for the device. * \**************************************************************************/
ULONG DrvGetModes( HANDLE hDriver, ULONG cjSize, DEVMODEW* pdm) {
DWORD cModes; DWORD cbOutputSize; PVIDEO_MODE_INFORMATION pVideoModeInformation; PVIDEO_MODE_INFORMATION pVideoTemp; DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); DWORD cbModeSize;
cModes = getAvailableModes(hDriver, (PVIDEO_MODE_INFORMATION *) &pVideoModeInformation, &cbModeSize); if (cModes == 0) { DISPDBG((ERRLVL, "DrvGetModes failed to get mode information")); return(0); }
if (pdm == NULL) { cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); } else { //
// Now copy the information for the supported modes back into the
// output buffer
//
cbOutputSize = 0;
pVideoTemp = pVideoModeInformation;
do { if (pVideoTemp->Length != 0) { if (cOutputModes == 0) { break; }
//
// Zero the entire structure to start off with.
//
memset(pdm, 0, sizeof(DEVMODEW));
//
// Set the name of the device to the name of the DLL.
//
memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME));
pdm->dmSpecVersion = DM_SPECVERSION; pdm->dmDriverVersion = DM_SPECVERSION;
//
// We currently do not support Extra information in the driver
//
pdm->dmDriverExtra = DRIVER_EXTRA_SIZE;
pdm->dmSize = sizeof(DEVMODEW); pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes * pVideoTemp->BitsPerPlane; pdm->dmPelsWidth = pVideoTemp->VisScreenWidth; pdm->dmPelsHeight = pVideoTemp->VisScreenHeight; pdm->dmDisplayFrequency = pVideoTemp->Frequency; pdm->dmDisplayFlags = 0; pdm->dmPanningWidth = pdm->dmPelsWidth; pdm->dmPanningHeight = pdm->dmPelsHeight;
pdm->dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT | DM_DISPLAYFREQUENCY | DM_DISPLAYFLAGS; //
// Go to the next DEVMODE entry in the buffer.
//
cOutputModes--;
pdm = (LPDEVMODEW) ( ((UINT_PTR)pdm) + sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((UINT_PTR)pVideoTemp) + cbModeSize);
} while (--cModes); }
ENGFREEMEM(pVideoModeInformation);
return(cbOutputSize); }
/******************************Public*Routine******************************\
* BOOL bAssertModeHardware * * Sets the appropriate hardware state for graphics mode or full-screen. * \**************************************************************************/
BOOL bAssertModeHardware( PDEV* ppdev, BOOL bEnable) { DWORD ReturnedDataLength; ULONG ulReturn; VIDEO_MODE_INFORMATION VideoModeInfo; GLINT_DECL;
if (bEnable) { DISPDBG((DBGLVL, "enabling hardware"));
// Call the miniport via an IOCTL to set the graphics mode.
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ppdev->ulMode, // input buffer
sizeof(DWORD), NULL, 0, &ReturnedDataLength) != NO_ERROR) { DISPDBG((ERRLVL, "bAssertModeHardware - Failed VIDEO_SET_CURRENT_MODE")); goto ReturnFalse; }
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_QUERY_CURRENT_MODE, NULL, 0, &VideoModeInfo, sizeof(VideoModeInfo), &ReturnedDataLength) != NO_ERROR) { DISPDBG((ERRLVL, "bAssertModeHardware - failed VIDEO_QUERY_CURRENT_MODE")); goto ReturnFalse; }
#if DEBUG_HEAP
VideoModeInfo.VideoMemoryBitmapWidth = VideoModeInfo.VisScreenWidth; DISPDBG((ERRLVL, "Video Memory Bitmap width and height set to %d x %d", VideoModeInfo.VideoMemoryBitmapWidth, VideoModeInfo.VideoMemoryBitmapHeight)); #endif
// The following variables are determined only after the initial
// modeset:
ppdev->cxMemory = VideoModeInfo.VideoMemoryBitmapWidth; ppdev->cyMemory = VideoModeInfo.VideoMemoryBitmapHeight; ppdev->lDelta = VideoModeInfo.ScreenStride; ppdev->Vrefresh = VideoModeInfo.Frequency; ppdev->flCaps = VideoModeInfo.DriverSpecificAttributeFlags;
DISPDBG((DBGLVL, "Got flCaps 0x%x", ppdev->flCaps)); } else { // Call the kernel driver to reset the device to a known state.
// NTVDM will take things from there:
DISPDBG((DBGLVL, "IOCTL_VIDEO_RESET_DEVICE"));
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_RESET_DEVICE, NULL, 0, NULL, 0, &ulReturn) != NO_ERROR) { DISPDBG((ERRLVL, "bAssertModeHardware - Failed reset IOCTL")); goto ReturnFalse; } }
DISPDBG((DBGLVL, "Passed bAssertModeHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((ERRLVL, "Failed bAssertModeHardware"));
return(FALSE); }
/******************************Public*Routine******************************\
* BOOL bEnableHardware * * Puts the hardware in the requested mode and initializes it. * \**************************************************************************/
BOOL bEnableHardware( PDEV* ppdev) { VIDEO_MEMORY VideoMemory; VIDEO_MEMORY_INFORMATION VideoMemoryInfo; DWORD ReturnedDataLength; LONG i; VIDEO_PUBLIC_ACCESS_RANGES VideoAccessRange[3]; DISPDBG((DBGLVL, "bEnableHardware Reached"));
// Map control registers into virtual memory:
VideoMemory.RequestedVirtualAddress = NULL;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES, &VideoMemory, // input buffer
sizeof(VIDEO_MEMORY), &VideoAccessRange[0], // output buffer
sizeof (VideoAccessRange), &ReturnedDataLength) != NO_ERROR) { RIP("bEnableHardware - Initialization error mapping control registers"); goto ReturnFalse; }
ppdev->pulCtrlBase[0] = (ULONG*) VideoAccessRange[0].VirtualAddress; ppdev->pulCtrlBase[1] = (ULONG*) VideoAccessRange[1].VirtualAddress; ppdev->pulCtrlBase[2] = (ULONG*) VideoAccessRange[2].VirtualAddress;
DISPDBG((DBGLVL, "Mapped GLINT control registers[0] at 0x%x", ppdev->pulCtrlBase[0])); DISPDBG((DBGLVL, "Mapped GLINT control registers[1] at 0x%x", ppdev->pulCtrlBase[1])); DISPDBG((DBGLVL, "Mapped GLINT control registers[2] at 0x%x", ppdev->pulCtrlBase[2])); DISPDBG((DBGLVL, "bEnableHardware: ppdev 0x%x", ppdev));
// Get the linear memory address range.
VideoMemory.RequestedVirtualAddress = NULL; if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_MAP_VIDEO_MEMORY, &VideoMemory, // input buffer
sizeof(VIDEO_MEMORY), &VideoMemoryInfo, // output buffer
sizeof(VideoMemoryInfo), &ReturnedDataLength) != NO_ERROR) { DISPDBG((ERRLVL, "bEnableHardware - Error mapping buffer address")); goto ReturnFalse; }
DISPDBG((DBGLVL, "FrameBufferBase: %lx", VideoMemoryInfo.FrameBufferBase));
// Record the Frame Buffer Linear Address.
ppdev->pjScreen = (BYTE*) VideoMemoryInfo.FrameBufferBase; ppdev->FrameBufferLength = VideoMemoryInfo.FrameBufferLength;
if (!bAssertModeHardware(ppdev, TRUE)) goto ReturnFalse;
DISPDBG((DBGLVL, "Width: %li Height: %li Stride: %li Flags: 0x%lx", ppdev->cxMemory, ppdev->cyMemory, ppdev->lDelta, ppdev->flCaps));
DISPDBG((DBGLVL, "Passed bEnableHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((ERRLVL, "Failed bEnableHardware"));
return(FALSE); }
/******************************Public*Routine******************************\
* VOID vDisableHardware * * Undoes anything done in bEnableHardware. * * Note: In an error case, we may call this before bEnableHardware is * completely done. * \**************************************************************************/
VOID vDisableHardware( PDEV* ppdev) { DWORD ReturnedDataLength; VIDEO_MEMORY VideoMemory[3];
VideoMemory[0].RequestedVirtualAddress = ppdev->pjScreen;
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_UNMAP_VIDEO_MEMORY, &VideoMemory[0], sizeof(VIDEO_MEMORY), NULL, 0, &ReturnedDataLength) != NO_ERROR) { DISPDBG((ERRLVL, "vDisableHardware failed IOCTL_VIDEO_UNMAP_VIDEO")); }
VideoMemory[0].RequestedVirtualAddress = ppdev->pulCtrlBase[0]; VideoMemory[1].RequestedVirtualAddress = ppdev->pulCtrlBase[1]; VideoMemory[2].RequestedVirtualAddress = ppdev->pulCtrlBase[2];
if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES, &VideoMemory[0], sizeof(VideoMemory), NULL, 0, &ReturnedDataLength) != NO_ERROR) { DISPDBG((ERRLVL, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS")); } }
/******************************Public*Routine******************************\
* BOOL bInitializeModeFields * * Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and * devinfo based on the requested mode. * \**************************************************************************/
BOOL bInitializeModeFields( PDEV* ppdev, GDIINFO* pgdi, DEVINFO* pdi, DEVMODEW* pdm) { ULONG cModes; PVIDEO_MODE_INFORMATION pVideoBuffer; PVIDEO_MODE_INFORMATION pVideoModeSelected; PVIDEO_MODE_INFORMATION pVideoTemp; BOOL bSelectDefault; VIDEO_MODE_INFORMATION VideoModeInformation; ULONG cbModeSize;
// Call the miniport to get mode information
cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize); if (cModes == 0) goto ReturnFalse;
// Determine if we are looking for a default mode:
if ( ((pdm->dmPelsWidth) || (pdm->dmPelsHeight) || (pdm->dmBitsPerPel) || (pdm->dmDisplayFlags) || (pdm->dmDisplayFrequency)) == 0) { bSelectDefault = TRUE; } else { bSelectDefault = FALSE; }
// Now see if the requested mode has a match in that table.
pVideoModeSelected = NULL; pVideoTemp = pVideoBuffer;
if ((pdm->dmPelsWidth == 0) && (pdm->dmPelsHeight == 0) && (pdm->dmBitsPerPel == 0) && (pdm->dmDisplayFrequency == 0)) { DISPDBG((DBGLVL, "Default mode requested")); } else { DISPDBG((DBGLVL, "Requested mode...")); DISPDBG((DBGLVL, " Screen width -- %li", pdm->dmPelsWidth)); DISPDBG((DBGLVL, " Screen height -- %li", pdm->dmPelsHeight)); DISPDBG((DBGLVL, " Bits per pel -- %li", pdm->dmBitsPerPel)); DISPDBG((DBGLVL, " Frequency -- %li", pdm->dmDisplayFrequency)); }
while (cModes--) { if (pVideoTemp->Length != 0) { DISPDBG((DBGLVL, " Checking against miniport mode:")); DISPDBG((DBGLVL, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((DBGLVL, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((DBGLVL, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((DBGLVL, " Frequency -- %li", pVideoTemp->Frequency));
if (bSelectDefault || ((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) && (pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) && (pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel)) && (pVideoTemp->Frequency == pdm->dmDisplayFrequency)) { pVideoModeSelected = pVideoTemp; DISPDBG((DBGLVL, "...Found a mode match!")); break; } }
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize);
}
// If no mode has been found, return an error
if (pVideoModeSelected == NULL) { DISPDBG((DBGLVL, "...Couldn't find a mode match!")); ENGFREEMEM(pVideoBuffer); goto ReturnFalse; }
// We have chosen the one we want. Save it in a stack buffer and
// get rid of allocated memory before we forget to free it.
VideoModeInformation = *pVideoModeSelected; ENGFREEMEM(pVideoBuffer);
// Set up screen information from the mini-port:
ppdev->ulMode = VideoModeInformation.ModeIndex; ppdev->cxScreen = VideoModeInformation.VisScreenWidth; ppdev->cyScreen = VideoModeInformation.VisScreenHeight;
DISPDBG((DBGLVL, "ScreenStride: %li", VideoModeInformation.ScreenStride));
ppdev->flHooks = (HOOK_BITBLT | HOOK_TEXTOUT | HOOK_FILLPATH | HOOK_COPYBITS | HOOK_STROKEPATH | HOOK_LINETO | HOOK_PAINT | // HOOK_STRETCHBLT |
#if (_WIN32_WINNT >= 0x500)
#if defined(_NT5GDI)
HOOK_GRADIENTFILL | HOOK_TRANSPARENTBLT | HOOK_ALPHABLEND | #endif
#endif // (_WIN32_WINNT >= 0x500)
0);
// Fill in the GDIINFO data structure with the default 8bpp values:
*pgdi = ggdiDefault;
// Now overwrite the defaults with the relevant information returned
// from the kernel driver:
pgdi->ulHorzSize = VideoModeInformation.XMillimeter; pgdi->ulVertSize = VideoModeInformation.YMillimeter;
pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulVertRes = VideoModeInformation.VisScreenHeight; pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight; pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane; pgdi->cPlanes = VideoModeInformation.NumberOfPlanes; pgdi->ulVRefresh = VideoModeInformation.Frequency;
pgdi->ulDACRed = VideoModeInformation.NumberRedBits; pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits; pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits;
pgdi->ulLogPixelsX = pdm->dmLogPixels; pgdi->ulLogPixelsY = pdm->dmLogPixels;
// Fill in the devinfo structure with the default 8bpp values:
*pdi = gdevinfoDefault;
if (VideoModeInformation.BitsPerPlane == 8) { ppdev->cjPelSize = 1; ppdev->cPelSize = 0; ppdev->iBitmapFormat = BMF_8BPP;
if (VideoModeInformation.AttributeFlags & VIDEO_MODE_PALETTE_DRIVEN) { ppdev->ulWhite = 0xff; } else { ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask; ppdev->ulWhite = VideoModeInformation.RedMask | VideoModeInformation.GreenMask | VideoModeInformation.BlueMask;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); pgdi->ulNumColors = (ULONG) 256; pgdi->ulNumPalReg = (ULONG) 256; pgdi->ulHTOutputFormat = HT_FORMAT_8BPP; } } else if ((VideoModeInformation.BitsPerPlane == 16) || (VideoModeInformation.BitsPerPlane == 15)) { ppdev->cjPelSize = 2; ppdev->cPelSize = 1; ppdev->iBitmapFormat = BMF_16BPP; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_16BPP;
pdi->iDitherFormat = BMF_16BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
ppdev->ulWhite = VideoModeInformation.RedMask | VideoModeInformation.GreenMask | VideoModeInformation.BlueMask;
} else if (VideoModeInformation.BitsPerPlane == 24) { ppdev->cjPelSize = 3; ppdev->cPelSize = 4; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask; ppdev->iBitmapFormat = BMF_24BPP;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_24BPP;
pdi->iDitherFormat = BMF_24BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
ppdev->ulWhite = VideoModeInformation.RedMask | VideoModeInformation.GreenMask | VideoModeInformation.BlueMask; } else { ASSERTDD((VideoModeInformation.BitsPerPlane == 32) || (VideoModeInformation.BitsPerPlane == 12), "This driver supports only 8, 16 and 32bpp");
ppdev->cjPelSize = 4; ppdev->cPelSize = 2; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask; ppdev->iBitmapFormat = BMF_32BPP;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_32BPP;
pdi->iDitherFormat = BMF_32BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
ppdev->ulWhite = VideoModeInformation.RedMask | VideoModeInformation.GreenMask | VideoModeInformation.BlueMask; }
DISPDBG((DBGLVL, "Passed bInitializeModeFields"));
return(TRUE);
ReturnFalse:
DISPDBG((ERRLVL, "Failed bInitializeModeFields"));
return(FALSE); }
/******************************Public*Routine******************************\
* DWORD getAvailableModes * * Calls the miniport to get the list of modes supported by the kernel driver, * and returns the list of modes supported by the diplay driver among those * * returns the number of entries in the videomode buffer. * 0 means no modes are supported by the miniport or that an error occured. * * NOTE: the buffer must be freed up by the caller. * \**************************************************************************/
DWORD getAvailableModes( HANDLE hDriver, PVIDEO_MODE_INFORMATION* modeInformation, DWORD* cbModeSize) { ULONG ulTemp; VIDEO_NUM_MODES modes; PVIDEO_MODE_INFORMATION pVideoTemp;
//
// Get the number of modes supported by the mini-port
//
if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES, NULL, 0, &modes, sizeof(VIDEO_NUM_MODES), &ulTemp) != NO_ERROR) { DISPDBG((ERRLVL, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES")); return(0); }
*cbModeSize = modes.ModeInformationLength;
//
// Allocate the buffer for the mini-port to write the modes in.
//
*modeInformation = (PVIDEO_MODE_INFORMATION) ENGALLOCMEM(FL_ZERO_MEMORY, modes.NumModes * modes.ModeInformationLength, ALLOC_TAG_GDI(5));
if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL) { DISPDBG((ERRLVL, "getAvailableModes - Failed memory allocation")); return 0; }
//
// Ask the mini-port to fill in the available modes.
//
if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_AVAIL_MODES, NULL, 0, *modeInformation, modes.NumModes * modes.ModeInformationLength, &ulTemp) != NO_ERROR) {
DISPDBG((ERRLVL, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES"));
ENGFREEMEM(*modeInformation); *modeInformation = (PVIDEO_MODE_INFORMATION) NULL;
return(0); }
//
// Now see which of these modes are supported by the display driver.
// As an internal mechanism, set the length to 0 for the modes we
// DO NOT support.
//
ulTemp = modes.NumModes; pVideoTemp = *modeInformation;
//
// Mode is rejected if it is not one plane, or not graphics, or is not
// one of 8, 15, 16 or 32 bits per pel.
//
while (ulTemp--) { if ((pVideoTemp->NumberOfPlanes != 1 ) || !(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) || ((pVideoTemp->BitsPerPlane != 8) && (pVideoTemp->BitsPerPlane != 12) && (pVideoTemp->BitsPerPlane != 15) && (pVideoTemp->BitsPerPlane != 16) && (pVideoTemp->BitsPerPlane != 24) && (pVideoTemp->BitsPerPlane != 32))) { DISPDBG((WRNLVL, "Rejecting miniport mode:")); DISPDBG((WRNLVL, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((WRNLVL, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((WRNLVL, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((WRNLVL, " Frequency -- %li", pVideoTemp->Frequency));
pVideoTemp->Length = 0; }
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + modes.ModeInformationLength); }
return(modes.NumModes); }
//*****************************************************************************
// FUNC: DrvEscape
// ARGS: pso (I) - the surface affected by this notification
//
//*****************************************************************************
ULONG APIENTRY DrvEscape( SURFOBJ *pso, ULONG iEsc, ULONG cjIn, PVOID pvIn, ULONG cjOut, PVOID pvOut ) { PDEV *ppdev = (PDEV *) pso->dhpdev; ULONG ulResult = 0; INT iQuery;
DISPDBG((DBGLVL,"In DrvEscape"));
switch (iEsc) { case QUERYESCSUPPORT: iQuery = *(int *)pvIn;
switch(iQuery) { case ESCAPE_TRACK_FUNCTION_COVERAGE: case ESCAPE_TRACK_CODE_COVERAGE: case ESCAPE_TRACK_MEMORY_ALLOCATION: DISPDBG((DBGLVL,"In DrvEscape QUERYESCSUPPORT")); ulResult = 1; default: ulResult = 0; } break;
case ESCAPE_TRACK_FUNCTION_COVERAGE: ulResult = 0; #if DBG
Debug_Func_Report_And_Reset(); ulResult = 1; #endif // DBG
break;
case ESCAPE_TRACK_CODE_COVERAGE: ulResult = 0; #if DBG
Debug_Code_Report_And_Reset(); ulResult = 1; #endif // DBG
break;
case ESCAPE_TRACK_MEMORY_ALLOCATION: ulResult = 0; #if DBG
#endif // DBG
break;
#ifdef DBG_EA_TAGS
case ESCAPE_EA_TAG: if (pvIn) { DWORD dwEnable, dwTag; dwTag = *(DWORD *) pvIn; // tag and enable flag
dwEnable = dwTag & EA_TAG_ENABLE; // get enable flag
dwTag &= ~EA_TAG_ENABLE; // strip enable flag for range comparison
if ((dwTag < MIN_EA_TAG) || (dwTag > MAX_EA_TAG)) { ulResult = -3; } // Invalid tag value
else { g_dwTag = dwTag | dwEnable; ulResult = 1; } // Valid tag for value
} else { ulResult = -2; } // NULL tag pointer
break; #endif // DBG_EA_TAGS
default: DISPDBG((WRNLVL, "DrvEscape: unknown escape %d", iEsc)); ulResult = 0; }
return ulResult; }
#if(_WIN32_WINNT >= 0x500)
//*****************************************************************************
// FUNC: DrvNotify
// ARGS: pso (I) - the surface affected by this notification
// iType (I) - notification type
// pvData (I) - notification data: format depends on iType
// RETN: void
//-----------------------------------------------------------------------------
//*****************************************************************************
VOID DrvNotify(IN SURFOBJ *pso, IN ULONG iType, IN PVOID pvData) { PDEV *ppdev;
ASSERTDD(pso->iType != STYPE_BITMAP, "ERROR - DrvNotify called for DIB surface!");
ppdev = (PDEV *)pso->dhpdev;
switch(iType) { case DN_ACCELERATION_LEVEL: { ULONG ul = *(ULONG *)pvData;
DISPDBG((DBGLVL, "DrvNotify: DN_ACCELERATION_LEVEL = %d", ul)); } break;
case DN_DEVICE_ORIGIN: { POINTL ptl = *(POINTL *)pvData;
DISPDBG((DBGLVL, "DrvNotify: DN_DEVICE_ORIGIN xy == (%xh,%xh)", ptl.x, ptl.y)); } break;
case DN_SLEEP_MODE: DISPDBG((DBGLVL, "DrvNotify: DN_SLEEP_MODE")); break;
case DN_DRAWING_BEGIN: DISPDBG((DBGLVL, "DrvNotify: DN_DRAWING_BEGIN"));
#if ENABLE_DXMANAGED_LINEAR_HEAP
if((ppdev->flStatus & (ENABLE_LINEAR_HEAP | STAT_DEV_BITMAPS)) == (ENABLE_LINEAR_HEAP | STAT_DEV_BITMAPS)) { if(ppdev->heap.cLinearHeaps) { // finally free to use the DX heap manager
DISPDBG((DBGLVL, "DrvNotify: enabling DX heap manager")); ppdev->flStatus |= STAT_LINEAR_HEAP; } else { DISPDBG((ERRLVL, "DrvNotify: DX heap manager not enabled - there are no DX heaps! Remain using the 2D heap manager")); } } #endif //ENABLE_DXMANAGED_LINEAR_HEAP
break;
default: DISPDBG((WRNLVL, "DrvNotify: unknown notification type %d", iType)); } }
#endif //(_WIN32_WINNT >= 0x500)
|