|
|
/*++
Copyright (c) 2000 Microsoft Corporation
Module Name:
sSPnP.c
Abstract:
This file contains code to handle the pnp irps. This is not USB specific but is essential for every WDM driver.
Environment:
Kernel mode
Notes:
Copyright (c) 2000 Microsoft Corporation. All Rights Reserved.
--*/
#include "selSusp.h"
#include "sSPnP.h"
#include "sSPwr.h"
#include "sSDevCtr.h"
#include "sSWmi.h"
#include "sSUsr.h"
NTSTATUS SS_DispatchPnP( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
The plug and play dispatch routines. Most of these requests the driver will completely ignore. In all cases it must pass on the IRP to the lower driver.
Arguments:
DeviceObject - pointer to a device object.
Irp - pointer to an I/O Request Packet.
Return Value:
NT status code
--*/ { PIO_STACK_LOCATION irpStack; PDEVICE_EXTENSION deviceExtension; KEVENT startDeviceEvent; NTSTATUS ntStatus;
//
// initialize variables
//
irpStack = IoGetCurrentIrpStackLocation(Irp); deviceExtension = DeviceObject->DeviceExtension;
//
// since the device is removed, fail the Irp.
//
if(Removed == deviceExtension->DeviceState) {
ntStatus = STATUS_DELETE_PENDING;
Irp->IoStatus.Status = ntStatus; Irp->IoStatus.Information = 0;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
return ntStatus; }
SSDbgPrint(3, ("///////////////////////////////////////////\n")); SSDbgPrint(3, ("SS_DispatchPnP::")); SSIoIncrement(deviceExtension);
if(irpStack->MinorFunction == IRP_MN_START_DEVICE) {
ASSERT(deviceExtension->IdleReqPend == 0); } else {
if(deviceExtension->SSEnable) { CancelSelectSuspend(deviceExtension); } }
SSDbgPrint(2, (PnPMinorFunctionString(irpStack->MinorFunction)));
switch(irpStack->MinorFunction) {
case IRP_MN_START_DEVICE:
ntStatus = HandleStartDevice(DeviceObject, Irp);
break;
case IRP_MN_QUERY_STOP_DEVICE:
//
// if we cannot stop the device, we fail the query stop irp
//
ntStatus = CanStopDevice(DeviceObject, Irp);
if(NT_SUCCESS(ntStatus)) {
ntStatus = HandleQueryStopDevice(DeviceObject, Irp);
return ntStatus; } break;
case IRP_MN_CANCEL_STOP_DEVICE:
ntStatus = HandleCancelStopDevice(DeviceObject, Irp);
break; case IRP_MN_STOP_DEVICE:
ntStatus = HandleStopDevice(DeviceObject, Irp);
SSDbgPrint(3, ("SS_DispatchPnP::IRP_MN_STOP_DEVICE::")); SSIoDecrement(deviceExtension);
return ntStatus;
case IRP_MN_QUERY_REMOVE_DEVICE:
//
// if we cannot remove the device, we fail the query remove irp
//
ntStatus = CanRemoveDevice(DeviceObject, Irp);
if(NT_SUCCESS(ntStatus)) { ntStatus = HandleQueryRemoveDevice(DeviceObject, Irp);
return ntStatus; } break;
case IRP_MN_CANCEL_REMOVE_DEVICE:
ntStatus = HandleCancelRemoveDevice(DeviceObject, Irp);
break;
case IRP_MN_SURPRISE_REMOVAL:
ntStatus = HandleSurpriseRemoval(DeviceObject, Irp);
SSDbgPrint(3, ("SS_DispatchPnP::IRP_MN_SURPRISE_REMOVAL::")); SSIoDecrement(deviceExtension);
return ntStatus;
case IRP_MN_REMOVE_DEVICE:
ntStatus = HandleRemoveDevice(DeviceObject, Irp);
return ntStatus;
case IRP_MN_QUERY_CAPABILITIES:
ntStatus = HandleQueryCapabilities(DeviceObject, Irp);
break;
default:
IoSkipCurrentIrpStackLocation(Irp);
ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp);
SSDbgPrint(3, ("SS_DispatchPnP::default::")); SSIoDecrement(deviceExtension);
return ntStatus;
} // switch
//
// complete request
//
Irp->IoStatus.Status = ntStatus; Irp->IoStatus.Information = 0;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
//
// decrement count
//
SSDbgPrint(3, ("SS_DispatchPnP::")); SSIoDecrement(deviceExtension);
return ntStatus; }
NTSTATUS HandleStartDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This is the dispatch routine for IRP_MN_START_DEVICE
Arguments:
DeviceObject - pointer to a device object.
Irp - I/O request packet
Return Value:
NT status value
--*/ { KIRQL oldIrql; KEVENT startDeviceEvent; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension; LARGE_INTEGER dueTime;
SSDbgPrint(3, ("HandleStartDevice - begins\n"));
//
// initialize variables
//
deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
//
// We cannot touch the device (send it any non pnp irps) until a
// start device has been passed down to the lower drivers.
// first pass the Irp down
//
KeInitializeEvent(&startDeviceEvent, NotificationEvent, FALSE);
IoCopyCurrentIrpStackLocationToNext(Irp);
IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE)IrpCompletionRoutine, (PVOID)&startDeviceEvent, TRUE, TRUE, TRUE);
ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp);
if(ntStatus == STATUS_PENDING) {
KeWaitForSingleObject(&startDeviceEvent, Executive, KernelMode, FALSE, NULL);
ntStatus = Irp->IoStatus.Status; }
if(!NT_SUCCESS(ntStatus)) {
SSDbgPrint(1, ("Lower drivers failed IRP_MN_START_DEVICE\n")); return ntStatus; }
//
// Read the device descriptor, configuration descriptor
// and select the interface descriptors
//
ntStatus = ReadandSelectDescriptors(DeviceObject);
if(!NT_SUCCESS(ntStatus)) {
SSDbgPrint(1, ("ReadandSelectDescriptors failed\n")); return ntStatus; }
//
// enable the symbolic links for system components to open
// handles to the device
//
ntStatus = IoSetDeviceInterfaceState(&deviceExtension->InterfaceName, TRUE);
if(!NT_SUCCESS(ntStatus)) {
SSDbgPrint(1, ("IoSetDeviceInterfaceState:enable:failed\n")); return ntStatus; }
KeAcquireSpinLock(&deviceExtension->DevStateLock, &oldIrql);
SET_NEW_PNP_STATE(deviceExtension, Working); deviceExtension->QueueState = AllowRequests;
KeReleaseSpinLock(&deviceExtension->DevStateLock, oldIrql);
//
// initialize wait wake variables
// and issue a wait wake.
deviceExtension->WaitWakeIrp = NULL; deviceExtension->FlagWWCancel = 0; deviceExtension->FlagWWOutstanding = 0;
if(deviceExtension->WaitWakeEnable) {
IssueWaitWake(deviceExtension); }
ProcessQueuedRequests(deviceExtension);
if(WinXpOrBetter == deviceExtension->WdmVersion) {
deviceExtension->SSEnable = deviceExtension->SSRegistryEnable;
//
// set timer for selective suspend requests.
//
if(deviceExtension->SSEnable) {
dueTime.QuadPart = -10000 * IDLE_INTERVAL; // 5000 ms
SSDbgPrint(3, ("Setting the timer...\n")); KeSetTimerEx(&deviceExtension->Timer, dueTime, IDLE_INTERVAL, // 5000 ms
&deviceExtension->DeferredProcCall);
deviceExtension->FreeIdleIrpCount = 0; } }
SSDbgPrint(3, ("HandleStartDevice - ends\n"));
return ntStatus; }
NTSTATUS ReadandSelectDescriptors( IN PDEVICE_OBJECT DeviceObject ) /*++
Routine Description:
This routine configures the USB device. In this routines we get the device descriptor, the configuration descriptor and select the configuration descriptor.
Arguments:
DeviceObject - pointer to a device object
Return Value:
NTSTATUS - NT status value.
--*/ { PURB urb; ULONG siz; NTSTATUS ntStatus; PUSB_DEVICE_DESCRIPTOR deviceDescriptor; //
// initialize variables
//
urb = NULL; deviceDescriptor = NULL;
//
// 1. Read the device descriptor
//
urb = ExAllocatePool(NonPagedPool, sizeof(struct _URB_CONTROL_DESCRIPTOR_REQUEST));
if(urb) {
siz = sizeof(USB_DEVICE_DESCRIPTOR); deviceDescriptor = ExAllocatePool(NonPagedPool, siz);
if(deviceDescriptor) {
UsbBuildGetDescriptorRequest( urb, (USHORT) sizeof(struct _URB_CONTROL_DESCRIPTOR_REQUEST), USB_DEVICE_DESCRIPTOR_TYPE, 0, 0, deviceDescriptor, NULL, siz, NULL);
ntStatus = CallUSBD(DeviceObject, urb);
if(NT_SUCCESS(ntStatus)) {
ASSERT(deviceDescriptor->bNumConfigurations); ntStatus = ConfigureDevice(DeviceObject); } ExFreePool(urb); ExFreePool(deviceDescriptor); } else {
SSDbgPrint(1, ("Failed to allocate memory for deviceDescriptor\n"));
ExFreePool(urb); ntStatus = STATUS_INSUFFICIENT_RESOURCES; } } else {
SSDbgPrint(1, ("Failed to allocate memory for urb\n"));
ntStatus = STATUS_INSUFFICIENT_RESOURCES; }
return ntStatus; }
NTSTATUS ConfigureDevice( IN PDEVICE_OBJECT DeviceObject ) /*++
Routine Description:
This helper routine reads the configuration descriptor for the device in couple of steps.
Arguments:
DeviceObject - pointer to a device object
Return Value:
NTSTATUS - NT status value
--*/ { PURB urb; ULONG siz; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension; PUSB_CONFIGURATION_DESCRIPTOR configurationDescriptor;
//
// initialize the variables
//
urb = NULL; configurationDescriptor = NULL; deviceExtension = DeviceObject->DeviceExtension;
//
// Read the first configuration descriptor
// This requires two steps:
// 1. Read the fixed sized configuration desciptor (CD)
// 2. Read the CD with all embedded interface and endpoint descriptors
//
urb = ExAllocatePool(NonPagedPool, sizeof(struct _URB_CONTROL_DESCRIPTOR_REQUEST));
if(urb) {
siz = sizeof(USB_CONFIGURATION_DESCRIPTOR); configurationDescriptor = ExAllocatePool(NonPagedPool, siz);
if(configurationDescriptor) {
UsbBuildGetDescriptorRequest( urb, (USHORT) sizeof(struct _URB_CONTROL_DESCRIPTOR_REQUEST), USB_CONFIGURATION_DESCRIPTOR_TYPE, 0, 0, configurationDescriptor, NULL, sizeof(USB_CONFIGURATION_DESCRIPTOR), NULL);
ntStatus = CallUSBD(DeviceObject, urb);
if(!NT_SUCCESS(ntStatus)) {
SSDbgPrint(1, ("UsbBuildGetDescriptorRequest failed\n")); goto ConfigureDevice_Exit; } } else {
SSDbgPrint(1, ("Failed to allocate mem for config Descriptor\n"));
ntStatus = STATUS_INSUFFICIENT_RESOURCES; goto ConfigureDevice_Exit; }
siz = configurationDescriptor->wTotalLength;
ExFreePool(configurationDescriptor);
configurationDescriptor = ExAllocatePool(NonPagedPool, siz);
if(configurationDescriptor) {
UsbBuildGetDescriptorRequest( urb, (USHORT)sizeof(struct _URB_CONTROL_DESCRIPTOR_REQUEST), USB_CONFIGURATION_DESCRIPTOR_TYPE, 0, 0, configurationDescriptor, NULL, siz, NULL);
ntStatus = CallUSBD(DeviceObject, urb);
if(!NT_SUCCESS(ntStatus)) {
SSDbgPrint(1,("Failed to read configuration descriptor\n")); goto ConfigureDevice_Exit; } } else {
SSDbgPrint(1, ("Failed to alloc mem for config Descriptor\n")); ntStatus = STATUS_INSUFFICIENT_RESOURCES; goto ConfigureDevice_Exit; } } else {
SSDbgPrint(1, ("Failed to allocate memory for urb\n")); ntStatus = STATUS_INSUFFICIENT_RESOURCES; goto ConfigureDevice_Exit; }
if(configurationDescriptor) {
if(configurationDescriptor->bmAttributes & REMOTE_WAKEUP_MASK) { //
// this configuration supports remote wakeup
//
deviceExtension->WaitWakeEnable = 1; } else { deviceExtension->WaitWakeEnable = 0; }
ntStatus = SelectInterfaces(DeviceObject, configurationDescriptor); }
ConfigureDevice_Exit:
if(urb) {
ExFreePool(urb); }
if(configurationDescriptor) {
ExFreePool(configurationDescriptor); }
return ntStatus; }
NTSTATUS SelectInterfaces( IN PDEVICE_OBJECT DeviceObject, IN PUSB_CONFIGURATION_DESCRIPTOR ConfigurationDescriptor ) /*++
Routine Description:
This helper routine selects the configuration
Arguments:
DeviceObject - pointer to device object ConfigurationDescriptor - pointer to the configuration descriptor for the device
Return Value:
NT status value
--*/ { LONG numberOfInterfaces, interfaceNumber, interfaceindex; ULONG i; PURB urb; PUCHAR pInf; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension; PUSB_INTERFACE_DESCRIPTOR interfaceDescriptor; PUSBD_INTERFACE_LIST_ENTRY interfaceList, tmp; PUSBD_INTERFACE_INFORMATION interface;
//
// initialize the variables
//
urb = NULL; interface = NULL; interfaceDescriptor = NULL; deviceExtension = DeviceObject->DeviceExtension; numberOfInterfaces = ConfigurationDescriptor->bNumInterfaces; interfaceindex = interfaceNumber = 0;
//
// Parse the configuration descriptor for the interface;
//
tmp = interfaceList = ExAllocatePool( NonPagedPool, sizeof(USBD_INTERFACE_LIST_ENTRY) * (numberOfInterfaces + 1));
if(!tmp) {
SSDbgPrint(1, ("Failed to allocate mem for interfaceList\n")); return STATUS_INSUFFICIENT_RESOURCES; }
while(interfaceNumber < numberOfInterfaces) {
interfaceDescriptor = USBD_ParseConfigurationDescriptorEx( ConfigurationDescriptor, ConfigurationDescriptor, interfaceindex, 0, -1, -1, -1);
if(interfaceDescriptor) {
interfaceList->InterfaceDescriptor = interfaceDescriptor; interfaceList->Interface = NULL; interfaceList++; interfaceNumber++; }
interfaceindex++; }
interfaceList->InterfaceDescriptor = NULL; interfaceList->Interface = NULL; urb = USBD_CreateConfigurationRequestEx(ConfigurationDescriptor, tmp);
if(urb) {
interface = &urb->UrbSelectConfiguration.Interface;
for(i=0; i<interface->NumberOfPipes; i++) {
//
// perform pipe initialization here
// set the transfer size and any pipe flags we use
// USBD sets the rest of the Interface struct members
//
interface->Pipes[i].MaximumTransferSize = USBD_DEFAULT_MAXIMUM_TRANSFER_SIZE; }
ntStatus = CallUSBD(DeviceObject, urb);
if(!NT_SUCCESS(ntStatus)) {
SSDbgPrint(1, ("Failed to select an interface\n")); } } else { SSDbgPrint(1, ("USBD_CreateConfigurationRequestEx failed\n")); ntStatus = STATUS_INSUFFICIENT_RESOURCES; }
if(tmp) {
ExFreePool(tmp); }
if(urb) {
ExFreePool(urb); }
return ntStatus; }
NTSTATUS DeconfigureDevice( IN PDEVICE_OBJECT DeviceObject ) /*++
Routine Description:
This routine is invoked when the device is removed or stopped. This routine de-configures the usb device.
Arguments:
DeviceObject - pointer to device object
Return Value:
NT status value
--*/ { PURB urb; ULONG siz; NTSTATUS ntStatus; //
// initialize variables
//
siz = sizeof(struct _URB_SELECT_CONFIGURATION); urb = ExAllocatePool(NonPagedPool, siz);
if(urb) {
UsbBuildSelectConfigurationRequest(urb, (USHORT)siz, NULL);
ntStatus = CallUSBD(DeviceObject, urb);
if(!NT_SUCCESS(ntStatus)) {
SSDbgPrint(3, ("Failed to deconfigure device\n")); }
ExFreePool(urb); } else {
SSDbgPrint(1, ("Failed to allocate urb\n")); ntStatus = STATUS_INSUFFICIENT_RESOURCES; }
return ntStatus; }
NTSTATUS CallUSBD( IN PDEVICE_OBJECT DeviceObject, IN PURB Urb ) /*++
Routine Description:
This routine synchronously submits an urb down the stack.
Arguments:
DeviceObject - pointer to device object Urb - USB request block
Return Value:
NT status value
--*/ { PIRP irp; KEVENT event; NTSTATUS ntStatus; IO_STATUS_BLOCK ioStatus; PIO_STACK_LOCATION nextStack; PDEVICE_EXTENSION deviceExtension;
//
// initialize the variables
//
irp = NULL; deviceExtension = DeviceObject->DeviceExtension; KeInitializeEvent(&event, NotificationEvent, FALSE);
irp = IoBuildDeviceIoControlRequest(IOCTL_INTERNAL_USB_SUBMIT_URB, deviceExtension->TopOfStackDeviceObject, NULL, 0, NULL, 0, TRUE, &event, &ioStatus);
if(!irp) {
SSDbgPrint(1, ("IoBuildDeviceIoControlRequest failed\n")); return STATUS_INSUFFICIENT_RESOURCES; }
nextStack = IoGetNextIrpStackLocation(irp); ASSERT(nextStack != NULL); nextStack->Parameters.Others.Argument1 = Urb;
SSDbgPrint(3, ("CallUSBD::")); SSIoIncrement(deviceExtension);
ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, irp);
if(ntStatus == STATUS_PENDING) {
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);
ntStatus = ioStatus.Status; } SSDbgPrint(3, ("CallUSBD::")); SSIoDecrement(deviceExtension); return ntStatus; }
NTSTATUS HandleQueryStopDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine services the Irps of minor type IRP_MN_QUERY_STOP_DEVICE
Arguments:
DeviceObject - pointer to device object Irp - I/O request packet sent by the pnp manager.
Return Value:
NT status value
--*/ { KIRQL oldIrql; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension;
SSDbgPrint(3, ("HandleQueryStopDevice - begins\n"));
//
// initialize variables
//
deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
//
// If we can stop the device, we need to set the QueueState to
// HoldRequests so further requests will be queued.
//
KeAcquireSpinLock(&deviceExtension->DevStateLock, &oldIrql); SET_NEW_PNP_STATE(deviceExtension, PendingStop); deviceExtension->QueueState = HoldRequests; KeReleaseSpinLock(&deviceExtension->DevStateLock, oldIrql);
//
// wait for the existing ones to be finished.
// first, decrement this operation
//
SSDbgPrint(3, ("HandleQueryStopDevice::")); SSIoDecrement(deviceExtension);
KeWaitForSingleObject(&deviceExtension->StopEvent, Executive, KernelMode, FALSE, NULL);
//
// We must set Irp->IoStatus.Status to STATUS_SUCCESS before
// passing it down.
//
Irp->IoStatus.Status = STATUS_SUCCESS; Irp->IoStatus.Information = 0;
IoSkipCurrentIrpStackLocation(Irp);
ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp);
SSDbgPrint(3, ("HandleQueryStopDevice - ends\n"));
return ntStatus; }
NTSTATUS HandleCancelStopDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine services Irp of minor type IRP_MN_CANCEL_STOP_DEVICE
Arguments:
DeviceObject - pointer to device object Irp - I/O request packet sent by the pnp manager.
Return Value:
NT value
--*/ { KIRQL oldIrql; KEVENT event; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension;
SSDbgPrint(3, ("HandleCancelStopDevice - begins\n"));
deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
//
// Send this IRP down and wait for it to come back.
// Set the QueueState flag to AllowRequests,
// and process all the previously queued up IRPs.
//
// First check to see whether you have received cancel-stop
// without first receiving a query-stop. This could happen if someone
// above us fails a query-stop and passes down the subsequent
// cancel-stop.
//
if(PendingStop == deviceExtension->DeviceState) {
KeInitializeEvent(&event, NotificationEvent, FALSE);
IoCopyCurrentIrpStackLocationToNext(Irp); IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE)IrpCompletionRoutine, (PVOID)&event, TRUE, TRUE, TRUE);
ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp);
if(ntStatus == STATUS_PENDING) {
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL); ntStatus = Irp->IoStatus.Status; }
if(NT_SUCCESS(ntStatus)) {
KeAcquireSpinLock(&deviceExtension->DevStateLock, &oldIrql);
RESTORE_PREVIOUS_PNP_STATE(deviceExtension); deviceExtension->QueueState = AllowRequests; ASSERT(deviceExtension->DeviceState == Working);
KeReleaseSpinLock(&deviceExtension->DevStateLock, oldIrql);
ProcessQueuedRequests(deviceExtension); }
} else {
// spurious Irp
ntStatus = STATUS_SUCCESS; }
SSDbgPrint(3, ("HandleCancelStopDevice - ends\n"));
return ntStatus; }
NTSTATUS HandleStopDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine services Irp of minor type IRP_MN_STOP_DEVICE
Arguments:
DeviceObject - pointer to device object Irp - I/O request packet sent by the pnp manager.
Return Value:
NT status value
--*/ { KIRQL oldIrql; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension;
SSDbgPrint(3, ("HandleStopDevice - begins\n"));
//
// initialize variables
//
deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
if(WinXpOrBetter == deviceExtension->WdmVersion) { if(deviceExtension->SSEnable) {
//
// Cancel the timer so that the DPCs are no longer fired.
// Thus, we are making judicious usage of our resources.
// we do not need DPCs because the device is stopping.
// The timers are re-initialized while handling the start
// device irp.
//
SSDbgPrint(3, ("Cancelling the timer...\n")); KeCancelTimer(&deviceExtension->Timer);
//
// after the device is stopped, it can be surprise removed.
// we set this to 0, so that we do not attempt to cancel
// the timer while handling surprise remove or remove irps.
// When we get the start device request, this flag will be
// reinitialized.
//
deviceExtension->SSEnable = 0;
//
// make sure that if a DPC was fired before we called cancel timer,
// then the DPC and work-time have run to their completion
//
KeWaitForSingleObject(&deviceExtension->NoDpcWorkItemPendingEvent, Executive, KernelMode, FALSE, NULL);
//
// make sure that the selective suspend request has been completed.
//
KeWaitForSingleObject(&deviceExtension->NoIdleReqPendEvent, Executive, KernelMode, FALSE, NULL); } } //
// after the stop Irp is sent to the lower driver object,
// the driver must not send any more Irps down that touch
// the device until another Start has occurred.
//
if(deviceExtension->WaitWakeEnable) { CancelWaitWake(deviceExtension); }
KeAcquireSpinLock(&deviceExtension->DevStateLock, &oldIrql);
SET_NEW_PNP_STATE(deviceExtension, Stopped); KeReleaseSpinLock(&deviceExtension->DevStateLock, oldIrql);
//
// This is the right place to actually give up all the resources used
// This might include calls to IoDisconnectInterrupt, MmUnmapIoSpace,
// etc.
//
ReleaseMemory(DeviceObject); ntStatus = DeconfigureDevice(DeviceObject);
Irp->IoStatus.Status = ntStatus; Irp->IoStatus.Information = 0; IoSkipCurrentIrpStackLocation(Irp); ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp);
SSDbgPrint(3, ("HandleStopDevice - ends\n")); return ntStatus; }
NTSTATUS HandleQueryRemoveDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine services Irp of minor type IRP_MN_QUERY_REMOVE_DEVICE
Arguments:
DeviceObject - pointer to device object Irp - I/O request packet sent by the pnp manager.
Return Value:
NT status value
--*/ { KIRQL oldIrql; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension;
SSDbgPrint(3, ("HandleQueryRemoveDevice - begins\n"));
//
// initialize variables
//
deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
//
// If we can allow removal of the device, we should set the QueueState
// to HoldRequests so further requests will be queued. This is required
// so that we can process queued up requests in cancel-remove just in
// case somebody else in the stack fails the query-remove.
//
KeAcquireSpinLock(&deviceExtension->DevStateLock, &oldIrql);
deviceExtension->QueueState = HoldRequests; SET_NEW_PNP_STATE(deviceExtension, PendingRemove);
KeReleaseSpinLock(&deviceExtension->DevStateLock, oldIrql);
SSDbgPrint(3, ("HandleQueryRemoveDevice::")); SSIoDecrement(deviceExtension);
//
// wait for all the requests to be completed
//
KeWaitForSingleObject(&deviceExtension->StopEvent, Executive, KernelMode, FALSE, NULL);
Irp->IoStatus.Status = STATUS_SUCCESS; Irp->IoStatus.Information = 0;
IoSkipCurrentIrpStackLocation(Irp); ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp);
SSDbgPrint(3, ("HandleQueryRemoveDevice - ends\n"));
return ntStatus; }
NTSTATUS HandleCancelRemoveDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine services Irp of minor type IRP_MN_CANCEL_REMOVE_DEVICE
Arguments:
DeviceObject - pointer to device object Irp - I/O request packet sent by the pnp manager.
Return Value:
NT status value
--*/ { KIRQL oldIrql; KEVENT event; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension;
SSDbgPrint(3, ("HandleCancelRemoveDevice - begins\n"));
//
// initialize variables
//
deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
//
// We need to reset the QueueState flag to ProcessRequest,
// since the device resume its normal activities.
//
//
// First check to see whether you have received cancel-remove
// without first receiving a query-remove. This could happen if
// someone above us fails a query-remove and passes down the
// subsequent cancel-remove.
//
if(PendingRemove == deviceExtension->DeviceState) {
KeInitializeEvent(&event, NotificationEvent, FALSE);
IoCopyCurrentIrpStackLocationToNext(Irp); IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE)IrpCompletionRoutine, (PVOID)&event, TRUE, TRUE, TRUE); ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp);
if(ntStatus == STATUS_PENDING) {
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);
ntStatus = Irp->IoStatus.Status; }
if(NT_SUCCESS(ntStatus)) {
KeAcquireSpinLock(&deviceExtension->DevStateLock, &oldIrql);
deviceExtension->QueueState = AllowRequests; RESTORE_PREVIOUS_PNP_STATE(deviceExtension);
KeReleaseSpinLock(&deviceExtension->DevStateLock, oldIrql); //
// process the queued requests that arrive between
// QUERY_REMOVE and CANCEL_REMOVE
//
ProcessQueuedRequests(deviceExtension); } } else {
//
// spurious cancel-remove
//
ntStatus = STATUS_SUCCESS; }
SSDbgPrint(3, ("HandleCancelRemoveDevice - ends\n"));
return ntStatus; }
NTSTATUS HandleSurpriseRemoval( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine services Irp of minor type IRP_MN_SURPRISE_REMOVAL
Arguments:
DeviceObject - pointer to device object Irp - I/O request packet sent by the pnp manager.
Return Value:
NT status value
--*/ { KIRQL oldIrql; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension;
SSDbgPrint(3, ("HandleSurpriseRemoval - begins\n"));
//
// initialize variables
//
deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
//
// 1. fail pending requests
// 2. return device and memory resources
// 3. disable interfaces
//
if(deviceExtension->WaitWakeEnable) { CancelWaitWake(deviceExtension); }
if(WinXpOrBetter == deviceExtension->WdmVersion) { if(deviceExtension->SSEnable) {
//
// Cancel the timer so that the DPCs are no longer fired.
// we do not need DPCs because the device has been surprise
// removed
//
SSDbgPrint(3, ("Cancelling the timer...\n")); KeCancelTimer(&deviceExtension->Timer);
deviceExtension->SSEnable = 0;
//
// make sure that if a DPC was fired before we called cancel timer,
// then the DPC and work-time have run to their completion
//
KeWaitForSingleObject(&deviceExtension->NoDpcWorkItemPendingEvent, Executive, KernelMode, FALSE, NULL);
//
// make sure that the selective suspend request has been completed.
//
KeWaitForSingleObject(&deviceExtension->NoIdleReqPendEvent, Executive, KernelMode, FALSE, NULL); } }
KeAcquireSpinLock(&deviceExtension->DevStateLock, &oldIrql);
deviceExtension->QueueState = FailRequests; SET_NEW_PNP_STATE(deviceExtension, SurpriseRemoved);
KeReleaseSpinLock(&deviceExtension->DevStateLock, oldIrql);
ProcessQueuedRequests(deviceExtension);
ntStatus = IoSetDeviceInterfaceState(&deviceExtension->InterfaceName, FALSE);
if(!NT_SUCCESS(ntStatus)) {
SSDbgPrint(1, ("IoSetDeviceInterfaceState::disable:failed\n")); }
RtlFreeUnicodeString(&deviceExtension->InterfaceName);
Irp->IoStatus.Status = STATUS_SUCCESS; Irp->IoStatus.Information = 0;
IoSkipCurrentIrpStackLocation(Irp); ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp);
SSDbgPrint(3, ("HandleSurpriseRemoval - ends\n"));
return ntStatus; }
NTSTATUS HandleRemoveDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine services Irp of minor type IRP_MN_REMOVE_DEVICE
Arguments:
DeviceObject - pointer to device object Irp - I/O request packet sent by the pnp manager.
Return Value:
NT status value
--*/ { KIRQL oldIrql; KEVENT event; ULONG requestCount; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension;
SSDbgPrint(3, ("HandleRemoveDevice - begins\n"));
//
// initialize variables
//
deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
//
// The Plug & Play system has dictated the removal of this device. We
// have no choice but to detach and delete the device object.
// (If we wanted to express an interest in preventing this removal,
// we should have failed the query remove IRP).
//
if(SurpriseRemoved != deviceExtension->DeviceState) {
//
// we are here after QUERY_REMOVE
//
KeAcquireSpinLock(&deviceExtension->DevStateLock, &oldIrql);
deviceExtension->QueueState = FailRequests; KeReleaseSpinLock(&deviceExtension->DevStateLock, oldIrql);
if(deviceExtension->WaitWakeEnable) { CancelWaitWake(deviceExtension); }
if(WinXpOrBetter == deviceExtension->WdmVersion) {
if(deviceExtension->SSEnable) {
//
// Cancel the timer so that the DPCs are no longer fired.
// we do not need DPCs because the device has been removed
//
SSDbgPrint(3, ("Cancelling the timer...\n")); KeCancelTimer(&deviceExtension->Timer);
deviceExtension->SSEnable = 0;
//
// make sure that if a DPC was fired before we called cancel timer,
// then the DPC and work-time have run to their completion
//
KeWaitForSingleObject(&deviceExtension->NoDpcWorkItemPendingEvent, Executive, KernelMode, FALSE, NULL);
//
// make sure that the selective suspend request has been completed.
//
KeWaitForSingleObject(&deviceExtension->NoIdleReqPendEvent, Executive, KernelMode, FALSE, NULL); } }
ProcessQueuedRequests(deviceExtension);
ntStatus = IoSetDeviceInterfaceState(&deviceExtension->InterfaceName, FALSE);
if(!NT_SUCCESS(ntStatus)) {
SSDbgPrint(1, ("IoSetDeviceInterfaceState::disable:failed\n")); }
RtlFreeUnicodeString(&deviceExtension->InterfaceName); }
KeAcquireSpinLock(&deviceExtension->DevStateLock, &oldIrql);
SET_NEW_PNP_STATE(deviceExtension, Removed); KeReleaseSpinLock(&deviceExtension->DevStateLock, oldIrql); SSWmiDeRegistration(deviceExtension);
//
// need 2 decrements
//
SSDbgPrint(3, ("HandleRemoveDevice::")); requestCount = SSIoDecrement(deviceExtension);
ASSERT(requestCount > 0);
SSDbgPrint(3, ("HandleRemoveDevice::")); requestCount = SSIoDecrement(deviceExtension);
KeWaitForSingleObject(&deviceExtension->RemoveEvent, Executive, KernelMode, FALSE, NULL);
ReleaseMemory(DeviceObject);
//
// We need to send the remove down the stack before we detach,
// but we don't need to wait for the completion of this operation
// (and to register a completion routine).
//
Irp->IoStatus.Status = STATUS_SUCCESS; Irp->IoStatus.Information = 0;
IoSkipCurrentIrpStackLocation(Irp); ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp); //
// Detach the FDO from the device stack
//
IoDetachDevice(deviceExtension->TopOfStackDeviceObject); IoDeleteDevice(DeviceObject);
SSDbgPrint(3, ("HandleRemoveDevice - ends\n"));
return ntStatus; }
NTSTATUS HandleQueryCapabilities( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine services Irp of minor type IRP_MN_QUERY_CAPABILITIES
Arguments:
DeviceObject - pointer to device object Irp - I/O request packet sent by the pnp manager.
Return Value:
NT status value
--*/ { ULONG i; KEVENT event; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension; PDEVICE_CAPABILITIES pdc; PIO_STACK_LOCATION irpStack;
SSDbgPrint(3, ("HandleQueryCapabilities - begins\n"));
//
// initialize variables
//
irpStack = IoGetCurrentIrpStackLocation(Irp); deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension; pdc = irpStack->Parameters.DeviceCapabilities.Capabilities;
//
// We will provide here an example of an IRP that is processed
// both on its way down and on its way up: there might be no need for
// a function driver process this Irp (the bus driver will do that).
// The driver will wait for the lower drivers (the bus driver among
// them) to process this IRP, then it processes it again.
//
if(pdc->Version < 1 || pdc->Size < sizeof(DEVICE_CAPABILITIES)) { SSDbgPrint(1, ("HandleQueryCapabilities::request failed\n")); ntStatus = STATUS_UNSUCCESSFUL; return ntStatus; }
//
// Set some values in deviceCapabilities here...
//
//.............................................
//
//
// Prepare to pass the IRP down
//
KeInitializeEvent(&event, NotificationEvent, FALSE); IoCopyCurrentIrpStackLocationToNext(Irp); IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE)IrpCompletionRoutine, (PVOID)&event, TRUE, TRUE, TRUE); ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp);
if(ntStatus == STATUS_PENDING) {
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL); ntStatus = Irp->IoStatus.Status; }
//
// initialize PowerDownLevel to disabled
//
deviceExtension->PowerDownLevel = PowerDeviceUnspecified;
//
// Lower drivers have finished their operation, so now
// we can finish ours.
//
if(NT_SUCCESS(ntStatus)) {
deviceExtension->DeviceCapabilities = *pdc; for(i = PowerSystemSleeping1; i <= PowerSystemSleeping3; i++) {
if(deviceExtension->DeviceCapabilities.DeviceState[i] < PowerDeviceD3) {
deviceExtension->PowerDownLevel = deviceExtension->DeviceCapabilities.DeviceState[i]; } }
//
// since its safe to surprise-remove this device, we shall
// set the SurpriseRemoveOK flag to supress any dialog to
// user.
//
pdc->SurpriseRemovalOK = 1;
}
if(deviceExtension->PowerDownLevel == PowerDeviceUnspecified || deviceExtension->PowerDownLevel <= PowerDeviceD0) { deviceExtension->PowerDownLevel = PowerDeviceD2; }
SSDbgPrint(3, ("HandleQueryCapabilities - ends\n"));
return ntStatus; }
VOID DpcRoutine( IN PKDPC Dpc, IN PVOID DeferredContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2 ) /*++
Routine Description:
DPC routine triggered by the timer to check the idle state of the device and submit an idle request for the device.
Arguments:
DeferredContext - context for the dpc routine. DeviceObject in our case.
Return Value:
None
--*/ { NTSTATUS ntStatus; PDEVICE_OBJECT deviceObject; PDEVICE_EXTENSION deviceExtension; PIO_WORKITEM item;
deviceObject = (PDEVICE_OBJECT)DeferredContext; deviceExtension = (PDEVICE_EXTENSION)deviceObject->DeviceExtension;
SSDbgPrint(3, ("DpcRoutine - begins\n"));
//
// Clear this event since a DPC has been fired!
//
KeClearEvent(&deviceExtension->NoDpcWorkItemPendingEvent);
if(CanDeviceSuspend(deviceExtension)) {
SSDbgPrint(3, ("Device is Idle\n"));
item = IoAllocateWorkItem(deviceObject);
if(item) {
IoQueueWorkItem(item, IdleRequestWorkerRoutine, DelayedWorkQueue, item);
ntStatus = STATUS_PENDING;
} else { SSDbgPrint(3, ("Cannot alloc memory for work item\n")); ntStatus = STATUS_INSUFFICIENT_RESOURCES;
//
// signal the NoDpcWorkItemPendingEvent.
//
KeSetEvent(&deviceExtension->NoDpcWorkItemPendingEvent, IO_NO_INCREMENT, FALSE); } } else { SSDbgPrint(3, ("Idle event not signaled\n"));
//
// signal the NoDpcWorkItemPendingEvent.
//
KeSetEvent(&deviceExtension->NoDpcWorkItemPendingEvent, IO_NO_INCREMENT, FALSE); }
SSDbgPrint(3, ("DpcRoutine - ends\n")); }
VOID IdleRequestWorkerRoutine( IN PDEVICE_OBJECT DeviceObject, IN PVOID Context ) /*++
Routine Description:
This is the work item fired from the DPC. This workitem checks the idle state of the device and submits an idle request.
Arguments:
DeviceObject - pointer to device object Context - context for the work item.
Return Value:
None
--*/ { PIRP irp; NTSTATUS ntStatus; PDEVICE_EXTENSION deviceExtension; PIO_WORKITEM workItem;
SSDbgPrint(3, ("IdleRequestWorkerRoutine - begins\n"));
//
// initialize variables
//
deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension; workItem = (PIO_WORKITEM) Context;
if(CanDeviceSuspend(deviceExtension)) {
SSDbgPrint(3, ("Device is idle\n"));
ntStatus = SubmitIdleRequestIrp(deviceExtension);
if(!NT_SUCCESS(ntStatus)) {
SSDbgPrint(1, ("SubmitIdleRequestIrp failed\n")); } } else {
SSDbgPrint(3, ("Device is not idle\n")); }
IoFreeWorkItem(workItem);
//
// signal the NoDpcWorkItemPendingEvent.
//
KeSetEvent(&deviceExtension->NoDpcWorkItemPendingEvent, IO_NO_INCREMENT, FALSE);
SSDbgPrint(3, ("IdleRequestsWorkerRoutine - ends\n")); }
VOID ProcessQueuedRequests( IN OUT PDEVICE_EXTENSION DeviceExtension ) /*++
Routine Description:
Remove and process the entries in the queue. If this routine is called when processing IRP_MN_CANCEL_STOP_DEVICE, IRP_MN_CANCEL_REMOVE_DEVICE or IRP_MN_START_DEVICE, the requests are passed to the next lower driver. If the routine is called when IRP_MN_REMOVE_DEVICE is received, the IRPs are complete with STATUS_DELETE_PENDING
Arguments:
DeviceExtension - pointer to device extension
Return Value:
None
--*/ { KIRQL oldIrql; PIRP nextIrp, cancelledIrp; PVOID cancelRoutine; LIST_ENTRY cancelledIrpList; PLIST_ENTRY listEntry;
SSDbgPrint(3, ("ProcessQueuedRequests - begins\n"));
//
// initialize variables
//
cancelRoutine = NULL; InitializeListHead(&cancelledIrpList);
//
// 1. dequeue the entries in the queue
// 2. reset the cancel routine
// 3. process them
// 3a. if the device is active, send them down
// 3b. else complete with STATUS_DELETE_PENDING
//
while(1) {
KeAcquireSpinLock(&DeviceExtension->QueueLock, &oldIrql);
if(IsListEmpty(&DeviceExtension->NewRequestsQueue)) {
KeReleaseSpinLock(&DeviceExtension->QueueLock, oldIrql); break; } //
// Remove a request from the queue
//
listEntry = RemoveHeadList(&DeviceExtension->NewRequestsQueue); nextIrp = CONTAINING_RECORD(listEntry, IRP, Tail.Overlay.ListEntry);
//
// set the cancel routine to NULL
//
cancelRoutine = IoSetCancelRoutine(nextIrp, NULL);
//
// check if its already cancelled
//
if(nextIrp->Cancel) { if(cancelRoutine) {
//
// the cancel routine for this IRP hasnt been called yet
// so queue the IRP in the cancelledIrp list and complete
// after releasing the lock
//
InsertTailList(&cancelledIrpList, listEntry); } else {
//
// the cancel routine has run
// it must be waiting to hold the queue lock
// so initialize the IRPs listEntry
//
InitializeListHead(listEntry); }
KeReleaseSpinLock(&DeviceExtension->QueueLock, oldIrql); } else {
KeReleaseSpinLock(&DeviceExtension->QueueLock, oldIrql);
if(FailRequests == DeviceExtension->QueueState) {
nextIrp->IoStatus.Information = 0; nextIrp->IoStatus.Status = STATUS_DELETE_PENDING; IoCompleteRequest(nextIrp, IO_NO_INCREMENT); } else {
PIO_STACK_LOCATION irpStack;
SSDbgPrint(3, ("ProcessQueuedRequests::")); SSIoIncrement(DeviceExtension);
IoSkipCurrentIrpStackLocation(nextIrp); IoCallDriver(DeviceExtension->TopOfStackDeviceObject, nextIrp); SSDbgPrint(3, ("ProcessQueuedRequests::")); SSIoDecrement(DeviceExtension); } } } // while loop
//
// walk through the cancelledIrp list and cancel them
//
while(!IsListEmpty(&cancelledIrpList)) {
PLIST_ENTRY cancelEntry = RemoveHeadList(&cancelledIrpList); cancelledIrp = CONTAINING_RECORD(cancelEntry, IRP, Tail.Overlay.ListEntry);
cancelledIrp->IoStatus.Status = STATUS_CANCELLED; cancelledIrp->IoStatus.Information = 0;
IoCompleteRequest(cancelledIrp, IO_NO_INCREMENT); }
SSDbgPrint(3, ("ProcessQueuedRequests - ends\n"));
return; }
NTSTATUS SS_DispatchClean( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
Dispatch routine for IRP_MJ_CLEANUP
Arguments:
DeviceObject - pointer to device object Irp - I/O request packet sent by the pnp manager
Return Value:
NT status value
--*/ { PDEVICE_EXTENSION deviceExtension; KIRQL oldIrql; LIST_ENTRY cleanupList; PLIST_ENTRY thisEntry, nextEntry, listHead; PIRP pendingIrp; PIO_STACK_LOCATION pendingIrpStack, irpStack; NTSTATUS ntStatus;
//
// initialize variables
//
deviceExtension = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension; irpStack = IoGetCurrentIrpStackLocation(Irp); InitializeListHead(&cleanupList);
SSDbgPrint(3, ("SS_DispatchClean::")); SSIoIncrement(deviceExtension);
//
// acquire queue lock
//
KeAcquireSpinLock(&deviceExtension->QueueLock, &oldIrql);
//
// remove all Irp's that belong to input Irp's fileobject
//
listHead = &deviceExtension->NewRequestsQueue;
for(thisEntry = listHead->Flink, nextEntry = thisEntry->Flink; thisEntry != listHead; thisEntry = nextEntry, nextEntry = thisEntry->Flink) {
pendingIrp = CONTAINING_RECORD(thisEntry, IRP, Tail.Overlay.ListEntry);
pendingIrpStack = IoGetCurrentIrpStackLocation(pendingIrp);
if(irpStack->FileObject == pendingIrpStack->FileObject) {
RemoveEntryList(thisEntry);
//
// set the cancel routine to NULL
//
if(NULL == IoSetCancelRoutine(pendingIrp, NULL)) {
InitializeListHead(thisEntry); } else {
InsertTailList(&cleanupList, thisEntry); } } }
//
// Release the spin lock
//
KeReleaseSpinLock(&deviceExtension->QueueLock, oldIrql);
//
// walk thru the cleanup list and cancel all the Irps
//
while(!IsListEmpty(&cleanupList)) {
//
// complete the Irp
//
thisEntry = RemoveHeadList(&cleanupList);
pendingIrp = CONTAINING_RECORD(thisEntry, IRP, Tail.Overlay.ListEntry);
pendingIrp->IoStatus.Information = 0; pendingIrp->IoStatus.Status = STATUS_CANCELLED;
IoCompleteRequest(pendingIrp, IO_NO_INCREMENT); }
Irp->IoStatus.Information = 0; Irp->IoStatus.Status = STATUS_SUCCESS;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
SSDbgPrint(3, ("SS_DispatchClean::")); SSIoDecrement(deviceExtension);
return STATUS_SUCCESS; }
NTSTATUS SS_GetRegistryDword( IN PWCHAR RegPath, IN PWCHAR ValueName, IN OUT PULONG Value ) /*++
Routine Description:
This routine reads the specified reqistry value.
Arguments:
RegPath - registry path ValueName - property to be fetched from the registry Value - corresponding value read from the registry.
Return Value:
NT status value
--*/ { ULONG defaultData; WCHAR buffer[MAXIMUM_FILENAME_LENGTH]; NTSTATUS ntStatus; UNICODE_STRING regPath; RTL_QUERY_REGISTRY_TABLE paramTable[2];
SSDbgPrint(3, ("SS_GetRegistryDword - begins\n"));
regPath.Length = 0; regPath.MaximumLength = MAXIMUM_FILENAME_LENGTH * sizeof(WCHAR); regPath.Buffer = buffer;
RtlZeroMemory(regPath.Buffer, regPath.MaximumLength); RtlMoveMemory(regPath.Buffer, RegPath, wcslen(RegPath) * sizeof(WCHAR));
RtlZeroMemory(paramTable, sizeof(paramTable));
paramTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT; paramTable[0].Name = ValueName; paramTable[0].EntryContext = Value; paramTable[0].DefaultType = REG_DWORD; paramTable[0].DefaultData = &defaultData; paramTable[0].DefaultLength = sizeof(ULONG);
ntStatus = RtlQueryRegistryValues(RTL_REGISTRY_ABSOLUTE | RTL_REGISTRY_OPTIONAL, regPath.Buffer, paramTable, NULL, NULL);
if(NT_SUCCESS(ntStatus)) {
SSDbgPrint(3, ("success Value = %X\n", *Value)); return STATUS_SUCCESS; } else {
*Value = 0; return STATUS_UNSUCCESSFUL; } }
BOOLEAN CanDeviceSuspend( IN PDEVICE_EXTENSION DeviceExtension ) /*++
Routine Description:
This is the routine where we check if the device can selectively suspend.
Arguments:
DeviceExtension - pointer to device extension
Return Value:
TRUE - if the device can suspend FALSE - otherwise.
--*/ { SSDbgPrint(3, ("CanDeviceSuspend\n"));
if((DeviceExtension->OpenHandleCount == 0) && (DeviceExtension->OutStandingIO == 1)) { return TRUE; } else {
return FALSE; } }
NTSTATUS IrpCompletionRoutine( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp, IN PVOID Context ) /*++
Routine Description:
This routine is a completion routine. In this routine we set an event.
Since the completion routine returns STATUS_MORE_PROCESSING_REQUIRED, the Irps, which set this routine as the completion routine, should be marked pending.
Arguments:
DeviceObject - pointer to device object Irp - I/O request packet Context -
Return Value:
NT status value
--*/ { PKEVENT event = Context;
KeSetEvent(event, 0, FALSE);
return STATUS_MORE_PROCESSING_REQUIRED; }
LONG SSIoIncrement( IN OUT PDEVICE_EXTENSION DeviceExtension ) /*++
Routine Description:
This routine bumps up the I/O count. This routine is typically invoked when any of the dispatch routines handle new irps for the driver.
Arguments:
DeviceExtension - pointer to device extension
Return Value:
new value
--*/ { LONG result = 0; KIRQL oldIrql;
KeAcquireSpinLock(&DeviceExtension->IOCountLock, &oldIrql);
result = InterlockedIncrement(&DeviceExtension->OutStandingIO);
//
// when OutStandingIO bumps from 1 to 2, clear the StopEvent
//
if(result == 2) {
KeClearEvent(&DeviceExtension->StopEvent); }
KeReleaseSpinLock(&DeviceExtension->IOCountLock, oldIrql);
SSDbgPrint(3, ("SSIoIncrement::%d\n", result));
return result; }
LONG SSIoDecrement( IN OUT PDEVICE_EXTENSION DeviceExtension ) /*++
Routine Description:
This routine decrements the outstanding I/O count This is typically invoked after the dispatch routine has finished processing the irp.
Arguments:
DeviceExtension - pointer to device extension
Return Value:
new value
--*/ { LONG result = 0; KIRQL oldIrql;
KeAcquireSpinLock(&DeviceExtension->IOCountLock, &oldIrql);
result = InterlockedDecrement(&DeviceExtension->OutStandingIO);
if(result == 1) {
KeSetEvent(&DeviceExtension->StopEvent, IO_NO_INCREMENT, FALSE); }
if(result == 0) {
ASSERT(Removed == DeviceExtension->DeviceState);
KeSetEvent(&DeviceExtension->RemoveEvent, IO_NO_INCREMENT, FALSE); }
KeReleaseSpinLock(&DeviceExtension->IOCountLock, oldIrql);
SSDbgPrint(3, ("SSIoDecrement::%d\n", result));
return result; }
NTSTATUS CanStopDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine determines whether the device can be safely stopped. In our particular case, we'll assume we can always stop the device. A device might fail the request if it doesn't have a queue for the requests it might come or if it was notified that it is in the paging path. Arguments:
DeviceObject - pointer to the device object. Irp - pointer to the current IRP.
Return Value:
STATUS_SUCCESS if the device can be safely stopped, an appropriate NT Status if not.
--*/ { //
// We assume we can stop the device
//
UNREFERENCED_PARAMETER(DeviceObject); UNREFERENCED_PARAMETER(Irp);
return STATUS_SUCCESS; }
NTSTATUS CanRemoveDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine determines whether the device can be safely removed. In our particular case, we'll assume we can always remove the device. A device shouldn't be removed if, for example, it has open handles or removing the device could result in losing data (plus the reasons mentioned at CanStopDevice). The PnP manager on Windows 2000 fails on its own any attempt to remove, if there any open handles to the device. However on Win9x, the driver must keep count of open handles and fail query_remove if there are any open handles.
Arguments:
DeviceObject - pointer to the device object. Irp - pointer to the current IRP. Return Value:
STATUS_SUCCESS if the device can be safely removed, an appropriate NT Status if not.
--*/ { //
// We assume we can remove the device
//
UNREFERENCED_PARAMETER(DeviceObject); UNREFERENCED_PARAMETER(Irp);
return STATUS_SUCCESS; }
NTSTATUS ReleaseMemory( IN PDEVICE_OBJECT DeviceObject ) /*++
Routine Description:
This routine returns all the memory allocations acquired during device startup. Arguments:
DeviceObject - pointer to the device object. Return Value:
STATUS_SUCCESS if the device can be safely removed, an appropriate NT Status if not.
--*/ { //
// Disconnect from the interrupt and unmap any I/O ports
//
UNREFERENCED_PARAMETER(DeviceObject);
return STATUS_SUCCESS; }
PCHAR PnPMinorFunctionString ( UCHAR MinorFunction ) /*++
Routine Description:
Arguments:
Return Value:
--*/ { switch (MinorFunction) {
case IRP_MN_START_DEVICE: return "IRP_MN_START_DEVICE\n";
case IRP_MN_QUERY_REMOVE_DEVICE: return "IRP_MN_QUERY_REMOVE_DEVICE\n";
case IRP_MN_REMOVE_DEVICE: return "IRP_MN_REMOVE_DEVICE\n";
case IRP_MN_CANCEL_REMOVE_DEVICE: return "IRP_MN_CANCEL_REMOVE_DEVICE\n";
case IRP_MN_STOP_DEVICE: return "IRP_MN_STOP_DEVICE\n";
case IRP_MN_QUERY_STOP_DEVICE: return "IRP_MN_QUERY_STOP_DEVICE\n";
case IRP_MN_CANCEL_STOP_DEVICE: return "IRP_MN_CANCEL_STOP_DEVICE\n";
case IRP_MN_QUERY_DEVICE_RELATIONS: return "IRP_MN_QUERY_DEVICE_RELATIONS\n";
case IRP_MN_QUERY_INTERFACE: return "IRP_MN_QUERY_INTERFACE\n";
case IRP_MN_QUERY_CAPABILITIES: return "IRP_MN_QUERY_CAPABILITIES\n";
case IRP_MN_QUERY_RESOURCES: return "IRP_MN_QUERY_RESOURCES\n";
case IRP_MN_QUERY_RESOURCE_REQUIREMENTS: return "IRP_MN_QUERY_RESOURCE_REQUIREMENTS\n";
case IRP_MN_QUERY_DEVICE_TEXT: return "IRP_MN_QUERY_DEVICE_TEXT\n";
case IRP_MN_FILTER_RESOURCE_REQUIREMENTS: return "IRP_MN_FILTER_RESOURCE_REQUIREMENTS\n";
case IRP_MN_READ_CONFIG: return "IRP_MN_READ_CONFIG\n";
case IRP_MN_WRITE_CONFIG: return "IRP_MN_WRITE_CONFIG\n";
case IRP_MN_EJECT: return "IRP_MN_EJECT\n";
case IRP_MN_SET_LOCK: return "IRP_MN_SET_LOCK\n";
case IRP_MN_QUERY_ID: return "IRP_MN_QUERY_ID\n";
case IRP_MN_QUERY_PNP_DEVICE_STATE: return "IRP_MN_QUERY_PNP_DEVICE_STATE\n";
case IRP_MN_QUERY_BUS_INFORMATION: return "IRP_MN_QUERY_BUS_INFORMATION\n";
case IRP_MN_DEVICE_USAGE_NOTIFICATION: return "IRP_MN_DEVICE_USAGE_NOTIFICATION\n";
case IRP_MN_SURPRISE_REMOVAL: return "IRP_MN_SURPRISE_REMOVAL\n";
default: return "IRP_MN_?????\n"; } }
|