Leaked source code of windows server 2003
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
//
// Shared Memory Manager
//
#ifndef _H_SHM
#define _H_SHM
#include <oa.h>
#include <ba.h>
#include <osi.h>
#include <sbc.h>
#include <cm.h>
//
// List of component IDs for the data blocks passed around using shared
// memory.
//
#define SHM_OA_DATA 0
#define SHM_OA_FAST 1
#define SHM_BA_FAST 2
#define SHM_CM_FAST 3
//
// Number of components (actual number of entries in the above list).
//
#define SHM_NUM_COMPONENTS 4
//
// Structure to keep track of the buffer being used to pass data between
// the display driver and the share core.
//
// busyFlag - indicates whether the display driver is using the memory
//
// newBuffer - index for which buffer the display driver should next
// use to access the memory.
//
// currentBuffer - index for the buffer in use by the display driver if
// busyFlag is set.
// THIS FIELD IS USED ONLY BY THE DISPLAY DRIVER
//
// indexCount - count of how many times we have recursed into accessing
// the buffer. The busyFlag and currentBuffer should only
// be updated if indexCount was set to or changed from 0.
// THIS FIELD IS USED ONLY BY THE DISPLAY DRIVER
//
// bufferBusy - indicates whether a particular buffer is being used
// by the display driver.
//
//
typedef struct tagBUFFER_CONTROL { long busyFlag; long newBuffer; long currentBuffer; long indexCount; long bufferBusy[2]; } BUFFER_CONTROL; typedef BUFFER_CONTROL FAR * LPBUFFER_CONTROL;
//
// Shared memory as used by the display driver and share core to
// communicate.
//
// On Win95, we can not easily address memory that isn't in a 64K segment
// So on both platforms, when we map the shared memory, we also return pointers
// to the CM_FAST_DATA structures anda the OA_FAST_DATA structures, each of
// which lives in its own segment.
//
// On NT, the CM_FAST_DATA blocks come right after this one, then the
// OA_SHARED_DATA blocks.
//
//
// GENERAL
// =======
//
// dataChanged - flags to indicate if a data block has been altered
// (only used by the share core)
//
// FAST PATH DATA
// ==============
//
// fastPath - buffer controls
//
// oaFast - OA fast changing data
//
// baFast - BA fast changing data
//
// DISPLAY DRIVER -> SHARE CORE
// ============================
//
// displayToCore - buffer controls
//
//
typedef struct tagSHM_SHARED_MEMORY { //
// Flag set by display driver when the display is in full screen mode.
// (e.g. DOS full screen).
//
DWORD fullScreen;
//
// Flag set by display driver or core when system palette has altered
//
LONG pmPaletteChanged;
//
// Flag set by display driver when the cursor is hidden.
//
LONG cmCursorHidden;
//
// Data passed from the Display Driver up to the Share Core.
//
BUFFER_CONTROL displayToCore;
long dataChanged[SHM_NUM_COMPONENTS];
//
// Data passed regularly from the Display Driver to the Share Core.
//
// This buffer is switched on each periodic processing by the share
// core. If the criteria for reading are satisfied, the main DD->SHCO
// buffer is switched.
//
BUFFER_CONTROL fastPath;
BA_FAST_DATA baFast[2];
OA_FAST_DATA oaFast[2];
CM_FAST_DATA cmFast[2];
//
// DO NOT BUMP SHARED MEMORY SIZE PAST 64K
// 16-bit display driver puts each oaData in a 64K block
// The SHM_ESC_MAP_MEMORY request returns back the pointers
// to each oaData in addition to the shared memory block. In the
// the case of the 32-bit NT display driver, the memory allocated is
// in fact contiguous, so there's no waste in that case.
//
} SHM_SHARED_MEMORY; typedef SHM_SHARED_MEMORY FAR * LPSHM_SHARED_MEMORY;
//
// Macros to access the shared memory
//
//
// OVERVIEW
// ~~~~~~~~
//
// Note the following sets of macros are split into two parts - one for
// accessing memory from the NT kernel and one for the Share Core. This
// code plays a significant role in the synchronization of the shared
// memory, so make sure you know how it works...
//
// The shared memory is double buffered, so that the kernel mode display
// driver can come in at any point and is NEVER blocked by the share core
// for access. The data is split into two major blocks - one to pass data
// from the kernel to the Share Core and the other to pass the data back.
//
// The macros assume a certain structure to the shared memory which is
// described below.
//
// NO VALIDATION OF POINTERS IS DONE IN THESE MACROS.
//
//
// DISPLAY DRIVER ACCESS
// ~~~~~~~~~~~~~~~~~~~~~
//
// ������������������������������Ŀ
// � Shared Memory �
// � ~~~~~~~~~~~~~ �
// � �
// � �����������ͻ �����������ͻ �
// � � � � � �
// � � kernel � � fast path � �
// � � -> SHCO � � � �
// � � � � � �
// � � � � � �
// � � (details � � � �
// � � below) � � � �
// � � � � � �
// � �����������ͼ �����������ͼ �
// ��������������������������������
//
//
//
// �����������������������������������������������������ͻ
// � Kernel to share core data block �
// � ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ �
// � ���������������Ŀ ���������������Ŀ �
// � � � busyFlag � � �
// � � Share Core � 1 � Display Driver� �
// � � � � � �
// � � (read buffer) � newBuffer � (write buffer)� �
// � � � � � � �
// � � �<�������������>� � �
// � � bufferBusy � � bufferBusy � �
// � � 0 � � 1 � �
// � � � currentBuffer � � �
// � � � � � � �
// � � � �������>� � �
// � � � � � �
// � � � � � �
// � � � indexCount � � �
// � � � 5 � � �
// � ����������������� ����������������� �
// � �
// � �
// �����������������������������������������������������ͼ
//
// The entire major block has a busyFlag, which indicates if the display
// driver is accessing any of its shared memory. This flag is set as soon
// as the display driver needs access to the shared memory (i.e. on entry
// to the display driver graphics functions).
//
// The display driver then reads the index (newBuffer in the above drawing)
// to decide which buffer to use. This is stored in the currentBuffer
// index to use until the display driver releases the shared memory. The
// secondary bufferBusy is now set for the buffer in use.
//
// The indexCount is maintained of the number of times the display driver
// has started access to a block of memory so that (both) busyFlag and
// bufferBusy can be released when the display driver has truly finished
// with the memory.
//
//
// SHARE CORE ACCESS
// ~~~~~~~~~~~~~~~~~
//
// To access the shared memory, the share core just pulls out the data from
// the buffer that the Share Core is not using (ie. the buffer pointed to
// by NOT newBuffer).
//
// The synchronization between the two processes comes from the buffer
// switch.
//
//
// BUFFER SWITCHING (AND SYNCHRONIZATION)
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Buffer switching is determined by the Share Core. Data is accumulated
// by the Share Core and sent on the periodic timing events. For full
// details on the swapping method, refer to NSHMINT.C
//
// Data (such as window tracking) can be passed down at the meoment it is
// generated by using the OSI functions.
//
// The Share Core also determines when it wants to get the latest set of
// orders and screen data area and forces the switch. This is detailed in
// NSHMINT.C
//
//
// THE MACROS!
// ~~~~~~~~~~~
//
// So, now we know a bit about the shared memory, what macros do we have to
// access the shared memory? Here goes...
//
//
// SHM_SYNC_READ - Force a sync of the read buffer between the tasks.
// This should be called only by the Share Core.
//
// SHM_SYNC_FAST - Force a sync of the fast path buffer.
// This should be called only by the Share Core.
//
//
#ifdef DLL_DISP
LPVOID SHM_StartAccess(int block);
void SHM_StopAccess(int block);
//
// Macro to check any pointers that we are going to dereference.
//
#ifdef _DEBUG
void SHM_CheckPointer(LPVOID ptr); #else
#define SHM_CheckPointer(ptr)
#endif // _DEBUG
#else // !DLL_DISP
void SHM_SwitchReadBuffer(void);
void SHM_SwitchFastBuffer(void);
#endif // DLL_DISP
#endif // _H_SHM
|