|
|
//----------------------------------------------------------------------------
//
// lstp.cpp
//
// Line setup methods.
//
// Copyright (C) Microsoft Corporation, 1997.
//
//----------------------------------------------------------------------------
#include "pch.cpp"
#pragma hdrstop
DBG_DECLARE_FILE();
//----------------------------------------------------------------------------
//
// LineSetup_Start
//
// Starts setup of line attributes.
//
//----------------------------------------------------------------------------
void FASTCALL LineSetup_Start(PSETUPCTX pStpCtx, LPD3DTLVERTEX pV0, LPD3DTLVERTEX pV1) { FLOAT fZ0;
if (pStpCtx->uFlags & PRIMSF_Z_USED) { FLOAT fZScale;
if (pStpCtx->pCtx->iZBitCount == 16) { fZScale = Z16_SCALE; } else { fZScale = Z32_SCALE; }
pStpCtx->DAttrDMajor.fZ = (pV1->dvSZ - pV0->dvSZ) * fZScale * pStpCtx->fOoLen;
// fZ0 may be used later so set if from the vertex Z.
fZ0 = pV0->dvSZ; pStpCtx->Attr.fZ = fZ0 * fZScale + pStpCtx->DAttrDMajor.fZ * pStpCtx->fDMajor; }
if (pStpCtx->uFlags & PRIMSF_TEX_USED) { FLOAT fUoW, fVoW;
if (pStpCtx->uFlags & PRIMSF_PERSP_USED) { pStpCtx->DAttrDMajor.fOoW = (pV1->dvRHW - pV0->dvRHW) * OOW_SCALE * pStpCtx->fOoLen; pStpCtx->Attr.fOoW = pV0->dvRHW * OOW_SCALE + pStpCtx->DAttrDMajor.fOoW * pStpCtx->fDMajor;
fUoW = pV0->dvTU * pV0->dvRHW; fVoW = pV0->dvTV * pV0->dvRHW;
pStpCtx->DAttrDMajor.fUoW[0] = PERSP_TEXTURE_DELTA(pV1->dvTU, pV1->dvRHW, pV0->dvTU, fUoW, pStpCtx->pCtx->pdwWrap[0] & D3DWRAP_U) * TEX_SCALE * pStpCtx->fOoLen; pStpCtx->DAttrDMajor.fVoW[0] = PERSP_TEXTURE_DELTA(pV1->dvTV, pV1->dvRHW, pV0->dvTV, fVoW, pStpCtx->pCtx->pdwWrap[0] & D3DWRAP_V) * TEX_SCALE * pStpCtx->fOoLen; } else { pStpCtx->DAttrDMajor.fOoW = g_fZero; pStpCtx->Attr.fOoW = OOW_SCALE;
fUoW = pV0->dvTU; fVoW = pV0->dvTV;
pStpCtx->DAttrDMajor.fUoW[0] = TextureDiff(pV1->dvTU, fUoW, pStpCtx->pCtx->pdwWrap[0] & D3DWRAP_U) * TEX_SCALE * pStpCtx->fOoLen; pStpCtx->DAttrDMajor.fVoW[0] = TextureDiff(pV1->dvTV, fVoW, pStpCtx->pCtx->pdwWrap[0] & D3DWRAP_V) * TEX_SCALE * pStpCtx->fOoLen; }
pStpCtx->Attr.fUoW[0] = TEX_SCALE * fUoW + pStpCtx->DAttrDMajor.fUoW[0] * pStpCtx->fDMajor; pStpCtx->Attr.fVoW[0] = TEX_SCALE * fVoW + pStpCtx->DAttrDMajor.fVoW[0] * pStpCtx->fDMajor; }
if (pStpCtx->uFlags & PRIMSF_TEX2_USED) { PRAST_GENERIC_VERTEX pVM0 = (PRAST_GENERIC_VERTEX)pV0; PRAST_GENERIC_VERTEX pVM1 = (PRAST_GENERIC_VERTEX)pV1; FLOAT fUoW, fVoW;
for (INT32 i = 1; i < (INT32)pStpCtx->pCtx->cActTex; i++) { if (pStpCtx->uFlags & PRIMSF_PERSP_USED) { fUoW = pVM0->texCoord[i].dvTU * pVM0->dvRHW; fVoW = pVM0->texCoord[i].dvTV * pVM0->dvRHW;
pStpCtx->DAttrDMajor.fUoW[i] = PERSP_TEXTURE_DELTA(pVM1->texCoord[i].dvTU, pVM1->dvRHW, pVM0->texCoord[i].dvTU, fUoW, pStpCtx->pCtx->pdwWrap[i] & D3DWRAP_U) * TEX_SCALE * pStpCtx->fOoLen; pStpCtx->DAttrDMajor.fVoW[i] = PERSP_TEXTURE_DELTA(pVM1->texCoord[i].dvTV, pVM1->dvRHW, pVM0->texCoord[i].dvTV, fVoW, pStpCtx->pCtx->pdwWrap[i] & D3DWRAP_V) * TEX_SCALE * pStpCtx->fOoLen; } else { fUoW = pVM0->texCoord[i].dvTU; fVoW = pVM0->texCoord[i].dvTV;
pStpCtx->DAttrDMajor.fUoW[i] = TextureDiff(pVM1->texCoord[i].dvTU, fUoW, pStpCtx->pCtx->pdwWrap[i] & D3DWRAP_U) * TEX_SCALE * pStpCtx->fOoLen; pStpCtx->DAttrDMajor.fVoW[i] = TextureDiff(pVM1->texCoord[i].dvTV, fVoW, pStpCtx->pCtx->pdwWrap[i] & D3DWRAP_V) * TEX_SCALE * pStpCtx->fOoLen; }
pStpCtx->Attr.fUoW[i] = TEX_SCALE * fUoW + pStpCtx->DAttrDMajor.fUoW[i] * pStpCtx->fDMajor; pStpCtx->Attr.fVoW[i] = TEX_SCALE * fVoW + pStpCtx->DAttrDMajor.fVoW[i] * pStpCtx->fDMajor; } }
if (pStpCtx->uFlags & PRIMSF_FLAT_SHADED) { if (pStpCtx->uFlags & PRIMSF_DIFF_USED) { UINT uB, uG, uR, uA;
SPLIT_COLOR(pStpCtx->pFlatVtx->dcColor, uB, uG, uR, uA);
pStpCtx->DAttrDMajor.fB = g_fZero; pStpCtx->DAttrDMajor.fG = g_fZero; pStpCtx->DAttrDMajor.fR = g_fZero; pStpCtx->DAttrDMajor.fA = g_fZero;
pStpCtx->Attr.fB = (FLOAT)(uB << COLOR_SHIFT); pStpCtx->Attr.fG = (FLOAT)(uG << COLOR_SHIFT); pStpCtx->Attr.fR = (FLOAT)(uR << COLOR_SHIFT); pStpCtx->Attr.fA = (FLOAT)(uA << COLOR_SHIFT); } else if (pStpCtx->uFlags & PRIMSF_DIDX_USED) { pStpCtx->DAttrDMajor.fDIdx = g_fZero; pStpCtx->DAttrDMajor.fDIdxA = g_fZero;
pStpCtx->Attr.fDIdx = (FLOAT)(CI_MASKALPHA(pStpCtx->pFlatVtx->dcColor) << INDEX_COLOR_FIXED_SHIFT); pStpCtx->Attr.fDIdxA = (FLOAT)(CI_GETALPHA(pStpCtx->pFlatVtx->dcColor) << INDEX_COLOR_SHIFT); }
if (pStpCtx->uFlags & PRIMSF_SPEC_USED) { UINT uB, uG, uR, uA;
SPLIT_COLOR(pStpCtx->pFlatVtx->dcSpecular, uB, uG, uR, uA);
pStpCtx->DAttrDMajor.fBS = g_fZero; pStpCtx->DAttrDMajor.fGS = g_fZero; pStpCtx->DAttrDMajor.fRS = g_fZero;
pStpCtx->Attr.fBS = (FLOAT)(uB << COLOR_SHIFT); pStpCtx->Attr.fGS = (FLOAT)(uG << COLOR_SHIFT); pStpCtx->Attr.fRS = (FLOAT)(uR << COLOR_SHIFT); } } else { if (pStpCtx->uFlags & PRIMSF_DIFF_USED) { UINT uB, uG, uR, uA; FLOAT fDB, fDG, fDR, fDA;
SPLIT_COLOR(pV0->dcColor, uB, uG, uR, uA); COLOR_DELTA(pV1->dcColor, uB, uG, uR, uA, fDB, fDG, fDR, fDA);
pStpCtx->DAttrDMajor.fB = fDB * pStpCtx->fOoLen; pStpCtx->DAttrDMajor.fG = fDG * pStpCtx->fOoLen; pStpCtx->DAttrDMajor.fR = fDR * pStpCtx->fOoLen; pStpCtx->DAttrDMajor.fA = fDA * pStpCtx->fOoLen;
pStpCtx->Attr.fB = (FLOAT)(uB << COLOR_SHIFT) + pStpCtx->DAttrDMajor.fB * pStpCtx->fDMajor; pStpCtx->Attr.fG = (FLOAT)(uG << COLOR_SHIFT) + pStpCtx->DAttrDMajor.fG * pStpCtx->fDMajor; pStpCtx->Attr.fR = (FLOAT)(uR << COLOR_SHIFT) + pStpCtx->DAttrDMajor.fR * pStpCtx->fDMajor; pStpCtx->Attr.fA = (FLOAT)(uA << COLOR_SHIFT) + pStpCtx->DAttrDMajor.fA * pStpCtx->fDMajor; } else if (pStpCtx->uFlags & PRIMSF_DIDX_USED) { INT32 iIdx, iA; FLOAT fDIdx, fDA;
SPLIT_IDX_COLOR(pV0->dcColor, iIdx, iA); IDX_COLOR_DELTA(pV1->dcColor, iIdx, iA, fDIdx, fDA);
pStpCtx->DAttrDMajor.fDIdx = fDIdx * pStpCtx->fOoLen; pStpCtx->DAttrDMajor.fDIdxA = fDA * pStpCtx->fOoLen;
pStpCtx->Attr.fDIdx = (FLOAT)(iIdx << INDEX_COLOR_FIXED_SHIFT) + pStpCtx->DAttrDMajor.fDIdx * pStpCtx->fDMajor; pStpCtx->Attr.fDIdxA = (FLOAT)(iA << INDEX_COLOR_SHIFT) + pStpCtx->DAttrDMajor.fDIdxA * pStpCtx->fDMajor; }
if (pStpCtx->uFlags & PRIMSF_SPEC_USED) { UINT uB, uG, uR, uA; FLOAT fDB, fDG, fDR, fDA;
SPLIT_COLOR(pV0->dcSpecular, uB, uG, uR, uA); COLOR_DELTA(pV1->dcSpecular, uB, uG, uR, uA, fDB, fDG, fDR, fDA);
pStpCtx->DAttrDMajor.fBS = fDB * pStpCtx->fOoLen; pStpCtx->DAttrDMajor.fGS = fDG * pStpCtx->fOoLen; pStpCtx->DAttrDMajor.fRS = fDR * pStpCtx->fOoLen;
pStpCtx->Attr.fBS = (FLOAT)(uB << COLOR_SHIFT) + pStpCtx->DAttrDMajor.fBS * pStpCtx->fDMajor; pStpCtx->Attr.fGS = (FLOAT)(uG << COLOR_SHIFT) + pStpCtx->DAttrDMajor.fGS * pStpCtx->fDMajor; pStpCtx->Attr.fRS = (FLOAT)(uR << COLOR_SHIFT) + pStpCtx->DAttrDMajor.fRS * pStpCtx->fDMajor; } }
if (pStpCtx->uFlags & PRIMSF_LOCAL_FOG_USED) { UINT uFog0, uFog1;
#ifndef PWL_FOG
// Check for global-into-local fog. If global fog is on,
// compute the local fog values from table fog rather than
// from the vertex.
if (pStpCtx->uFlags & PRIMSF_GLOBAL_FOG_USED) { // Make sure Z information is valid.
RSASSERT(pStpCtx->uFlags & PRIMSF_Z_USED);
uFog0 = ComputeTableFog(pStpCtx->pCtx->pdwRenderState, fZ0); uFog1 = ComputeTableFog(pStpCtx->pCtx->pdwRenderState, pV1->dvSZ); } else #endif
{ uFog0 = (UINT)RGBA_GETALPHA(pV0->dcSpecular) << FOG_SHIFT; uFog1 = (UINT)RGBA_GETALPHA(pV1->dcSpecular) << FOG_SHIFT; }
pStpCtx->DAttrDMajor.fFog = (FLOAT)((INT)uFog1 - (INT)uFog0) * pStpCtx->fOoLen; pStpCtx->Attr.fFog = (FLOAT)uFog0 + pStpCtx->DAttrDMajor.fFog * pStpCtx->fDMajor; } }
// Determine whether any of the given values are less than zero or greater
// than one. Negative zero counts as less than zero so this check will
// produce some false positives but that's OK.
#define NEEDS_NORMALIZE2(fV0, fV1) \
((ASUINT32(fV0) | ASUINT32(fV1)) > INT32_FLOAT_ONE)
//----------------------------------------------------------------------------
//
// PrimProcessor::NormalizeLineRHW
//
// D3DTLVERTEX.dvRHW can be anything, but our internal structures only
// allow for it being in the range [0, 1]. This function ensures that
// the RHWs are in the proper range by finding the largest one and
// scaling all of them down by it.
//
//----------------------------------------------------------------------------
void PrimProcessor::NormalizeLineRHW(LPD3DTLVERTEX pV0, LPD3DTLVERTEX pV1) { // Save original values.
m_dvV0RHW = pV0->dvRHW; m_dvV1RHW = pV1->dvRHW;
// Produce a warning when a value is out of the desired range.
#if DBG
if (FLOAT_LTZ(pV0->dvRHW) || FLOAT_LTZ(pV1->dvRHW)) { RSDPF(("Line RHW out of range %f,%f\n", pV0->dvRHW, pV1->dvRHW)); } #endif
// Find bounds and compute scale.
FLOAT fMax;
if (pV0->dvRHW < pV1->dvRHW) { fMax = pV1->dvRHW; } else { fMax = pV0->dvRHW; }
FLOAT fRHWScale = NORMALIZED_RHW_MAX / fMax;
// Scale all values by scaling factor.
pV0->dvRHW = pV0->dvRHW * fRHWScale; pV1->dvRHW = pV1->dvRHW * fRHWScale; }
//-----------------------------------------------------------------------------
//
// PrimProcessor::PointDiamondCheck
//
// Tests if vertex is within diamond of nearest candidate
// position. The +.5 (lower-right) tests are used because this is
// pixel-relative test - this corresponds to an upper-left test for
// a vertex-relative position.
//
//-----------------------------------------------------------------------------
BOOL PrimProcessor::PointDiamondCheck(INT32 iXFrac, INT32 iYFrac, BOOL bSlopeIsOne, BOOL bSlopeIsPosOne) { const INT32 iPosHalf = 0x8; const INT32 iNegHalf = -0x8;
INT32 iFracAbsSum = labs( iXFrac ) + labs( iYFrac );
// return TRUE if point is in fully-exclusive diamond
if ( iFracAbsSum < iPosHalf ) { return TRUE; }
// else return TRUE if diamond is on left or top extreme of point
if ( ( iXFrac == ( bSlopeIsPosOne ? iNegHalf : iPosHalf ) ) && ( iYFrac == 0 ) ) { return TRUE; }
if ( ( iYFrac == iPosHalf ) && ( iXFrac == 0 ) ) { return TRUE; }
// return true if slope is one, vertex is on edge,
// and (other conditions...)
if ( bSlopeIsOne && ( iFracAbsSum == iPosHalf ) ) { if ( bSlopeIsPosOne && ( iXFrac < 0 ) && ( iYFrac > 0 ) ) { return TRUE; }
if ( !bSlopeIsPosOne && ( iXFrac > 0 ) && ( iYFrac > 0 ) ) { return TRUE; } }
return FALSE; }
//----------------------------------------------------------------------------
//
// PrimProcessor::LineSetup
//
// Does attribute setup computations.
//
//----------------------------------------------------------------------------
// Line computations are done in n.4 fixed-point to reduce vertex jitter,
// move more computation to integer and to more easily match the GDI
// line computations.
#define LINE_FIX 4
#define LINE_SNAP FLOAT_TWOPOW4
#define OO_LINE_SNAP (1.0f / FLOAT_TWOPOW4)
#define LINE_FIX_HALF (1 << (LINE_FIX - 1))
#define LINE_FIX_NEAR_HALF (LINE_FIX_HALF - 1)
BOOL PrimProcessor::LineSetup(LPD3DTLVERTEX pV0, LPD3DTLVERTEX pV1) { // compute fixed point vertex values, with cheap
// rounding for better accuracy
INT32 iX0 = FTOI(pV0->dvSX * LINE_SNAP + .5F); INT32 iX1 = FTOI(pV1->dvSX * LINE_SNAP + .5F); INT32 iY0 = FTOI(pV0->dvSY * LINE_SNAP + .5F); INT32 iY1 = FTOI(pV1->dvSY * LINE_SNAP + .5F);
// compute x,y extents of the line (fixed point)
INT32 iXSize = iX1 - iX0; INT32 iYSize = iY1 - iY0;
// ignore zero length lines
if ( iXSize == 0 && iYSize == 0 ) { return FALSE; }
INT32 iAbsXSize; INT32 iAbsYSize;
if ( iXSize < 0 ) { m_StpCtx.iDXCY = -1; iAbsXSize = -iXSize; } else { m_StpCtx.iDXCY = 1; iAbsXSize = iXSize; }
if ( iYSize < 0 ) { m_StpCtx.iDYCY = -1; iAbsYSize = -iYSize; } else { m_StpCtx.iDYCY = 1; iAbsYSize = iYSize; }
BOOL bSlopeIsOne = iAbsXSize == iAbsYSize; BOOL bSlopeIsPosOne = bSlopeIsOne && ((iXSize ^ iYSize) & 0x80000000) == 0;
// compute closest pixel for vertices
//
// n n
// O-------* *-------O
// n-.5 n+.5 n-.5 n+.5
//
// Nearest Ceiling Nearest Floor
//
// always nearest ceiling for Y; use nearest floor for X for
// exception (slope == +1) case else use nearest ceiling
//
INT32 iXAdjust; if (bSlopeIsPosOne) { iXAdjust = LINE_FIX_HALF; } else { iXAdjust = LINE_FIX_NEAR_HALF; } INT32 iPixX0 = ( iX0 + iXAdjust ) >> LINE_FIX; INT32 iPixX1 = ( iX1 + iXAdjust ) >> LINE_FIX; INT32 iPixY0 = ( iY0 + LINE_FIX_NEAR_HALF ) >> LINE_FIX; INT32 iPixY1 = ( iY1 + LINE_FIX_NEAR_HALF ) >> LINE_FIX;
// determine major axis and compute step values
// sign of extent from V0 to V1 in major direction
BOOL bLineMajorNeg;
INT32 iLineMajor0; INT32 iLineMajor1; INT32 iLinePix0; INT32 iLinePix1; INT32 iLinePixStep;
// use GreaterEqual compare here so X major will be used when slope is
// exactly one - this forces the per-pixel evaluation to be done on the
// Y axis and thus adheres to the rule of inclusive right (instead of
// inclusive left) for slope == 1 cases
if ( iAbsXSize >= iAbsYSize ) { // here for X major
m_StpCtx.uFlags |= LNF_X_MAJOR; iLineMajor0 = iX0; iLineMajor1 = iX1; iLinePix0 = iPixX0; iLinePix1 = iPixX1; iLinePixStep = m_StpCtx.iDXCY; bLineMajorNeg = iXSize & 0x80000000; m_StpCtx.iDXNC = m_StpCtx.iDXCY; m_StpCtx.iDYNC = 0; } else { // here for Y major
iLineMajor0 = iY0; iLineMajor1 = iY1; iLinePix0 = iPixY0; iLinePix1 = iPixY1; iLinePixStep = m_StpCtx.iDYCY; bLineMajorNeg = iYSize & 0x80000000; m_StpCtx.iDXNC = 0; m_StpCtx.iDYNC = m_StpCtx.iDYCY; }
// The multiplies here could be traded for sign tests but there'd
// be four cases. On a PII the multiplies will be faster than
// the branches.
m_StpCtx.DAttrCY.ipSurface = m_StpCtx.iDYCY * m_StpCtx.pCtx->iSurfaceStride + m_StpCtx.iDXCY * m_StpCtx.pCtx->iSurfaceStep; m_StpCtx.DAttrNC.ipSurface = m_StpCtx.iDYNC * m_StpCtx.pCtx->iSurfaceStride + m_StpCtx.iDXNC * m_StpCtx.pCtx->iSurfaceStep; if (m_StpCtx.uFlags & PRIMSF_Z_USED) { m_StpCtx.DAttrCY.ipZ = m_StpCtx.iDYCY * m_StpCtx.pCtx->iZStride + m_StpCtx.iDXCY * m_StpCtx.pCtx->iZStep; m_StpCtx.DAttrNC.ipZ = m_StpCtx.iDYNC * m_StpCtx.pCtx->iZStride + m_StpCtx.iDXNC * m_StpCtx.pCtx->iZStep; }
// check for vertices in/out of diamond
BOOL bV0InDiamond = PointDiamondCheck( iX0 - (iPixX0 << LINE_FIX), iY0 - (iPixY0 << LINE_FIX), bSlopeIsOne, bSlopeIsPosOne ); BOOL bV1InDiamond = PointDiamondCheck( iX1 - (iPixX1 << LINE_FIX), iY1 - (iPixY1 << LINE_FIX), bSlopeIsOne, bSlopeIsPosOne );
#define LINEDIR_CMP( _A, _B ) \
( bLineMajorNeg ? ( (_A) > (_B) ) : ( (_A) < (_B) ) )
// do first pixel handling - not in or behind diamond
if ( !( bV0InDiamond || LINEDIR_CMP( iLineMajor0, iLinePix0 << LINE_FIX ) ) ) { iLinePix0 += iLinePixStep; }
// do last-pixel handling - don't pull in extent if past diamond
// (in which case the pixel is always filled) or if in diamond
// and rendering last pixel
if ( !( ( !bV1InDiamond && LINEDIR_CMP( iLinePix1 << LINE_FIX, iLineMajor1 ) || ( bV1InDiamond && m_StpCtx.pCtx->pdwRenderState[D3DRENDERSTATE_LASTPIXEL] ) ) ) ) { iLinePix1 -= iLinePixStep; }
// compute extent along major axis
m_StpCtx.cLinePix = bLineMajorNeg ? iLinePix0 - iLinePix1 + 1 : iLinePix1 - iLinePix0 + 1;
// return if no major extent
if ( m_StpCtx.cLinePix <= 0 ) { return FALSE; }
FLOAT fSlope; FLOAT fMinor0;
// compute final axis-specific line values
if ( iAbsXSize >= iAbsYSize ) { m_StpCtx.iX = iLinePix0;
if (bLineMajorNeg) { m_StpCtx.fDMajor = (iX0 - (m_StpCtx.iX << LINE_FIX)) * OO_LINE_SNAP; m_StpCtx.fOoLen = LINE_SNAP / (FLOAT)(iX0 - iX1); } else { m_StpCtx.fDMajor = ((m_StpCtx.iX << LINE_FIX) - iX0) * OO_LINE_SNAP; m_StpCtx.fOoLen = LINE_SNAP / (FLOAT)(iX1 - iX0); }
fSlope = m_StpCtx.fOoLen * (iY1 - iY0) * OO_LINE_SNAP;
fMinor0 = (iY0 + LINE_FIX_NEAR_HALF) * OO_LINE_SNAP + m_StpCtx.fDMajor * fSlope; m_StpCtx.iY = IFLOORF(fMinor0); m_StpCtx.iLineFrac = SCALED_FRACTION(fMinor0 - m_StpCtx.iY); m_StpCtx.iDLineFrac = SCALED_FRACTION(fSlope); } else { m_StpCtx.iY = iLinePix0;
if (bLineMajorNeg) { m_StpCtx.fDMajor = (iY0 - (m_StpCtx.iY << LINE_FIX)) * OO_LINE_SNAP; m_StpCtx.fOoLen = LINE_SNAP / (FLOAT)(iY0 - iY1); } else { m_StpCtx.fDMajor = ((m_StpCtx.iY << LINE_FIX) - iY0) * OO_LINE_SNAP; m_StpCtx.fOoLen = LINE_SNAP / (FLOAT)(iY1 - iY0); }
fSlope = m_StpCtx.fOoLen * (iX1 - iX0) * OO_LINE_SNAP;
fMinor0 = (iX0 + iXAdjust) * OO_LINE_SNAP + m_StpCtx.fDMajor * fSlope; m_StpCtx.iX = IFLOORF(fMinor0); m_StpCtx.iLineFrac = SCALED_FRACTION(fMinor0 - m_StpCtx.iX); m_StpCtx.iDLineFrac = SCALED_FRACTION(fSlope); }
#ifdef LINE_CORRECTION_BIAS
// A fudge factor of one-half is thrown into the correction
// to avoid undershoot due to negative corrections.
// This shifts all the attributes along the line,
// introducing error, but it's better than clamping
// them. This is not done to the coordinates to avoid
// perturbing them.
m_StpCtx.fDMajor += g_fHalf; #else
// The correction factor is clamped to positive numbers to
// avoid undershooting with attribute values. This won't
// cause overshooting issues because it moves attributes by
// at most one-half.
if (FLOAT_LTZ(m_StpCtx.fDMajor)) { m_StpCtx.fDMajor = 0; } #endif
RSDPFM((RSM_LINES, "Line %.2f,%.2f - %.2f,%.2f\n", pV0->dvSX, pV0->dvSY, pV1->dvSX, pV1->dvSY)); RSDPFM((RSM_LINES, " %c major, %d,%d, %d pix\n", (m_StpCtx.uFlags & LNF_X_MAJOR) ? 'X' : 'Y', m_StpCtx.iX, m_StpCtx.iY, m_StpCtx.cLinePix)); RSDPFM((RSM_LINES, " slope %f, dmajor %f, minor0 %f\n", fSlope, m_StpCtx.fDMajor, fMinor0)); RSDPFM((RSM_LINES, " frac %d, dfrac %d\n", m_StpCtx.iLineFrac, m_StpCtx.iDLineFrac));
BOOL bNorm;
// USED checks cannot be combined since TEX_USED is a multibit check.
if ((m_StpCtx.uFlags & PRIMSF_TEX_USED) && (m_StpCtx.uFlags & PRIMSF_PERSP_USED) && (m_uPpFlags & PPF_NORMALIZE_RHW) && NEEDS_NORMALIZE2(pV0->dvRHW, pV1->dvRHW)) { NormalizeLineRHW(pV0, pV1); bNorm = TRUE; } else { bNorm = FALSE; }
LineSetup_Start(&m_StpCtx, pV0, pV1);
if (bNorm) { pV0->dvRHW = m_dvV0RHW; pV1->dvRHW = m_dvV1RHW; }
return TRUE; }
|