|
|
/**************************************************************************
* * * Copyright (C) 1992, Silicon Graphics, Inc. * * * * These coded instructions, statements, and computer programs contain * * unpublished proprietary information of Silicon Graphics, Inc., and * * are protected by ederal copyright law. They may not be disclosed * * to third parties or copied or duplicated in any form, in whole or * * in part, without the prior written consent of Silicon Graphics, Inc. * * * **************************************************************************/
/*
* patch.c++ - $Revision: 1.4 $ * Derrick Burns - 1992 */
#include "glimport.h"
#include "mystdio.h"
#include "myassert.h"
#include "mymath.h"
#include "mystring.h"
#include "patch.h"
#include "mapdesc.h"
#include "quilt.h"
#include "nurbscon.h"
#include "simplema.h" //for abs function in ::singleStep();
/*--------------------------------------------------------------------------
* Patch - copy patch from quilt and transform control points *-------------------------------------------------------------------------- */
Patch::Patch( Quilt_ptr geo, REAL *pta, REAL *ptb, Patch *n ) { /* pspec[i].range is uninit here */ mapdesc = geo->mapdesc; cullval = mapdesc->isCulling() ? CULL_ACCEPT : CULL_TRIVIAL_ACCEPT; notInBbox = mapdesc->isBboxSubdividing() ? 1 : 0; needsSampling = mapdesc->isRangeSampling() ? 1 : 0; pspec[0].order = geo->qspec[0].order; pspec[1].order = geo->qspec[1].order; pspec[0].stride = pspec[1].order * MAXCOORDS; pspec[1].stride = MAXCOORDS;
/* transform control points to sampling and culling spaces */ REAL *ps = geo->cpts; geo->select( pta, ptb ); ps += geo->qspec[0].offset; ps += geo->qspec[1].offset; ps += geo->qspec[0].index * geo->qspec[0].order * geo->qspec[0].stride; ps += geo->qspec[1].index * geo->qspec[1].order * geo->qspec[1].stride;
if( needsSampling ) { mapdesc->xformSampling( ps, geo->qspec[0].order, geo->qspec[0].stride, geo->qspec[1].order, geo->qspec[1].stride, spts, pspec[0].stride, pspec[1].stride ); }
if( cullval == CULL_ACCEPT ) { mapdesc->xformCulling( ps, geo->qspec[0].order, geo->qspec[0].stride, geo->qspec[1].order, geo->qspec[1].stride, cpts, pspec[0].stride, pspec[1].stride ); } if( notInBbox ) { mapdesc->xformBounding( ps, geo->qspec[0].order, geo->qspec[0].stride, geo->qspec[1].order, geo->qspec[1].stride, bpts, pspec[0].stride, pspec[1].stride ); } /* set scale range */ pspec[0].range[0] = geo->qspec[0].breakpoints[geo->qspec[0].index]; pspec[0].range[1] = geo->qspec[0].breakpoints[geo->qspec[0].index+1]; pspec[0].range[2] = pspec[0].range[1] - pspec[0].range[0];
pspec[1].range[0] = geo->qspec[1].breakpoints[geo->qspec[1].index]; pspec[1].range[1] = geo->qspec[1].breakpoints[geo->qspec[1].index+1]; pspec[1].range[2] = pspec[1].range[1] - pspec[1].range[0];
// may need to subdivide to match range of sub-patch
if( pspec[0].range[0] != pta[0] ) { assert( pspec[0].range[0] < pta[0] ); Patch lower( *this, 0, pta[0], 0 ); *this = lower; }
if( pspec[0].range[1] != ptb[0] ) { assert( pspec[0].range[1] > ptb[0] ); Patch upper( *this, 0, ptb[0], 0 ); }
if( pspec[1].range[0] != pta[1] ) { assert( pspec[1].range[0] < pta[1] ); Patch lower( *this, 1, pta[1], 0 ); *this = lower; }
if( pspec[1].range[1] != ptb[1] ) { assert( pspec[1].range[1] > ptb[1] ); Patch upper( *this, 1, ptb[1], 0 ); } checkBboxConstraint(); next = n; }
/*--------------------------------------------------------------------------
* Patch - subdivide a patch along an isoparametric line *-------------------------------------------------------------------------- */
Patch::Patch( Patch& upper, int param, REAL value, Patch *n ) { Patch& lower = *this;
lower.cullval = upper.cullval; lower.mapdesc = upper.mapdesc; lower.notInBbox = upper.notInBbox; lower.needsSampling = upper.needsSampling; lower.pspec[0].order = upper.pspec[0].order; lower.pspec[1].order = upper.pspec[1].order; lower.pspec[0].stride = upper.pspec[0].stride; lower.pspec[1].stride = upper.pspec[1].stride; lower.next = n;
/* reset scale range */ switch( param ) { case 0: { REAL d = (value-upper.pspec[0].range[0]) / upper.pspec[0].range[2]; if( needsSampling ) mapdesc->subdivide( upper.spts, lower.spts, d, pspec[1].order, pspec[1].stride, pspec[0].order, pspec[0].stride );
if( cullval == CULL_ACCEPT ) mapdesc->subdivide( upper.cpts, lower.cpts, d, pspec[1].order, pspec[1].stride, pspec[0].order, pspec[0].stride );
if( notInBbox ) mapdesc->subdivide( upper.bpts, lower.bpts, d, pspec[1].order, pspec[1].stride, pspec[0].order, pspec[0].stride ); lower.pspec[0].range[0] = upper.pspec[0].range[0]; lower.pspec[0].range[1] = value; lower.pspec[0].range[2] = value - upper.pspec[0].range[0]; upper.pspec[0].range[0] = value; upper.pspec[0].range[2] = upper.pspec[0].range[1] - value;
lower.pspec[1].range[0] = upper.pspec[1].range[0]; lower.pspec[1].range[1] = upper.pspec[1].range[1]; lower.pspec[1].range[2] = upper.pspec[1].range[2]; break; } case 1: { REAL d = (value-upper.pspec[1].range[0]) / upper.pspec[1].range[2]; if( needsSampling ) mapdesc->subdivide( upper.spts, lower.spts, d, pspec[0].order, pspec[0].stride, pspec[1].order, pspec[1].stride ); if( cullval == CULL_ACCEPT ) mapdesc->subdivide( upper.cpts, lower.cpts, d, pspec[0].order, pspec[0].stride, pspec[1].order, pspec[1].stride ); if( notInBbox ) mapdesc->subdivide( upper.bpts, lower.bpts, d, pspec[0].order, pspec[0].stride, pspec[1].order, pspec[1].stride ); lower.pspec[0].range[0] = upper.pspec[0].range[0]; lower.pspec[0].range[1] = upper.pspec[0].range[1]; lower.pspec[0].range[2] = upper.pspec[0].range[2];
lower.pspec[1].range[0] = upper.pspec[1].range[0]; lower.pspec[1].range[1] = value; lower.pspec[1].range[2] = value - upper.pspec[1].range[0]; upper.pspec[1].range[0] = value; upper.pspec[1].range[2] = upper.pspec[1].range[1] - value; break; } }
// inherit bounding box
if( mapdesc->isBboxSubdividing() && ! notInBbox ) memcpy( lower.bb, upper.bb, sizeof( bb ) ); lower.checkBboxConstraint(); upper.checkBboxConstraint(); }
/*--------------------------------------------------------------------------
* clamp - clamp the sampling rate to a given maximum *-------------------------------------------------------------------------- */
void Patch::clamp( void ) { if( mapdesc->clampfactor != N_NOCLAMPING ) { pspec[0].clamp( mapdesc->clampfactor ); pspec[1].clamp( mapdesc->clampfactor ); } }
void Patchspec::clamp( REAL clampfactor ) { if( sidestep[0] < minstepsize ) sidestep[0] = clampfactor * minstepsize; if( sidestep[1] < minstepsize ) sidestep[1] = clampfactor * minstepsize; if( stepsize < minstepsize ) stepsize = clampfactor * minstepsize; }
void Patch::checkBboxConstraint( void ) { if( notInBbox && mapdesc->bboxTooBig( bpts, pspec[0].stride, pspec[1].stride, pspec[0].order, pspec[1].order, bb ) != 1 ) { notInBbox = 0; } }
void Patch::bbox( void ) { if( mapdesc->isBboxSubdividing() ) mapdesc->surfbbox( bb ); }
/*--------------------------------------------------------------------------
* getstepsize - compute the sampling density across the patch * and determine if patch needs to be subdivided *-------------------------------------------------------------------------- */
void Patch::getstepsize( void ) { pspec[0].minstepsize = pspec[1].minstepsize = 0; pspec[0].needsSubdivision = pspec[1].needsSubdivision = 0;
if( mapdesc->isConstantSampling() ) { // fixed number of samples per patch in each direction
// maxsrate is number of s samples per patch
// maxtrate is number of t samples per patch
pspec[0].getstepsize( mapdesc->maxsrate ); pspec[1].getstepsize( mapdesc->maxtrate );
} else if( mapdesc->isDomainSampling() ) { // maxsrate is number of s samples per unit s length of domain
// maxtrate is number of t samples per unit t length of domain
pspec[0].getstepsize( mapdesc->maxsrate * pspec[0].range[2] ); pspec[1].getstepsize( mapdesc->maxtrate * pspec[1].range[2] );
} else if( ! needsSampling ) { pspec[0].singleStep(); pspec[1].singleStep(); } else { // upper bound on path length between sample points
REAL tmp[MAXORDER][MAXORDER][MAXCOORDS]; const int trstride = sizeof(tmp[0]) / sizeof(REAL); const int tcstride = sizeof(tmp[0][0]) / sizeof(REAL);
assert( pspec[0].order <= MAXORDER ); /* points have been transformed, therefore they are homogeneous */
int val = mapdesc->project( spts, pspec[0].stride, pspec[1].stride, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order ); if( val == 0 ) { // control points cross infinity, therefore partials are undefined
pspec[0].getstepsize( mapdesc->maxsrate ); pspec[1].getstepsize( mapdesc->maxtrate ); } else { REAL t1 = mapdesc->getProperty( N_PIXEL_TOLERANCE ); REAL t2 = mapdesc->getProperty( N_ERROR_TOLERANCE ); pspec[0].minstepsize = ( mapdesc->maxsrate > 0.0 ) ? (pspec[0].range[2] / mapdesc->maxsrate) : 0.0; pspec[1].minstepsize = ( mapdesc->maxtrate > 0.0 ) ? (pspec[1].range[2] / mapdesc->maxtrate) : 0.0; if( mapdesc->isParametricDistanceSampling() ) { // t2 is upper bound on the distance between surface and tessellant
REAL ssv[2], ttv[2]; REAL ss = mapdesc->calcPartialVelocity( ssv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 2, 0, pspec[0].range[2], pspec[1].range[2], 0 ); REAL st = mapdesc->calcPartialVelocity( 0, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 1, pspec[0].range[2], pspec[1].range[2], -1 ); REAL tt = mapdesc->calcPartialVelocity( ttv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 2, pspec[0].range[2], pspec[1].range[2], 1 ); if( ss != 0.0 && tt != 0.0 ) { /* printf( "ssv[0] %g ssv[1] %g ttv[0] %g ttv[1] %g\n",
ssv[0], ssv[1], ttv[0], ttv[1] ); */ REAL ttq = ::sqrtf( (float) ss ); REAL ssq = ::sqrtf( (float) tt ); REAL ds = ::sqrtf( 4 * t2 * ttq / ( ss * ttq + st * ssq ) ); REAL dt = ::sqrtf( 4 * t2 * ssq / ( tt * ssq + st * ttq ) ); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]); pspec[0].sidestep[0] = (ssv[0] > scutoff) ? ::sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2]; pspec[0].sidestep[1] = (ssv[1] > scutoff) ? ::sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]); pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? ::sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2]; pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? ::sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2]; } else if( ss != 0.0 ) { REAL x = pspec[1].range[2] * st; REAL ds = ( ::sqrtf( x * x + 8.0 * t2 * ss ) - x ) / ss; pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]); pspec[0].sidestep[0] = (ssv[0] > scutoff) ? ::sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2]; pspec[0].sidestep[1] = (ssv[1] > scutoff) ? ::sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2]; pspec[1].singleStep(); } else if( tt != 0.0 ) { REAL x = pspec[0].range[2] * st; REAL dt = ( ::sqrtf( x * x + 8.0 * t2 * tt ) - x ) / tt; pspec[0].singleStep(); REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]); pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? ::sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2]; pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? ::sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2]; } else { if( 4.0 * t2 > st * pspec[0].range[2] * pspec[1].range[2] ) { pspec[0].singleStep(); pspec[1].singleStep(); } else { REAL area = 4.0 * t2 / st; REAL ds = ::sqrtf( area * pspec[0].range[2] / pspec[1].range[2] ); REAL dt = ::sqrtf( area * pspec[1].range[2] / pspec[0].range[2] ); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; pspec[0].sidestep[0] = pspec[0].range[2]; pspec[0].sidestep[1] = pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = pspec[1].range[2]; pspec[1].sidestep[1] = pspec[1].range[2]; } } } else if( mapdesc->isPathLengthSampling() ) { // t1 is upper bound on path length
REAL msv[2], mtv[2]; REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 ); REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 ); if( ms != 0.0 ) { if( mt != 0.0 ) { /* REAL d = t1 / ( ms * ms + mt * mt );*/ /* REAL ds = mt * d;*/ REAL ds = t1 / (2.0*ms); /* REAL dt = ms * d;*/ REAL dt = t1 / (2.0*mt); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (t1 / msv[0]) : pspec[0].range[2]; pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (t1 / msv[1]) : pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (t1 / mtv[0]) : pspec[1].range[2]; pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (t1 / mtv[1]) : pspec[1].range[2]; } else { pspec[0].stepsize = ( t1 < ms * pspec[0].range[2] ) ? (t1 / ms) : pspec[0].range[2]; pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (t1 / msv[0]) : pspec[0].range[2]; pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (t1 / msv[1]) : pspec[0].range[2]; pspec[1].singleStep(); } } else { if( mt != 0.0 ) { pspec[0].singleStep();
pspec[1].stepsize = ( t1 < mt * pspec[1].range[2] ) ? (t1 / mt) : pspec[1].range[2]; pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (t1 / mtv[0]) : pspec[1].range[2]; pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (t1 / mtv[1]) : pspec[1].range[2]; } else { pspec[0].singleStep(); pspec[1].singleStep(); } } } else if( mapdesc->isSurfaceAreaSampling() ) { // t is the square root of area
/*
REAL msv[2], mtv[2]; REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 ); REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 ); if( ms != 0.0 && mt != 0.0 ) { REAL d = 1.0 / (ms * mt); t *= M_SQRT2; REAL ds = t * ::sqrtf( d * pspec[0].range[2] / pspec[1].range[2] ); REAL dt = t * ::sqrtf( d * pspec[1].range[2] / pspec[0].range[2] ); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t ) ? (t / msv[0]) : pspec[0].range[2]; pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t ) ? (t / msv[1]) : pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t ) ? (t / mtv[0]) : pspec[1].range[2]; pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t ) ? (t / mtv[1]) : pspec[1].range[2]; } else { pspec[0].singleStep(); pspec[1].singleStep(); } */ } else { pspec[0].singleStep(); pspec[1].singleStep(); } } }
dprintf( "sidesteps %g %g %g %g, stepsize %g %g\n", pspec[0].sidestep[0], pspec[0].sidestep[1], pspec[1].sidestep[0], pspec[1].sidestep[1], pspec[0].stepsize, pspec[1].stepsize );
if( mapdesc->minsavings != N_NOSAVINGSSUBDIVISION ) { REAL savings = 1./(pspec[0].stepsize * pspec[1].stepsize) ; savings-= (2./( pspec[0].sidestep[0] + pspec[0].sidestep[1] )) * (2./( pspec[1].sidestep[0] + pspec[1].sidestep[1] )); savings *= pspec[0].range[2] * pspec[1].range[2]; if( savings > mapdesc->minsavings ) { pspec[0].needsSubdivision = pspec[1].needsSubdivision = 1; } }
if( pspec[0].stepsize < pspec[0].minstepsize ) pspec[0].needsSubdivision = 1; if( pspec[1].stepsize < pspec[1].minstepsize ) pspec[1].needsSubdivision = 1; needsSampling = (needsSampling ? needsSamplingSubdivision() : 0); }
void Patchspec::singleStep() { stepsize = sidestep[0] = sidestep[1] = abs(range[2]); }
void Patchspec::getstepsize( REAL max ) // max is number of samples for entire patch
{ stepsize = ( max >= 1.0 ) ? range[2] / max : range[2]; if (stepsize < 0.0) { stepsize = -stepsize; } sidestep[0] = sidestep[1] = minstepsize = stepsize; }
int Patch::needsSamplingSubdivision( void ) { return (pspec[0].needsSubdivision || pspec[1].needsSubdivision) ? 1 : 0; }
int Patch::needsNonSamplingSubdivision( void ) { return notInBbox; }
int Patch::needsSubdivision( int param ) { return pspec[param].needsSubdivision; }
int Patch::cullCheck( void ) { if( cullval == CULL_ACCEPT ) cullval = mapdesc->cullCheck( cpts, pspec[0].order, pspec[0].stride, pspec[1].order, pspec[1].stride ); return cullval; }
|