|
|
//
// Copyright (c) 1998-1999, Microsoft Corporation, all rights reserved
//
// md5.c
//
// IEEE1394 ARP module
//
//
// 08/08/2000 ADube created.
//
// Purpose: Create a unique MAC address from 1394 EUID
//
//This file should use the same algorithm as nic1394 uses.
//
// Derived from derived from the RSA Data Security,
// Inc. MD5 Message-Digest Algorithm
//
#include <precomp.h>
#pragma hdrstop
/*
been defined with C compiler flags. */ #ifndef PROTOTYPES
#define PROTOTYPES 1
#endif
/* POINTER defines a generic pointer type */ typedef unsigned char *POINTER;
/* UINT2 defines a two byte word */ typedef unsigned short int UINT2;
/* UINT4 defines a four byte word */ typedef unsigned long int UINT4;
/* PROTO_LIST is defined depending on how PROTOTYPES is defined above.
If using PROTOTYPES, then PROTO_LIST returns the list, otherwise it returns an empty list. */ #if PROTOTYPES
#define PROTO_LIST(list) list
#else
#define PROTO_LIST(list) ()
#endif
/* MD5 context. */
typedef struct _MD5_CTX{ UINT4 state[4]; /* state (ABCD) */ UINT4 count[2]; /* number of bits, modulo 2^64 (lsb first) */ unsigned char buffer[64]; /* input buffer */ } MD5_CTX, MD_CTX;
typedef ENetAddr MAC_ADDRESS, *PMAC_ADDRESS;
void MD5Init PROTO_LIST ((MD5_CTX *)); void MD5Update PROTO_LIST ((MD5_CTX *, unsigned char *, unsigned int)); void MD5Final PROTO_LIST ((unsigned char [16], MD5_CTX *));
// Constants for MD5Transform routine.
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21
static void MD5Transform PROTO_LIST ((UINT4 [4], unsigned char [64])); static void Encode PROTO_LIST ((unsigned char *, UINT4 *, unsigned int)); static void Decode PROTO_LIST ((UINT4 *, unsigned char *, unsigned int)); static void MD5_memcpy PROTO_LIST ((POINTER, POINTER, unsigned int)); static void MD5_memset PROTO_LIST ((POINTER, int, unsigned int));
static unsigned char PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// F, G, H and I are basic MD5 functions.
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))
// ROTATE_LEFT rotates x left n bits.
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
// FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
// Rotation is separate from addition to prevent recomputation.
#define FF(a, b, c, d, x, s, ac) { \
(a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \
(a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \
(a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \
(a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ }
// MD5 initialization. Begins an MD5 operation, writing a new context.
void MD5Init ( MD5_CTX *context// context
) { context->count[0] = context->count[1] = 0; // Load magic initialization constants.
context->state[0] = 0x67452301; context->state[1] = 0xefcdab89; context->state[2] = 0x98badcfe; context->state[3] = 0x10325476; }
// MD5 block update operation. Continues an MD5 message-digest
// operation, processing another message block, and updating the
// context.
void MD5Update ( MD5_CTX *context, // context
unsigned char *input, // input block
unsigned int inputLen // length of input block
) { unsigned int i, index, partLen;
// Compute number of bytes mod 64
index = (unsigned int)((context->count[0] >> 3) & 0x3F);
// Update number of bits
if ((context->count[0] += ((UINT4)inputLen << 3)) < ((UINT4)inputLen << 3)) { context->count[1]++; } context->count[1] += ((UINT4)inputLen >> 29);
partLen = 64 - index;
// Transform as many times as possible.
if (inputLen >= partLen) { MD5_memcpy ((POINTER)&context->buffer[index], (POINTER)input, partLen);
MD5Transform (context->state, context->buffer);
for (i = partLen; i + 63 < inputLen; i += 64) { MD5Transform (context->state, &input[i]); }
index = 0; } else { i = 0; } // Buffer remaining input
MD5_memcpy ((POINTER)&context->buffer[index], (POINTER)&input[i], inputLen-i); }
// MD5 finalization. Ends an MD5 message-digest operation, writing the
// the message digest and zeroizing the context.
void MD5Final ( unsigned char digest[16], // message digest
MD5_CTX *context ) // context
{ unsigned char bits[8]; unsigned int index, padLen;
// Save number of bits
Encode (bits, context->count, 8);
// Pad out to 56 mod 64.
index = (unsigned int)((context->count[0] >> 3) & 0x3f); padLen = (index < 56) ? (56 - index) : (120 - index); MD5Update (context, PADDING, padLen);
// Append length (before padding)
MD5Update (context, bits, 8);
// Store state in digest
Encode (digest, context->state, 6);
// Zeroize sensitive information.
MD5_memset ((POINTER)context, 0, sizeof (*context)); }
// MD5 basic transformation. Transforms state based on block.
static void MD5Transform ( UINT4 state[4], unsigned char block[64] ) { UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];
Decode (x, block, 64);
// Round 1
FF (a, b, c, d, x[ 0], S11, 0xd76aa478); // 1
FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); // 2
FF (c, d, a, b, x[ 2], S13, 0x242070db); // 3
FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); // 4
FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); // 5
FF (d, a, b, c, x[ 5], S12, 0x4787c62a); // 6
FF (c, d, a, b, x[ 6], S13, 0xa8304613); // 7
FF (b, c, d, a, x[ 7], S14, 0xfd469501); // 8
FF (a, b, c, d, x[ 8], S11, 0x698098d8); // 9
FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); // 10
FF (c, d, a, b, x[10], S13, 0xffff5bb1); // 11
FF (b, c, d, a, x[11], S14, 0x895cd7be); // 12
FF (a, b, c, d, x[12], S11, 0x6b901122); // 13
FF (d, a, b, c, x[13], S12, 0xfd987193); // 14
FF (c, d, a, b, x[14], S13, 0xa679438e); // 15
FF (b, c, d, a, x[15], S14, 0x49b40821); // 16
// Round 2
GG (a, b, c, d, x[ 1], S21, 0xf61e2562); // 17
GG (d, a, b, c, x[ 6], S22, 0xc040b340); // 18
GG (c, d, a, b, x[11], S23, 0x265e5a51); // 19
GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); // 20
GG (a, b, c, d, x[ 5], S21, 0xd62f105d); // 21
GG (d, a, b, c, x[10], S22, 0x2441453); // 22
GG (c, d, a, b, x[15], S23, 0xd8a1e681); // 23
GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); // 24
GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); // 25
GG (d, a, b, c, x[14], S22, 0xc33707d6); // 26
GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); // 27
GG (b, c, d, a, x[ 8], S24, 0x455a14ed); // 28
GG (a, b, c, d, x[13], S21, 0xa9e3e905); // 29
GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); // 30
GG (c, d, a, b, x[ 7], S23, 0x676f02d9); // 31
GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); // 32
// Round 3
HH (a, b, c, d, x[ 5], S31, 0xfffa3942); // 33
HH (d, a, b, c, x[ 8], S32, 0x8771f681); // 34
HH (c, d, a, b, x[11], S33, 0x6d9d6122); // 35
HH (b, c, d, a, x[14], S34, 0xfde5380c); // 36
HH (a, b, c, d, x[ 1], S31, 0xa4beea44); // 37
HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); // 38
HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); // 39
HH (b, c, d, a, x[10], S34, 0xbebfbc70); // 40
HH (a, b, c, d, x[13], S31, 0x289b7ec6); // 41
HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); // 42
HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); // 43
HH (b, c, d, a, x[ 6], S34, 0x4881d05); // 44
HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); // 45
HH (d, a, b, c, x[12], S32, 0xe6db99e5); // 46
HH (c, d, a, b, x[15], S33, 0x1fa27cf8); // 47
HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); // 48
// Round 4
II (a, b, c, d, x[ 0], S41, 0xf4292244); // 49
II (d, a, b, c, x[ 7], S42, 0x432aff97); // 50
II (c, d, a, b, x[14], S43, 0xab9423a7); // 51
II (b, c, d, a, x[ 5], S44, 0xfc93a039); // 52
II (a, b, c, d, x[12], S41, 0x655b59c3); // 53
II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); // 54
II (c, d, a, b, x[10], S43, 0xffeff47d); // 55
II (b, c, d, a, x[ 1], S44, 0x85845dd1); // 56
II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); // 57
II (d, a, b, c, x[15], S42, 0xfe2ce6e0); // 58
II (c, d, a, b, x[ 6], S43, 0xa3014314); // 59
II (b, c, d, a, x[13], S44, 0x4e0811a1); // 60
II (a, b, c, d, x[ 4], S41, 0xf7537e82); // 61
II (d, a, b, c, x[11], S42, 0xbd3af235); // 62
II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); // 63
II (b, c, d, a, x[ 9], S44, 0xeb86d391); // 64
state[0] += a; state[1] += b; state[2] += c; state[3] += d;
// Zeroize sensitive information.
MD5_memset ((POINTER)x, 0, sizeof (x)); }
// Encodes input (UINT4) into output (unsigned char). Assumes len is
// a multiple of 4.
static void Encode ( unsigned char *output, UINT4 *input, unsigned int len ) { unsigned int i, j;
for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = (unsigned char)(input[i] & 0xff); output[j+1] = (unsigned char)((input[i] >> 8) & 0xff); output[j+2] = (unsigned char)((input[i] >> 16) & 0xff); output[j+3] = (unsigned char)((input[i] >> 24) & 0xff); } }
// Decodes input (unsigned char) into output (UINT4). Assumes len is
// a multiple of 4.
static void Decode ( UINT4 *output, unsigned char *input, unsigned int len ) { unsigned int i, j;
for (i = 0, j = 0; j < len; i++, j += 4) { output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) | (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24); } }
// Note: Replace "for loop" with standard memcpy if possible.
static void MD5_memcpy ( POINTER output, POINTER input, unsigned int len ) { unsigned int i;
for (i = 0; i < len; i++) { output[i] = input[i]; } }
// Note: Replace "for loop" with standard memset if possible.
static void MD5_memset ( POINTER output, int value, unsigned int len ) { unsigned int i;
for (i = 0; i < len; i++) { ((char *)output)[i] = (char)value; } }
#define ETH_IS_MULTICAST(Address) \
(BOOLEAN)(((PUCHAR)(Address))[0] & ((UCHAR)0x01))
VOID nicGetMacAddressFromEuid ( UINT64 *pEuid, MAC_ADDRESS *pMacAddr ) /*
Taken directly from nic1394 and is intended to produce the same output as nic1394.
This is used to create display Correct HW addr in the arp -a output.
We take the Unique ID and run it through the MD5 algorithm because this is what nic1394 would have done to get the MAC address that it reports to us
I have the name as nicGet.. to imply that this should be the same alogorithm as nic1394's md5 algorithm
*/ {
MD_CTX context; unsigned char digest[6]; unsigned int len = 8;
MD5Init (&context); MD5Update (&context, (unsigned char*)pEuid, len); MD5Final (digest, &context);
NdisMoveMemory (pMacAddr, digest, 6);
// Set the locally administered bit
// and clear the multicast bit.
//
// randomize the returned Mac Address
// by xor ing the address with a random
// 0xf22f617c91e0 (a random number)
//
//pMacAddr->addr[0] ^= 0x00;
pMacAddr->addr[0] |= 0x2; pMacAddr->addr[0] &= 0xf2; pMacAddr->addr[1] ^= 0x2f; pMacAddr->addr[2] ^= 0x61; pMacAddr->addr[3] ^= 0x7c; pMacAddr->addr[4] ^= 0x91; pMacAddr->addr[5] ^= 0x30;
}
|