|
|
/*
** Copyright (c) 1991 Microsoft Corporation */ //===========================================================================
// FILE RPGEN.C
//
// MODULE Host Resource Executor
//
// PURPOSE Rendering primitives, generic,
//
// DESCRIBED IN Resource Executor design spec.
//
//
// MNEMONICS n/a
//
// HISTORY Bert Douglas 5/1/91 Initial coding started
// mslin/dstseng 01/17/92 revise for HRE
// dstseng 03/06/92 <1> RP_FillScanRow
// ->RP_FILLSCANROW for asm. version.
// dstseng 03/19/92 <2> comment out unnecessary code.
// which was implemented for frac. version of
// slicing algorithm.
//
//===========================================================================
#include <windows.h>
#include "constant.h"
#include "jtypes.h"
#include "jres.h"
#include "frame.h" // driver header file, resource block format
#include "hretype.h" // define data structure used by hre.c and rpgen.c
//---------------------------------------------------------------------------
void RP_SliceLine ( SHORT s_x1, SHORT s_y1, // endpoint 1
SHORT s_x2, SHORT s_y2, // endpoint 2
RP_SLICE_DESC FAR* psd, // output slice form of line
UBYTE fb_keep_order // keep drawing order on styled lines/
)
// PURPOSE
// Convert a line from endpoint form to slice form
//
// Slices will run from left to right
//
// The generated slices are of maximal length and are in a horizontal,
// vertical or diagonal direction. Most frame buffer hardware can be
// accessed with particular efficiency in these directions. All slices
// of a line are in the same direction.
//
// Clipping must be performed by caller. All coordinates will be non-negative.
//
// Basic algorithm is taken from :
// Bresenham, J. E. Run length slice algorithms for incremental lines.
// In "Fundamental Algorithms for Computer Graphics", R. A. Earnshaw, Ed.
// NATO ASI Series, Springer Verlag, New York, 1985, 59-104.
//
// Modifications have been made to the above algorithm for:
// - sub-pixel endpoint coordinates
// - equal error rounding rules
// - GIQ (grid intersect quantization) rules
// - first/last pixel exclusion
//
// The line is sliced in four steps:
//
// STEP 1: Find the pixel center cooridnates of the first and
// last pixels in the line. This is done according to the GIQ conventions.
//
// STEP 2: Use these integer pixel center endpoint coordinates
// to produce the Bresenham slices for the line. The equal error rounding
// rule is used, when the first and last slices are not of equal length, to
// decide which end gets the short slice.
//
// STEP 3: Adjust the length of the first and last slices for the
// effect of the sub-pixel endpoint coordinates. Note that the sub-pixel
// part of the coordinates can only effect the first and last slices and
// has no effect on the intermediate slices.
//
// STEP 4: Perform the conditional exclusion of the first and
// last pixels from the line.
//
//
// ASSUMPTIONS & ASSERTIONS none.
//
// INTERNAL STRUCTURES none.
//
// UNRESOLVED ISSUES programmer development notes
//---------------------------------------------------------------------------
{ SHORT s_q,s_r; /* defined in Bresenhams paper */ SHORT s_m,s_n; /* " */ SHORT s_dx,s_dy; /* " */ SHORT s_da,s_db; /* " */ SHORT s_del_b; /* " */ SHORT s_abs_dy; /* absolute value of s_dy */
SHORT s_sy; /* 1 or -1 , sign of s_dy */ SHORT s_dx_oct,s_dy_oct; /* octant dir xy= 0/1 1/1 1/0 1/-1 0/-1 */ SHORT s_dx_axial,s_dy_axial; /* 1/2 octant axial dir xy= 0/1 1/0 -1/0 */ SHORT s_dx_diag, s_dy_diag; /* 1/2 octant diagonal dir xy= 1/1 1/-1 */ SHORT s_t; /* temporary */ FBYTE fb_short_end_last; /* 0=first end short, 1=last end short */ UBYTE fb_unswap; /* need to un-swap endpoints at return */
fb_unswap = FALSE;
/*------------------------------------------------------------*/ /* STEP 1: Find pixel center coordinates of first/last pixels */ /*------------------------------------------------------------*/
/* always draw left to right, normalize to semicircle with x >= 0 */ s_dx = s_x2 - s_x1; if ( s_dx < 0 ) { fb_unswap = fb_keep_order; s_dx = -s_dx; s_t = s_x2; s_x2 = s_x1; s_x1 = s_t; s_t = s_y2; s_y2 = s_y1; s_y1 = s_t; } s_dy = s_y2 - s_y1;
/*------------------------------------------------------------*/ /* STEP 2: Produce slices using the Bresenham algorithm */ /*------------------------------------------------------------*/
if ( s_dy < 0 ) { s_abs_dy = -s_dy; s_sy = -1; fb_short_end_last = 1; } else { s_abs_dy = s_dy; s_sy = 1; fb_short_end_last = 0; }
/* normalize to octant */ if ( s_dx >= s_abs_dy ) { s_da = s_dx; s_db = s_abs_dy; s_dx_oct = 1; s_dy_oct = 0; } else { s_da = s_abs_dy; s_db = s_dx; s_dx_oct = 0; s_dy_oct = s_sy; fb_short_end_last = 1; }
/* normalize to half octant */ s_del_b = s_db; s_t = s_da - s_db; if ( s_del_b > s_t ) { s_del_b = s_t; fb_short_end_last ^= 1; }
/* handle special case of slope of 2 */ s_dx_axial = s_dx_oct; s_dy_axial = s_dy_oct; s_dx_diag = 1; s_dy_diag = s_sy; if ( ( s_da == (2 * s_del_b) ) && ( s_dy < 0 ) ) { s_dx_axial = 1; s_dy_axial = s_sy; s_dx_diag = s_dx_oct; s_dy_diag = s_dy_oct; fb_short_end_last ^= 1; }
/* determine slice movement and skip directions */ if ( s_db == s_del_b ) { /* slice direction is axial, skip direction is diagonal */ psd->s_dx_draw = s_dx_axial; psd->s_dy_draw = s_dy_axial; psd->s_dx_skip = s_dx_diag - s_dx_axial; psd->s_dy_skip = s_dy_diag - s_dy_axial; } else { /* slice direction is diagonal, skip direction is axial */ psd->s_dx_draw = s_dx_diag; psd->s_dy_draw = s_dy_diag; psd->s_dx_skip = s_dx_axial - s_dx_diag; psd->s_dy_skip = s_dy_axial - s_dy_diag; }
/* handle zero slope lines with special case */ if ( s_del_b == 0 ) { psd->us_first = s_da + 1; psd->us_n_slices = 0; psd->us_last = 0; } else /* general case, non-zero slope lines */ { /* basic Bresenham parameters */ s_q = s_da / s_del_b; s_r = s_da % s_del_b; s_m = s_q / 2; s_n = s_r; if ( s_q & 1 ) s_n += s_del_b;
/* first and last slice length */ psd->us_first = psd->us_last = s_m + 1; if ( s_n == 0 ) { if ( fb_short_end_last ) psd->us_last -= 1; else psd->us_first -= 1; }
/* remaining line slice parameters */ psd->us_small = s_q; psd->s_dis_sm = 2*s_r; psd->s_dis_lg = psd->s_dis_sm - (2*s_del_b); psd->s_dis = s_n + psd->s_dis_lg; if ( s_dy < 0 ) psd->s_dis -= 1; psd->us_n_slices = s_del_b - 1;
}
/* output endpoints */ psd->us_x1 = s_x1; psd->us_y1 = s_y1; psd->us_x2 = s_x2; psd->us_y2 = s_y2;
if ( fb_unswap ) { psd->us_x1 = s_x2; psd->us_y1 = s_y2; psd->us_x2 = s_x1; psd->us_y2 = s_y1; psd->s_dx_draw = -psd->s_dx_draw; psd->s_dy_draw = -psd->s_dy_draw; psd->s_dx_skip = -psd->s_dx_skip; psd->s_dy_skip = -psd->s_dy_skip; s_t = psd->us_first; psd->us_first = psd->us_last; psd->us_last = s_t; } }
|