|
|
/**************************************************************************\
* * Copyright (c) 1998 Microsoft Corporation * * Module Name: * * Path Self Intersection Remover Class. * * Abstract: * * Classes and functions used to remove self intersections in paths. * Given a path, it produces one or more polygons which can be used to * draw a widened path that is safe to use alternate fill mode with. * * Notes: * * Modified from Office code frOm John Bowler (at least that is what * ericvan told me). Apparently owned by some 'KasiaK', but no idea * who that is. (He is apparently retired) * CAUTION: Not thoroughly tested yet for arbitrary paths. * * API: * Init(EstimatedNumPts); * AddPolygon(pathPts, numPts); * RemoveSelfIntersects(); * GetNewPoints(newPts, polyCounts, numPolys, numTotalPts); * * Created: * * 06/06/1999 t-wehunt * \**************************************************************************/
#include "precomp.hpp"
// Return values for IntersectEdge
#define DONOT_INTERS 0
#define COMMON_POINT 1
#define INTERSECT 2
#define COLINEAR 3
// Used to produce the IEEE floating-point representation of infinity.
// Note that a few compile warnings have to be turned off to stop
// warnings about constant arithmetic overflow.
#pragma warning (disable : 4056 4756)
#define FP_INF (FLT_MAX+FLT_MAX)
/**************************************************************************\
* * Function Description: * * Insert a new item into a sorted dynamic array, keeping it sorted. * * Arguments: * * newItem - new item to be inserted * compareFunc - comparison function to be used for insertion. * userData - User-specified data for use by the compare func. * * Return Value: * * GpStatus - Ok or failure status * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
template <class T> GpStatus DynSortArray<T>::InsertSorted( T &newItem, DynSortArrayCompareFunc compareFunc, VOID *userData ) { // insert item into sorted position of list.
T *cur; INT pos = 0; GpStatus status;
cur = GetDataBuffer();
{ INT sgn = 1; unsigned iMin = 0; unsigned iMid = 0; unsigned iEnd = GetCount(); while (iMin != iEnd) { iMid = iMin + (iEnd-iMin)/2; //Assert(iMid != iMac);
sgn = compareFunc( (PathSelfIntersectRemover*)userData, &GetDataBuffer()[iMid], &newItem ); if (sgn == 0) { // newItem already in sorted list, return index.
return Ok; } if (sgn < 0) // x(iMid) < x(p)
iMin = iMid+1; else iEnd = iMid; }
pos = iMin; }
status = InsertAt(pos,newItem); if (status != Ok) { return status; }
cur = &GetDataBuffer()[pos];
return Ok; }
/****************************************************************************\
Private helper functions \****************************************************************************/
/**************************************************************************\
* * Function Description: * * Return the sign of an INT * * Arguments: * * newItem - new item to be inserted * compareFunc - comparison function to be used for insertion. * userData - User-specified data for use by the compare func. * * Return Value: * * 1 if greater than zero * 0 if equal to zero * -1 if less than zero * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
inline INT SignReal(const REAL i) { return (i > 0) - (i < 0); }
/**************************************************************************\
* * Function Description: * * Insert an edge into a linked list. This assumes the edge is an * orphaned edge (not connected in a current list). Use DeleteEdgeFromList * to orphan an edge if it's already in a list. * * This uses a double indirection pointer to track the address of the * Next pointer that points to the current element rather than actually * tracking the current element. This simplifies the code significantly. * * Created: * * 12/23/2000 asecchia * \**************************************************************************/
void PathSelfIntersectRemover::InsertEdgeIntoList( INT *pListHead, INT index, DynSortArrayCompareFunc compare ) { ASSERT(EdgeList[index].Next == LIST_END); ASSERT(index >= 0); ASSERT(pListHead); INT *pIndex = pListHead; Edge *newEdge = &EdgeList[index]; // Calculate the YCur for this edge.
newEdge->YCur = PathPts[newEdge->SortBegin].Y; newEdge->SortBegin = newEdge->Begin; newEdge->SortEnd = newEdge->End; newEdge->Normalize();
while(*pIndex != LIST_END) { if(compare(this, &EdgeList[*pIndex], newEdge) != -1) { // if we find the right spot, exit the search loop.
break; } // keep looking...
pIndex = &EdgeList[*pIndex].Next; } // Do the insertion
newEdge->Next = *pIndex; *pIndex = index; }
/**************************************************************************\
* * Function Description: * * Delete an edge from a linked list. * This uses a double indirection pointer to track the address of the * Next pointer that points to the current element rather than actually * tracking the current element. This simplifies the code significantly. * * Returns true if it found and deleted the edge, false otherwise. * * Created: * * 12/23/2000 asecchia * \**************************************************************************/
bool PathSelfIntersectRemover::DeleteEdgeFromList( INT *pListHead, INT index ) { ASSERT(index >= 0); ASSERT(pListHead); INT *pIndex = pListHead; while(*pIndex != LIST_END) { if(*pIndex == index) { // found it.
*pIndex = EdgeList[index].Next; // point past the deleted item.
EdgeList[index].Next = LIST_END; // disconnect the deleted item.
return true; } // keep looking...
pIndex = &EdgeList[*pIndex].Next; } return false; }
/**************************************************************************\
* * Function Description: * * Insert edges into the active edge list. * This function takes a sorted block of edges from the pInactiveIndex list * and inserts them sorted into the pActiveIndex list in linear time. * The block from the pInactiveIndex list is known to be contiguous. * * Actually the source list and destination list are not sorted with the * same sorting comparison function and therefore we can't optimize based * on the known sort order of the destination. This is inefficient. Making * them use the same sort order and fixing the active edge traversal code * to compute the winding numbers would probably work better - it would * allow us an O(n) merge sort here. * * Created: * * 03/25/2000 andrewgo * 12/17/2000 asecchia - copied from aarasterizer.cpp and modified for the * PathSelfIntersectRemover. When we have the time * we should really merge these two pieces of code. * \**************************************************************************/
void PathSelfIntersectRemover::InsertNewEdges( INT *pActiveIndex, // IN/OUT
INT *pInactiveIndex, // IN/OUT
REAL xCurrent, DynSortArrayCompareFunc compare ) { ASSERT(pInactiveIndex); while( (*pInactiveIndex != LIST_END) && ((PathPts[EdgeList[*pInactiveIndex].SortBegin].X < xCurrent) || (CloseReal(xCurrent, PathPts[EdgeList[*pInactiveIndex].SortBegin].X)) )) { // this is an edge we should move.
INT index = *pInactiveIndex; // delete this element from the inactive list.
// this updates pInactiveIndex for the next iteration of the loop.
*pInactiveIndex = EdgeList[*pInactiveIndex].Next; EdgeList[index].Next = LIST_END;
// Insert into the active list from the current active position.
InsertEdgeIntoList(pActiveIndex, index, compare); // Update the active list pointer.
// Can't do this currently - our source and dest have different
// sort order. Were we sure that our source and destination were
// sorted with the same comparison function, we could remember the
// current position here and continue where we left off next time
// round - this would change the complexity from O(n^2) to O(n).
// Currently this is not critical path because it's used on the
// active edge list (small relative to the inactive list).
//pActiveIndex = &EdgeList[index].Next;
} }
/**************************************************************************\
* * Function Description: * * Normalize the edge - ie. update SortBegin and SortEnd. * * All lines have sorted begin and end. Begin.X is always X <= than End.X. * If they are equal, Begin.Y <= End.Y * * Arguments: * * None * * Return Value: * * None * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
VOID Edge::Normalize() {
if (Parent->PathPts[Begin].X < Parent->PathPts[End].X) { return; }
if ((Parent->PathPts[Begin].X == Parent->PathPts[End].X) && (Parent->PathPts[Begin].Y <= Parent->PathPts[End].Y)) { return; }
// swap the points;
SortBegin = End; SortEnd = Begin;
return; }
/**************************************************************************\
* * Function Description: * * Return TRUE if the real numbers are close. This uses the parent's * comparison criteria. * * Arguments: * * [IN] val1, val2 - REAL numbers to be compared for closeness * * Return Value: * * TRUE or FALSE * * Created: * * 9/11/2000 peterost * \**************************************************************************/
inline BOOL Edge::CloseReal(const REAL val1, const REAL val2) { return Parent->CloseReal(val1, val2); }
/**************************************************************************\
* * Function Description: * * Return TRUE if the edge is vertical. * * Arguments: * * None * * Return Value: * * TRUE or FALSE * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL Edge::IsVertical() { return (CloseReal(Parent->PathPts[Begin].X, Parent->PathPts[End].X)); }
/**************************************************************************\
* * Function Description: * * Mark the edge as outside * * Arguments: * * None * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
VOID Edge::MarkOutside() { PointListNode *ptNode = NULL; ptNode = &Parent->PtList[Begin]; ptNode->Inside = FALSE; }
/**************************************************************************\
* * Function Description: * * Initialize PathSelfIntersectRemover with for the given number of path points. The * number of points doesn't have to be exact, it just initializes arrays * to avoid reallocation later. * * Arguments: * * numPts - number of points that will be added to the path. * * Return Value: * * GpStatus. * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
GpStatus PathSelfIntersectRemover::Init(INT numPts) { BOOL failed=FALSE; GpStatus status; // !!!: Decide what the initial number of elements should be.
// In general, we usually will have one extra intersection
// per vertex in the inset path. - KasiaK
// Initialize array with points
failed |= PathPts.ReserveSpace(numPts+1) != Ok; // Initialize array with order information
failed |= PtList.ReserveSpace(2*numPts) != Ok;
failed |= EdgeList.ReserveSpace(2*numPts) != Ok; ActiveEdgeList = LIST_END; InactiveEdgeList = LIST_END;
if (failed) { return OutOfMemory; } return Ok; }
/**************************************************************************\
* * Function Description: * * Add a single polygon to the PathSelfIntersectRemover class. * You cannot AddPolygon() after calling RemoveSelfIntersects(). * * Arguments: * * ptrPts - points to add. * numPtsToAdd - number of points to add. * * Return Value: * * GpStatus. * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
GpStatus PathSelfIntersectRemover::AddPolygon( const GpPointF *ptrPts, INT numPtsToAdd ) { // Cannot add points after fixing path.
ASSERT(CanAddPts); ASSERT(ptrPts != NULL); if (numPtsToAdd < 2) { return Ok; } GpStatus status; // Make sure there is enough room in the arrays:
status = PathPts.ReserveSpace(numPtsToAdd+1); if (status != Ok) { return status; } INT oldNumPts = NumPts; if (InsertPoints(ptrPts, numPtsToAdd) != Ok || InsertEdges(oldNumPts, NumPts-oldNumPts-1) != Ok) { return GenericError; } return Ok; }
/**************************************************************************\
* * Function Description: * * Insert points information to relevant arrays. * * Arguments: * * pts - points to add to the class. * numPts - number of points we want to add. * * Return Value: * * GpStatus. * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
GpStatus PathSelfIntersectRemover::InsertPoints( const GpPointF *pts, INT numPts ) { INT FirstIndex = NumPts; PointListNode ptNode; GpPointF pt(0,0);
GpStatus status;
// We don't want to add 0-length edges
// Also, we don't want to add very thin spikes, for example
// when pts[n] == pts[n+2] (or almost the same. We will just
// skip pts[n+1] and pts[n+2].
pt = pts[0]; if ((status = PathPts.Add(pt)) != Ok) { return status; } NumPts++; for (INT i = 1; i < numPts; i++) { if (!IsClosePointF(pts[i], pts[i-1])) { if ((status = PathPts.Add(pts[i])) != Ok) { return status; } NumPts++; } }
// Add the first point to close the path
if (!IsClosePointF(pts[0], pts[numPts-1])) { pt = pts[0]; if ((status = PathPts.Add(pt)) != Ok) { return status; } NumPts++; } // If all the points were equal we hit this point with NumPts set to 1
// which is a degenerate polygon.
// Make sure we handle this correctly.
if(NumPts < 2) { ONCE(WARNING(("Degenerate polygon in InsertPoints"))); PathPts.SetCount(0); NumPts = 0; return Ok; }
// Initialize the linked list;
// If this is not the first set of points to be added, update
// the next ptr in the last element of the existing list
if (FirstIndex != 0 && PtList.GetCount() > 0) { PtList.Last().Next = FirstIndex; }
// index 0:
ptNode.Prev = FirstIndex-1; // -1 means NULL;
if (NumPts == FirstIndex+1) // only one point is being added
{ ptNode.Next = -1; ptNode.Dup = -1; // if we added one point, there is no dup
} else { ptNode.Next = FirstIndex+1; ptNode.Dup = NumPts-1; // the first point is same as closing point
} ptNode.Inside = TRUE; ptNode.Used = FALSE; if ((status = PtList.Add(ptNode)) != Ok) { return status; }
//indecies 1..NumPts-1
INT ptIndex; for (ptIndex = FirstIndex+1; ptIndex < NumPts-1; ptIndex++) { ptNode.Prev = ptIndex-1; // -1 means NULL;
ptNode.Next = ptIndex+1; ptNode.Dup = -1; ptNode.Inside = TRUE; ptNode.Used = FALSE; if ((status = PtList.Add(ptNode)) != Ok) { return status; } }
//index NumPts
ptNode.Prev = ptIndex-1; ptNode.Next = -1; // -1 means NULL;
ptNode.Dup = FirstIndex; // the first point is same as closing point
ptNode.Inside = TRUE; ptNode.Used = FALSE; if ((status = PtList.Add(ptNode)) != Ok) { return status; } return Ok; }
/**************************************************************************\
* * Function Description: * * Perform a simple partition sort on a list indexing into the vector list. * The result is a sorted index array keyed on the vertex array Y1 coordinate. * The index array is sorted in place and in ascending order. * * Arguments: * * v is the vertex list. * F, L - First and Last pointer in the index array. * * Created: * * 09/16/2000 asecchia * \**************************************************************************/
void PathSelfIntersectRemover::QuickSortEdges( Edge *F, Edge *L ) { if(F < L) { // Find the median position.
Edge median = *(F + (L-F)/2); Edge *i = F; Edge *j = L; while(i<j) { // seek for elements in the wrong partition.
// compare edges:
while(CompareLine(this, i, &median) == -1) { i++; } while(CompareLine(this, j, &median) == 1) { j--; } if(i>=j) { break; } // Swap.
Edge temp = *i; *i = *j; *j = temp; // tie breaker - handle the case where *i == *j == *median, but
// i != j. Only possible with multiple copies of the same entry.
if(CompareLine(this, i, j) == 0) { i++; } } // Call recursively for the two sub-partitions. The partitions don't
// include position i because it is correctly positioned.
QuickSortEdges(F, i-1); QuickSortEdges(i+1, L); } }
/**************************************************************************\
* * Function Description: * * Insert numEdges edges joining points stored in array PathPts. First point * has index firstIndex. There must be numEdges+1 points to create numEdges * edges. * * NOTE: NumEdges CAN be negative! The function will then just return. * This can potentially happen when called from AddPolygon(). * * Arguments: * * firstIndex - index of first point in PathPts array. * numEdges - number of edges to add. * * Return Value: * * GpStatus. * * Created: * * 6/15/1999 t-wehunt * 10/19/2000 asecchia rewrote it to support quicksort instead of insert sort. * \**************************************************************************/
GpStatus PathSelfIntersectRemover::InsertEdges(INT firstIndex, INT numEdges) { // Handle the empty polygon up front.
if(numEdges == 0) { return Ok; } // Alloc space for all the edges up front.
Edge *edges = EdgeList.AddMultiple(numEdges); if (edges == NULL) { return OutOfMemory; } // Create an edge with it's parent pointer.
Edge newEdge(this);
for (INT i = 0; i < numEdges; i++) { newEdge.Begin = i+firstIndex; newEdge.End = i+1+firstIndex; newEdge.SortBegin = i+firstIndex; newEdge.SortEnd = i+1+firstIndex;
newEdge.Normalize();
newEdge.YCur = 0; // make debugging easier
newEdge.OrigBegin = newEdge.SortBegin; newEdge.OrigEnd = newEdge.SortEnd;
//Edge insertion
edges[i] = newEdge; } return Ok; }
/**************************************************************************\
* * Function Description: * * Check if two lines intersect. * NOTE: Lines also intersect if an end point of one line is anywhere in the * middle (between the end points) of the other line. * * This algorithm was stolen from the NT path code with some modifications * based on an algorithm presented in Graphics Gems III. * We can try to speed it up by comparing bounding boxes of the two lines, * however, according to GG III, this may or may not speed up the * calculations. * * Arguments: * * ptrEdge1, ptrEdge2 - edges to intersect. * [OUT] intersectPt - the intersection point if lines INTERSECT * or have a COMMON_POINT, * * Return Value: * * DONOT_INTERS - lines don't intersect * COMMON_POINT - they share a common end point * INTERSECT - they intersect * COLINEAR - they arecolinear. * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
INT PathSelfIntersectRemover::IntersectEdge( Edge *ptrEdge1, Edge *ptrEdge2, GpPointF *intersectPt ) { GpPointF *pfpvBegin1; // Start point of first line segment
GpPointF *pfpvEnd1; // End point of the first line segment
GpPointF *pfpvBegin2; // Start point of second line segment
GpPointF *pfpvEnd2; // End point of the second line segment
GpPointF fpvVec1(0,0); // Direction of first line segment
GpPointF fpvVec2(0,0); // Direction of second line segment
GpPointF fpvVec3(0,0);
// Get the actual coordinates of the points.
pfpvBegin1 = &PathPts[ptrEdge1->Begin]; pfpvEnd1 = &PathPts[ptrEdge1->End]; fpvVec1 = SubtractPoint(*pfpvEnd1,*pfpvBegin1);
// Nothing intersects with an empty line.
if( REALABS(fpvVec1.X) < REAL_EPSILON && REALABS(fpvVec1.Y) < REAL_EPSILON ) { return(DONOT_INTERS); }
pfpvBegin2 = &PathPts[ptrEdge2->Begin]; pfpvEnd2 = &PathPts[ptrEdge2->End]; fpvVec2 = SubtractPoint(*pfpvEnd2,*pfpvBegin2); // Nothing intersects with an empty line.
if( REALABS(fpvVec2.X) < REAL_EPSILON && REALABS(fpvVec2.Y) < REAL_EPSILON ) { return(DONOT_INTERS); } fpvVec3 = SubtractPoint(*pfpvBegin2,*pfpvBegin1);
//
// A -direction 1
// D -direction 2
// C -vec3 ->
// The intersection is computed by:
//
// intersect = pptBegin1 + lambda * A
// intersect = pptBegin2 + beta * D
//
// Cx(-Dy) + Cy(Dx)
// lambda = ------------------------------
// (Ax)(-Dy) + (Ay)(Dx)
//
// Cx(Dy) + Cy(-Dx)
// beta = ---------------------
// (Ax)(Dy) + (-Ay)(Dx)
//
REAL efTerm1; REAL efTerm2; REAL efNum1; REAL efDenom; REAL efColinX; REAL efColinY; REAL efTemp;
// Cx (-Dy)
efNum1 = fpvVec3.X; efColinX = efNum1; efTerm2 = -fpvVec2.Y; efNum1 *= efTerm2;
// Cy (Dx)
efTerm1 = fpvVec3.Y; efColinY = efTerm1; efTerm2 = fpvVec2.X; efTerm1 *= efTerm2; efNum1 += efTerm1;
// (Ax)(-Dy)
efDenom = fpvVec1.X; efTerm2 = -fpvVec2.Y; efDenom *= efTerm2;
// (Ay)(Dx)
efTerm1 = fpvVec1.Y; efTerm2 = fpvVec2.X; efTerm1 *= efTerm2; efDenom += efTerm1;
if (CloseReal(efDenom, 0)) //if (efDenom == 0)
{ // they are colinear, but are they on the same line?
efTemp = -fpvVec1.Y; efColinX *= efTemp; efTemp = fpvVec1.X; efColinY *= efTemp; efColinX += efColinY; // if (efColinX == 0)
if (CloseReal(efColinX, 0)) { return(COLINEAR); } else { return(DONOT_INTERS); } }
// Check if they share a common end point
if (ptrEdge2->End == ptrEdge1->Begin || ptrEdge2->End == ptrEdge1->End || ptrEdge2->Begin == ptrEdge1->Begin || ptrEdge2->Begin == ptrEdge1->End) { return COMMON_POINT; }
if (ClosePt(*pfpvBegin1, *pfpvBegin2)) { UpdateDups(ptrEdge1->Begin, ptrEdge2->Begin); return COMMON_POINT; } if (ClosePt(*pfpvBegin1, *pfpvEnd2)) { UpdateDups(ptrEdge1->Begin, ptrEdge2->End); return COMMON_POINT; }
if (ClosePt(*pfpvEnd1, *pfpvEnd2)) { UpdateDups(ptrEdge1->End, ptrEdge2->End); return COMMON_POINT; } if (ClosePt(*pfpvEnd1, *pfpvBegin2)) { UpdateDups(ptrEdge1->End, ptrEdge2->Begin); return COMMON_POINT; }
// lambda
efNum1 /= efDenom;
if (efNum1 < 0.0) { return(DONOT_INTERS); } else if (efNum1 > 1.0) { return (DONOT_INTERS); } else { REAL efNum2; REAL efBetaPart1; REAL efBetaPart2;
// find beta
efNum2 = -fpvVec3.X; efBetaPart2 = fpvVec1.Y; efNum2 *= efBetaPart2; efBetaPart1 = -fpvVec3.Y; efBetaPart2 = -fpvVec1.X; efBetaPart1 *= efBetaPart2; efNum2 += efBetaPart1; efNum2 /= efDenom; if (efNum2 < 0.0) { return(DONOT_INTERS); } else if (efNum2 > 1.0) { return (DONOT_INTERS); } }
// pptBegin1 + lambda * A
// Following should be nice to the REAL unit - multiply-add instructions
// can be used.
efTerm1 = fpvVec1.X * efNum1 + pfpvBegin1->X; efTerm2 = fpvVec1.Y * efNum1 + pfpvBegin1->Y;
intersectPt->X = efTerm1; intersectPt->Y = efTerm2;
// Because of errors, we may still end up with the intersection
// point as a common point:
if (IsCommonPt(ptrEdge1, ptrEdge2, intersectPt)) { return COMMON_POINT; }
return(INTERSECT); }
/**************************************************************************\
* * Function Description: * * Find all self intersections of the paths and break up the edges. * * This is considered 'Phase 1' of the algorithm. * * Arguments: * * None. * * Return Value: * * FALSE if out of memory. * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::FindIntersects() { // Initialize the array of active edges.
// Take the first edge from the edge array InactiveEdgeList and add it to
// the active edgs. Add all other edges, which start at the same x.
INT numRemoved = 0;
if (EdgeList.GetCount() <= 0) { return FALSE; }
XCur = PathPts[EdgeList[InactiveEdgeList].SortBegin].X;
// "move" all edges starting at XCur to the active edge array
// PathPts in the active edge array will be sorted by y for the
// given XCur.
AddActiveForX(&InactiveEdgeList);
while (TRUE) { // Find all intersections among the current edges
if (!FindIntersectsForX()) { return FALSE; }
// if there are no edges left, we have found all intersections
// we can stop even if active edges array is not empty, or maybe
// it must be empty then? TODO: Kasiak
if (InactiveEdgeList == LIST_END) { break; }
if (!ClosestActive(InactiveEdgeList)) { break; }
// Remove all edges which end before (or on) XCur
ClearActiveListInclusiveX(); AddActiveForX(&InactiveEdgeList); }
// remove everything else from the ActiveEdgeList
XCur = FP_INF; ClearActiveListInclusiveX();
return TRUE; }
/**************************************************************************\
* * Function Description: * * IsTIntersection returns TRUE if the intersection point intersectPt is * the same as an end point of one of the edges ptrEdge1 and ptrEdge2. If * it is, pfFirst will be TRUE if the first edge needs to be broken (intersectPt * is an end point of ptrEdge2), FALSE if the second one needs to be broken * up. intersectIndex contains the index of the end point which is the same * as the intersection point. * * Arguments: * * ptrEdge1, * ptrEdge2 - the two edges to check for T-intersections * intersectPt - the intersection point previously found for the edges. * [OUT] splitFirst - TRUE if the first edge needs to be split. FALSE if * the second edge. * [OUT] intersectIndex - index of endpoint which is the same as intersectPt if it * is a T-intersection. * * Return Value: * * TRUE or FALSE * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::IsTIntersection( Edge *ptrEdge1, Edge *ptrEdge2, GpPointF *intersectPt, BOOL *splitFirst, INT *intersectIndex ) { GpPointF &begin1 = PathPts[ptrEdge1->SortBegin]; GpPointF &begin2 = PathPts[ptrEdge2->SortBegin]; GpPointF &end1 = PathPts[ptrEdge1->SortEnd]; GpPointF &end2 = PathPts[ptrEdge2->SortEnd];
if (ClosePt(end1, *intersectPt)) { // only ptrEdge2 needs to be broken up
*splitFirst = FALSE; *intersectIndex = ptrEdge1->SortEnd; return TRUE; } else if(ClosePt(end2, *intersectPt)) { // only ptrEdge1
*splitFirst = TRUE; *intersectIndex = ptrEdge2->SortEnd; return TRUE; } else if(ClosePt(begin1, *intersectPt)) { // only ptrEdge2
*splitFirst = FALSE; *intersectIndex = ptrEdge1->SortBegin; return TRUE; } else if(ClosePt(begin2, *intersectPt)) { // only ptrEdge1
*splitFirst = TRUE; *intersectIndex = ptrEdge2->SortBegin; return TRUE; }
return FALSE; }
/**************************************************************************\
* * Function Description: * * Returns TRUE if the two lines ptrEdge1 and ptrEdge2 share a common * end point. If they do, pptInter will contain this point. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::IsCommonPt( Edge *ptrEdge1, Edge *ptrEdge2, GpPointF *commonPt ) { GpPointF &begin1 = PathPts[ptrEdge1->SortBegin]; GpPointF &begin2 = PathPts[ptrEdge2->SortBegin]; GpPointF &end1 = PathPts[ptrEdge1->SortEnd]; GpPointF &end2 = PathPts[ptrEdge2->SortEnd];
if (ClosePt(end1, *commonPt) && ClosePt(end2, *commonPt)) { UpdateDups(ptrEdge1->End, ptrEdge2->End); return TRUE; } else if(ClosePt(end1, *commonPt) && ClosePt(begin2, *commonPt)) { UpdateDups(ptrEdge1->End, ptrEdge2->Begin); return TRUE; } else if(ClosePt(begin1, *commonPt) && ClosePt(begin2, *commonPt)) { UpdateDups(ptrEdge1->Begin, ptrEdge2->Begin); return TRUE; } else if(ClosePt(begin1, *commonPt) && ClosePt(end2, *commonPt)) { UpdateDups(ptrEdge1->Begin, ptrEdge2->End); return TRUE; }
return FALSE; }
/**************************************************************************\
* * Function Description: * * Returns TRUE if point with index inew is already in the "list" of dups * for point with index loop. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::IsLinked(INT loop, INT inew) { PointListNode *ptNode;
ptNode = &PtList[loop]; BOOL isLinked = FALSE; INT i = ptNode->Dup; INT prev_i = -1; // Added to prevent an infinite loop.
while(!isLinked && i != -1 && i != prev_i && i != loop) { if(i == inew) { isLinked = TRUE; break; }
ptNode = &PtList[i]; prev_i = i; i = ptNode->Dup; }
return isLinked; }
/**************************************************************************\
* * Function Description: * * Joins the list of duplicate points for points pt1 and pt2. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/ VOID PathSelfIntersectRemover::UpdateDups(INT pt1, INT pt2) { PointListNode *ptNode1; PointListNode *ptNode2;
if (pt1 == pt2) { WARNING(("NOT REACHED")); return; }
ptNode1 = &PtList[pt1]; ptNode2 = &PtList[pt2];
if ((ptNode1->Dup == -1) && (ptNode2->Dup == -1)) { ptNode1->Dup = pt2; ptNode2->Dup = pt1; return; }
if ((ptNode1->Dup == -1) && (ptNode2->Dup != -1)) { ptNode1->Dup = ptNode2->Dup; ptNode2->Dup = pt1; return; }
if ((ptNode1->Dup != -1) && (ptNode2->Dup == -1)) { ptNode2->Dup = ptNode1->Dup; ptNode1->Dup = pt2; return; }
if ((ptNode1->Dup != -1) && (ptNode2->Dup != -1)) { if (!IsLinked(pt1, pt2)) { INT dupTemp;
dupTemp = ptNode2->Dup; ptNode2->Dup = ptNode1->Dup; ptNode1->Dup = dupTemp; } return; } }
/**************************************************************************\
* * Function Description: * * Delete edges from the active edge table; Indices of edges to delete * are stored in EdgesToDelete1..3. Deletes the highest index edge first. * Returns NULL if fails due to out of memory error. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::DeleteEdges() { INT minIndex; INT midIndex; INT maxIndex;
if (EdgesToDelete1 > EdgesToDelete2) { if (EdgesToDelete1 > EdgesToDelete3) { minIndex = EdgesToDelete1; if (EdgesToDelete2 > EdgesToDelete3) { midIndex = EdgesToDelete2; maxIndex = EdgesToDelete3; } else { midIndex = EdgesToDelete3; maxIndex = EdgesToDelete2; } } else { minIndex = EdgesToDelete3; midIndex = EdgesToDelete1; maxIndex = EdgesToDelete2; } } else { if (EdgesToDelete2 > EdgesToDelete3) { minIndex = EdgesToDelete2; if (EdgesToDelete1 > EdgesToDelete3) { midIndex = EdgesToDelete1; maxIndex = EdgesToDelete3; } else { midIndex = EdgesToDelete3; maxIndex = EdgesToDelete1; } } else { minIndex = EdgesToDelete3; midIndex = EdgesToDelete2; maxIndex = EdgesToDelete1; } } if (minIndex == -1) { return TRUE; } // delete the first one
if (!DeleteEdgeFromList(&ActiveEdgeList, minIndex)) { return FALSE; }
if (midIndex == -1) { return TRUE; } // delete the second one
if (!DeleteEdgeFromList(&ActiveEdgeList, midIndex)) { return FALSE; }
if (maxIndex == -1) { return TRUE; } // delete the third one
if (!DeleteEdgeFromList(&ActiveEdgeList, maxIndex)) { return FALSE; }
return TRUE; }
/**************************************************************************\
* * Function Description: * * Edge with index index into the array of Active edges needs to be deleted. * Store its index for deletion. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
VOID PathSelfIntersectRemover::MarkToDelete(INT index) { ASSERT((EdgesToDelete1 == -1) || (EdgesToDelete2 == -1) || (EdgesToDelete3 == -1));
if (EdgesToDelete1 == -1 ) { EdgesToDelete1 = index; return; }
if (EdgesToDelete2 == -1 ) { EdgesToDelete2 = index; return; }
if (EdgesToDelete3 == -1 ) { EdgesToDelete3 = index; return; } return; // error
}
/**************************************************************************\
* * Function Description: * * Edge ptrEdge needs to be added to the array with Active edges. Make a * copy of the edge and store it, so that it can be later added. * We have to add new edges after the edges marked for deletion are deleted. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
VOID PathSelfIntersectRemover::MarkToAdd(Edge *ptrEdge) { ASSERT(!(FlgAdd1 && FlgAdd2 && FlgAdd3));
if (!FlgAdd1) { AddToActive1 = *ptrEdge; FlgAdd1 = TRUE; return; }
if (!FlgAdd2) { AddToActive2 = *ptrEdge; FlgAdd2 = TRUE; return; }
if (!FlgAdd3) { AddToActive3 = *ptrEdge; FlgAdd3 = TRUE; return; } return; // this the error condition, which should never happen.
}
/**************************************************************************\
* * Function Description: * * Add new edges to the active edge table. The edges are stored in * AddToActive1..3. flag FlgAdd1..3 specify if the given edge needs to * be added or not. Returns if fails due to out of memory. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::AddNewEdges() { if (FlgAdd1) { AddToActive1.SortBegin = AddToActive1.Begin; AddToActive1.SortEnd = AddToActive1.End; AddToActive1.Normalize(); AddToActive1.YCur = PathPts[AddToActive1.SortBegin].Y; AddToActive1.Next = LIST_END; //Edge Insertion
if(Ok != EdgeList.Add(AddToActive1)) { return FALSE; // out of memory.
} InsertEdgeIntoList( &ActiveEdgeList, EdgeList.GetCount()-1, CompareYCurLine ); } if (FlgAdd2) { AddToActive2.SortBegin = AddToActive2.Begin; AddToActive2.SortEnd = AddToActive2.End; AddToActive2.Normalize(); AddToActive2.YCur = PathPts[AddToActive2.SortBegin].Y; AddToActive2.Next = LIST_END; //Edge Insertion
if(Ok != EdgeList.Add(AddToActive2)) { return FALSE; // out of memory.
} InsertEdgeIntoList( &ActiveEdgeList, EdgeList.GetCount()-1, CompareYCurLine ); }
if (FlgAdd3) { AddToActive3.SortBegin = AddToActive3.Begin; AddToActive3.SortEnd = AddToActive3.End; AddToActive3.Normalize(); AddToActive3.YCur = PathPts[AddToActive3.SortBegin].Y; AddToActive3.Next = LIST_END; //Edge Insertion
if(Ok != EdgeList.Add(AddToActive3)) { return FALSE; // out of memory.
} InsertEdgeIntoList( &ActiveEdgeList, EdgeList.GetCount()-1, CompareYCurLine ); }
return TRUE; }
/**************************************************************************\
* * Function Description: * * Find all intersections for the current X value. Intersection points * will be inserted into the Edges array and information about their * order into PtList. Returns FALSE on out of memory. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::FindIntersectsForX() { Edge *ptrEdge1 = NULL; Edge *ptrEdge2 = NULL; Edge *ptrEdge3 = NULL;
// If we find an intersection, we will be breaking up edges - need two more
// line variables for the new edges.
Edge newEdge1(this); Edge newEdge2(this);
GpPointF intersectPt(0,0); INT result = DONOT_INTERS; BOOL breakFirst = TRUE; INT dup1 = -1; INT dup2 = -1; INT ptIndex1 = -1; INT ptIndex2 = -1; PointListNode *ptNode = NULL; INT edgeIndex1, edgeIndex2, edgeIndexOld; REAL yCur2; BOOL deleteEdge1; BOOL deleteEdge2; BOOL edge1Deleted; BOOL edge2Deleted;
// Go through all active edges but consider only consecutive pairs of egdes
// because they are sorted in y. There is no need to check every edge with
// every other edge in general case. However, when we have multiple edges
// with the same current y value and end points, we have to consider all of
// them.
edgeIndexOld = LIST_END; edgeIndex1 = ActiveEdgeList; if(edgeIndex1 == LIST_END) { return TRUE; } edgeIndex2 = EdgeList[ActiveEdgeList].Next; while (edgeIndex1 != LIST_END && edgeIndex2 != LIST_END) { edge1Deleted = FALSE; edge2Deleted = FALSE; // Get the next two edges
ptrEdge1 = &EdgeList[edgeIndex1]; ptrEdge2 = &EdgeList[edgeIndex2]; yCur2 = ptrEdge2->YCur;
FlgAdd1 = FALSE; FlgAdd2 = FALSE; FlgAdd3 = FALSE;
EdgesToDelete1 = -1; EdgesToDelete2 = -1; EdgesToDelete3 = -1;
// Do they intersect?
result = IntersectEdge(ptrEdge1, ptrEdge2, &intersectPt); if (result == INTERSECT) { // check if both edges need to be broken up, we may have
// a "T" intersection
if (IsTIntersection(ptrEdge1, ptrEdge2, &intersectPt, &breakFirst, &dup1)) { // only one edge needs to be broken up
// The index of the new point will be:
ptIndex1 = PathPts.GetCount(); // Update the dup field
// we have idup from IsTIntersection - it returned the index of
// the end point which is the same as the point of intersection
// It is a duplicate of the new point
ptNode = &PtList[dup1]; if (ptNode->Dup == -1) { ptNode->Dup = ptIndex1; } else { dup1 = ptNode->Dup; ptNode->Dup = ptIndex1; } if (breakFirst) { // we need to break up the first edge
if (!BreakEdge(ptrEdge1, &intersectPt, &newEdge2, dup1)) { return FALSE; } // BreakEdge can cause a realloc, thus invalidating
// ptrEdge1 and ptrEdge2
ptrEdge1 = &EdgeList[edgeIndex1]; ptrEdge2 = &EdgeList[edgeIndex2];
// Check if the left side of ptIntersect shouldn't be
// removed. This is the case when
// ptrEdge1->yCur == intersectPt.y && intersectPt.x == xCur;
if (ptrEdge1->YCur >= intersectPt.Y && intersectPt.X <= XCur) { MarkToDelete(edgeIndex1); edge1Deleted = TRUE; } } else { // we need to break up the first edge
if (!BreakEdge(ptrEdge2, &intersectPt, &newEdge1, dup1)) { return FALSE; } // BreakEdge can cause a realloc, thus invalidating
// ptrEdge1 and ptrEdge2
ptrEdge1 = &EdgeList[edgeIndex1]; ptrEdge2 = &EdgeList[edgeIndex2]; // Check if the left side of ptIntersect shouldn't be
// removed. This is the case when
// ptrEdge2->yCur == intersectPt.y && intersectPt.x == xCur;
if (ptrEdge2->YCur >= intersectPt.Y && intersectPt.X <= XCur) { MarkToDelete(edgeIndex2); edge2Deleted = TRUE; } } } else { // both need to be broken up
// We need to add two new points. They are identical and
// will be duplicates. Let's get thei indecies.
ptIndex1 = PathPts.GetCount(); ptIndex2 = ptIndex1+1; if (!BreakEdge(ptrEdge1, &intersectPt, &newEdge2, ptIndex2)) return FALSE; // BreakEdge can cause a realloc, thus invalidating
// ptrEdge1 and ptrEdge2
ptrEdge1 = &EdgeList[edgeIndex1]; ptrEdge2 = &EdgeList[edgeIndex2]; if (!BreakEdge(ptrEdge2, &intersectPt, &newEdge1, ptIndex1)) return FALSE; // BreakEdge can cause a realloc, thus invalidating
// ptrEdge1 and ptrEdge2
ptrEdge1 = &EdgeList[edgeIndex1]; ptrEdge2 = &EdgeList[edgeIndex2]; // Let's delete what we will not need any more - the left hand
// sides of the old edges only if the intersection point is on
// the scanline
deleteEdge2 = (ptrEdge2->YCur >= intersectPt.Y && intersectPt.X <= XCur); deleteEdge1 = (ptrEdge1->YCur >= intersectPt.Y && intersectPt.X <= XCur); if (deleteEdge2) { MarkToDelete(edgeIndex2); edge2Deleted = TRUE; }
if (deleteEdge1) { MarkToDelete(edgeIndex1); edge1Deleted = TRUE; } } } else if (result == COLINEAR) { BOOL three; GpPointF intersectPt2(0,0); BOOL breakSecond; // The line segments must overlap or both are vertical...
// Find out if they overlap and if this is the case,
// Let's pick the begin point with the greater x.
// Overlap will check if the two edges overlap and return
// a point of intersection as well as information of which edge
// to break up.
if (Overlap(ptrEdge1, ptrEdge2, &intersectPt, &intersectPt2, &breakFirst, &breakSecond, &three, &dup1, &dup2)) { if (breakFirst) { if (!three) { // As before, get the index, so we can set up
// the duplicates
ptIndex1 = PathPts.GetCount(); // Update the dup field
ptNode = &PtList[dup1]; if (ptNode->Dup == -1) { ptNode->Dup = ptIndex1; } else { dup1 = ptNode->Dup; ptNode->Dup = ptIndex1; } if (!BreakEdge(ptrEdge1, &intersectPt, &newEdge2, dup1)) { return FALSE; } // BreakEdge can cause a realloc, thus invalidating
// ptrEdge1 and ptrEdge2
ptrEdge1 = &EdgeList[edgeIndex1]; ptrEdge2 = &EdgeList[edgeIndex2]; } else { ptIndex1 = PathPts.GetCount(); ptIndex2 = ptIndex1+1; // we need to break this edge into 3 pieces
// Update the dup field
ptNode = &PtList[dup1]; if (ptNode->Dup == -1) { ptNode->Dup = ptIndex1; } else { dup1 = ptNode->Dup; ptNode->Dup = ptIndex1; } // Update the dup field
ptNode = &PtList[dup2]; if (ptNode->Dup == -1) { ptNode->Dup = ptIndex2; } else { dup2 = ptNode->Dup; ptNode->Dup = ptIndex2; } if (!BreakEdgeIn3(ptrEdge1, &intersectPt, &intersectPt2, &newEdge1, &newEdge2, dup1, dup2)) { return FALSE; } // BreakEdge can cause a realloc, thus invalidating
// ptrEdge1 and ptrEdge2
ptrEdge1 = &EdgeList[edgeIndex1]; ptrEdge2 = &EdgeList[edgeIndex2]; } deleteEdge1 = (ptrEdge1->YCur >= intersectPt.Y && intersectPt.X <= XCur); if (deleteEdge1) { MarkToDelete(edgeIndex1); edge1Deleted = TRUE; } } if (breakSecond) { if (!three) { // break ptrEdge2
// Update the dup field
ptIndex1 = PathPts.GetCount(); ptNode = &PtList[dup2]; if (ptNode->Dup == -1) { ptNode->Dup = ptIndex1; } else { dup2 = ptNode->Dup; ptNode->Dup = ptIndex1; } if (!BreakEdge(ptrEdge2, &intersectPt2, &newEdge1, dup2)) { return FALSE; } // BreakEdge can cause a realloc, thus invalidating
// ptrEdge1 and ptrEdge2
ptrEdge1 = &EdgeList[edgeIndex1]; ptrEdge2 = &EdgeList[edgeIndex2];
deleteEdge2 = ptrEdge2->YCur >= intersectPt2.Y && intersectPt2.X <= XCur;
if (deleteEdge2) { MarkToDelete(edgeIndex2); edge2Deleted = TRUE; } } else { ptIndex1 = PathPts.GetCount(); ptIndex2 = ptIndex1+1; // we need to break this edge into 3 pieces
// Update the dup field
ptNode = &PtList[dup1]; if (ptNode->Dup == -1) { ptNode->Dup = ptIndex1; } else { dup1 = ptNode->Dup; ptNode->Dup = ptIndex1; } // Update the dup field
ptNode = &PtList[dup2]; if (ptNode->Dup == -1) { ptNode->Dup = ptIndex2; } else { dup2 = ptNode->Dup; ptNode->Dup = ptIndex2; } if (!BreakEdgeIn3(ptrEdge2, &intersectPt, &intersectPt2, &newEdge1, &newEdge2, dup1, dup2)) { return FALSE; } // BreakEdge can cause a realloc, thus invalidating
// ptrEdge1 and ptrEdge2
ptrEdge1 = &EdgeList[edgeIndex1]; ptrEdge2 = &EdgeList[edgeIndex2];
deleteEdge2 = ptrEdge2->YCur >= intersectPt.Y && intersectPt.X <= XCur;
if (deleteEdge2) { MarkToDelete(edgeIndex2); edge2Deleted = TRUE; } } } } } bool modifiedList = false;
// If we're deleting any edges, we've modified the list.
if((EdgesToDelete1 != -1) || (EdgesToDelete2 != -1) || (EdgesToDelete3 != -1)) { modifiedList = true; } if (!DeleteEdges()) { return FALSE; } // If we're adding any edges, we've modified the list.
if(FlgAdd1 || FlgAdd2 || FlgAdd3) { modifiedList = true; } if (!AddNewEdges()) { return FALSE; } // Note: We check all vertically adjacent pairs of edges. Because
// the AET is sorted vertically and we're only looking for the
// intersection with the x coordinate closest to XCur, this is
// sufficient (and O(n) instead of O(n^2)).
if(modifiedList) { // back up to a stable position if we invalidate our list.
// this makes assumptions on where in the list we add or
// delete elements based on the sort order for the ActiveEdgeList.
edgeIndex1 = edgeIndexOld; if(edgeIndexOld == LIST_END) { edgeIndex1 = ActiveEdgeList; } if(edgeIndex1 != LIST_END) { edgeIndex2 = EdgeList[edgeIndex1].Next; } } else { edgeIndexOld = edgeIndex1; edgeIndex2 = EdgeList[edgeIndex2].Next; edgeIndex1 = EdgeList[edgeIndex1].Next; } } return TRUE; }
/**************************************************************************\
* * Function Description: * * Returns TRUE if two collinear edges ptrEdge1 and ptrEdge2 overlap. * There are 4 ways in which edges can overlap and depending on the * case, either none, one or both edges need to be broken up. In some * cases one edge may need to broken into 3 pieces. * Return values: * split1 - set to TRUE if ptrEdge1 needs to be split * split2 - set to TRUE if ptrEdge2 needs to be split * split3 - set to TRUE if an edge needs to be broken into 3 pieces * intersect1 - intersection point (where edge needs to be split) * intersect2 - second point (if the edge needs to be broken into 3 * pieces or for the second edge if both edges need to * be broken up) * dupIndex1 - index of the duplicate point to intersect1, * dupIndex2 - index of the duplicate point to intersect2, * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::Overlap( Edge *ptrEdge1, Edge *ptrEdge2, GpPointF *intersect1, GpPointF *intersect2, BOOL *split1, BOOL *split2, BOOL *split3, INT *dupIndex1, INT *dupIndex2 ) { // We are assuming that the lines are colinear and they both belong
// to the active edges table which means that their x ranges overlap
// We need to check if they are vertical and if yes, find out if their
// y ranges overlap. If they are not vertical, they must overlap or
// they share a common end point.
*split3 = FALSE;
GpPointF &begin1 = PathPts[ptrEdge1->SortBegin]; GpPointF &begin2 = PathPts[ptrEdge2->SortBegin]; GpPointF &end1 = PathPts[ptrEdge1->SortEnd]; GpPointF &end2 = PathPts[ptrEdge2->SortEnd];
// Calculate bounding box for each edge:
GpPointF min1( min(begin1.X, end1.X), min(begin1.Y, end1.Y)); GpPointF max1( max(begin1.X, end1.X), max(begin1.Y, end1.Y)); GpPointF min2( min(begin2.X, end2.X), min(begin2.Y, end2.Y)); GpPointF max2( max(begin2.X, end2.X), max(begin2.Y, end2.Y)); // Abort if the bounding box of either edge is empty.
if(IsClosePointF(min1, max1) || IsClosePointF(min2, max2) ) { return FALSE; }
// If the edges are not vertical, they must overlap, because both of them
// are in the active edge array. We only need to chose a point, which will
// be used as an intersection point.
if (!ptrEdge1->IsVertical()) { // Let's check first if they share a common end point
// if they share just a common point, return FALSE
if (CloseReal(min1.X,max2.X)) { // We have to update the dups of the shared point
if (ptrEdge1->SortBegin != ptrEdge2->SortEnd) { UpdateDups(ptrEdge1->SortBegin, ptrEdge2->SortEnd); return FALSE; } } if (CloseReal(min2.X,max1.X)) { // We have to update the dups of the shared point
if (ptrEdge1->SortEnd != ptrEdge2->SortBegin) { UpdateDups(ptrEdge1->SortEnd, ptrEdge2->SortBegin); return FALSE; } }
// the edges must overlap, we need to break both of them
// There are 4 different ways in which edges may overlap
// case4: edges are identical
// ----------------
// ----------------
// No edges need to be broken up, but do we need to update some
// dup values?
if (CloseReal(max1.X, max2.X) && CloseReal(min1.X, min2.X)) { // for now, we will return FALSE
// I think, that it should be OK.
// TODO: - Review
// !!! Is this still ok? - t-wehunt
if (ptrEdge1->SortBegin != ptrEdge2->SortBegin) UpdateDups(ptrEdge1->SortBegin, ptrEdge2->SortBegin);
if (ptrEdge1->SortEnd != ptrEdge2->SortEnd) UpdateDups(ptrEdge1->SortEnd, ptrEdge2->SortEnd);
return FALSE; }
// case2: the edges overlap and share one end point
// --------------
// ----------------------
// The longer edge needs to be broken into 2 pieces
if (CloseReal(min1.X, min2.X) && max1.X < max2.X) { // --------------
// ----------------------
// We have to update the dups of the shared point
if (ptrEdge1->SortBegin != ptrEdge2->SortBegin) { UpdateDups(ptrEdge1->SortBegin, ptrEdge2->SortBegin); } *split1 = FALSE; *split2 = TRUE; *dupIndex2 = ptrEdge1->SortEnd; *intersect2 = PathPts[*dupIndex2]; return TRUE; } else if (CloseReal(min1.X, min2.X) && max1.X > max2.X) { // ----------------------
// --------------
// We have to update the dups of the shared point
if (ptrEdge1->SortBegin != ptrEdge2->SortBegin) { UpdateDups(ptrEdge1->SortBegin, ptrEdge2->SortBegin); } *split1 = TRUE; *split2 = FALSE; *dupIndex1 = ptrEdge2->SortEnd; *intersect1 = PathPts[*dupIndex1]; return TRUE; } else if (CloseReal(max1.X, max2.X) && min1.X > min2.X) { // ----------------------
// --------------
// We have to update the dups of the shared point
if (ptrEdge1->SortEnd != ptrEdge2->SortEnd) { UpdateDups(ptrEdge1->SortEnd, ptrEdge2->SortEnd); } *split1 = FALSE; *split2 = TRUE; *dupIndex2 = ptrEdge1->SortBegin; *intersect2 = PathPts[*dupIndex2]; return TRUE; } else if (CloseReal(max1.X, max2.X) && min1.X < min2.X) { // --------------
// ----------------------
// We have to update the dups of the shared point
if (ptrEdge1->SortEnd != ptrEdge2->SortEnd) { UpdateDups(ptrEdge1->SortEnd, ptrEdge2->SortEnd); } *split1 = TRUE; *split2 = FALSE; *dupIndex1 = ptrEdge2->SortBegin; *intersect1 = PathPts[*dupIndex1]; return TRUE; }
// case1: one is "inside" of another
// ---------
// -----------------
// In this case, the longer edge has to be broken into 3 pieces
if (min1.X < min2.X && max1.X > max2.X) { // intersection points are the end points of the second edge
// we are breaking up the first edge
*split1 = TRUE; *split2 = FALSE; *split3 = TRUE; *dupIndex1 = ptrEdge2->SortBegin; *dupIndex2 = ptrEdge2->SortEnd; *intersect1 = PathPts[*dupIndex1]; *intersect2 = PathPts[*dupIndex2]; return TRUE; } else if (min1.X > min2.X && max1.X < max2.X) { // intersection points are the end points of the first edge
// we are breaking up the second edge
*split1 = FALSE; *split2 = TRUE; *split3 = TRUE; *dupIndex1 = ptrEdge1->SortBegin; *dupIndex2 = ptrEdge1->SortEnd; *intersect1 = PathPts[*dupIndex1]; *intersect2 = PathPts[*dupIndex2]; return TRUE; }
// case3: edges overlap
// ---------------
// -----------------
// Each edge has to be broken up INT 2 pieces
else if (max1.X < max2.X && min1.X < min2.X) { *split1 = TRUE; *split2 = TRUE; *dupIndex1 = ptrEdge2->SortBegin; *dupIndex2 = ptrEdge1->SortEnd; *intersect1 = PathPts[*dupIndex1]; *intersect2 = PathPts[*dupIndex2]; return TRUE; } else if (max2.X < max1.X && min2.X < min1.X) { // -----------------
// ---------------
*split1 = TRUE; *split2 = TRUE; *dupIndex1 = ptrEdge2->SortEnd; *dupIndex2 = ptrEdge1->SortBegin; *intersect1 = PathPts[*dupIndex1]; *intersect2 = PathPts[*dupIndex2]; return TRUE; } }
// The edges are vertical.
// We have to test for the same cases using y intervals
// if they share just a common point, return FALSE
if (CloseReal(min1.Y, max2.Y)) { // We have to update the dups of the shared point
if (ptrEdge1->SortBegin != ptrEdge2->SortEnd) { UpdateDups(ptrEdge1->SortBegin, ptrEdge2->SortEnd); } return FALSE; }
if (CloseReal(min2.Y, max1.Y)) { // We have to update the dups of the shared point
if (ptrEdge1->SortEnd != ptrEdge2->SortBegin) { UpdateDups(ptrEdge1->SortEnd, ptrEdge2->SortBegin); } return FALSE; } // These edges may not overlap at all
if (min1.Y > max2.Y) { return FALSE; }
if (min2.Y > max1.Y) { return FALSE; }
// case4: edges are identical
// ----------------
// ----------------
// No edges need to be broken up, but do we need to update some
// dup values?
if (CloseReal(max1.Y, max2.Y) && CloseReal(min1.Y, min2.Y)) { // for now, we will return FALSE
// I think, that it should be OK.
// TODO: - Review
// !!! IS this still ok? - t-wehunt
if (ptrEdge1->SortBegin != ptrEdge2->SortBegin) { UpdateDups(ptrEdge1->SortBegin, ptrEdge2->SortBegin); } if (ptrEdge1->SortEnd != ptrEdge2->SortEnd) { UpdateDups(ptrEdge1->SortEnd, ptrEdge2->SortEnd); } return FALSE; }
// case2: the edges overlap and share one end point
// --------------
// ----------------------
// The longer edge needs to be broken into 2 pieces
if (CloseReal(min1.Y, min2.Y) && max1.Y < max2.Y) { // --------------
// ----------------------
// We have to update the dups of the shared point
if (ptrEdge1->SortBegin != ptrEdge2->SortBegin) { UpdateDups(ptrEdge1->SortBegin, ptrEdge2->SortBegin); } *split1 = FALSE; *split2 = TRUE; *dupIndex2 = ptrEdge1->SortEnd; *intersect2 = PathPts[*dupIndex2]; return TRUE; } else if (CloseReal(min1.Y, min2.Y) && max1.Y > max2.Y) { // ----------------------
// --------------
// We have to update the dups of the shared point
if (ptrEdge1->SortBegin != ptrEdge2->SortBegin) { UpdateDups(ptrEdge1->SortBegin, ptrEdge2->SortBegin); } *split1 = TRUE; *split2 = FALSE; *dupIndex1 = ptrEdge2->SortEnd; *intersect1 = PathPts[*dupIndex1]; return TRUE; } else if (CloseReal(max1.Y, max2.Y) && min1.Y > min2.Y) { // ----------------------
// --------------
// We have to update the dups of the shared point
if (ptrEdge1->SortEnd != ptrEdge2->SortEnd) { UpdateDups(ptrEdge1->SortEnd, ptrEdge2->SortEnd); } *split1 = FALSE; *split2 = TRUE; *dupIndex2 = ptrEdge1->SortBegin; *intersect2 = PathPts[*dupIndex2]; return TRUE; } else if (CloseReal(max1.Y, max2.Y) && min1.Y < min2.Y) { // --------------
// ----------------------
// We have to update the dups of the shared point
if (ptrEdge1->SortEnd != ptrEdge2->SortEnd) { UpdateDups(ptrEdge1->SortEnd, ptrEdge2->SortEnd); } *split1 = TRUE; *split2 = FALSE; *dupIndex1 = ptrEdge2->SortBegin; *intersect1 = PathPts[*dupIndex1]; return TRUE; }
// case1: one is "inside" of another
// ---------
// -----------------
// In this case, the longer edge has to be broken into 3 pieces
if (min1.Y < min2.Y && max1.Y > max2.Y) { // intersection points are the end points of the second edge
// we are breaking up the first edge
*split1 = TRUE; *split2 = FALSE; *split3 = TRUE; *dupIndex1 = ptrEdge2->SortBegin; *dupIndex2 = ptrEdge2->SortEnd; *intersect1 = PathPts[*dupIndex1]; *intersect2 = PathPts[*dupIndex2]; return TRUE; } else if(min1.Y > min2.Y && max1.Y < max2.Y) { // intersection points are the end points of the first edge
// we are breaking up the second edge
*split1 = FALSE; *split2 = TRUE; *split3 = TRUE; *dupIndex1 = ptrEdge1->SortBegin; *dupIndex2 = ptrEdge1->SortEnd; *intersect1 = PathPts[*dupIndex1]; *intersect2 = PathPts[*dupIndex2]; return TRUE; }
// case3: edges overlap
// ---------------
// -----------------
// Each edge has to be broken up INT 2 pieces
else if (max1.Y < max2.Y && min1.Y < min2.Y) { *split1 = TRUE; *split2 = TRUE; *dupIndex1 = ptrEdge2->SortBegin; *dupIndex2 = ptrEdge1->SortEnd; *intersect1 = PathPts[*dupIndex1]; *intersect2 = PathPts[*dupIndex2]; return TRUE; } else if (max2.Y < max1.Y && min2.Y < min1.Y) { // -----------------
// ---------------
*split1 = TRUE; *split2 = TRUE; *dupIndex1 = ptrEdge2->SortEnd; *dupIndex2 = ptrEdge1->SortBegin; *intersect1 = PathPts[*dupIndex1]; *intersect2 = PathPts[*dupIndex2]; return TRUE; }
WARNING(("Couldn't resolve overlapping edges")); return FALSE; // Shouldn't get here
}
/**************************************************************************\
* * Function Description: * * Break edge in 3 pieces. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::BreakEdgeIn3( Edge *ptrEdge, GpPointF *ptrPt1, GpPointF *ptrPt2, Edge *ptrNew1, Edge *ptrNew2, INT dupIndex1, INT dupIndex2 ) { INT iptt1, ipto1; // Indecies to the point arrays
INT iptt2, ipto2; PointListNode ptord1; // Pointers to the linked list and point information
PointListNode ptord2; PointListNode *pptordBeg = NULL; PointListNode *pptordEnd = NULL;
// Let's first add the intersection points to the array of points.
// Don't add identical points to the last point in the path.
// iptt is the index of this point
GpPointF &lastPt = PathPts.Last(); if (ClosePt(*ptrPt1, lastPt)) { return FALSE; } if (PathPts.Add(*ptrPt1) != Ok) { return FALSE; } else { iptt1 = (PathPts.GetCount())-1; }
if (PathPts.Add(*ptrPt2) != Ok) { return FALSE; } else { iptt2 = (PathPts.GetCount())-1; }
// we have to figure out how to link in the new points, it depends on
// the direction of the new edge; iptt1 has the x coordinate <= than
// iptt2.
if (ptrEdge->Begin == ptrEdge->SortBegin) { // PointListNode record for the new point.
ptord1.Prev = ptrEdge->Begin; ptord1.Next = iptt2;
ptord2.Prev = iptt1; ptord2.Next = ptrEdge->End; } else { // PointListNode record for the new point.
ptord1.Prev = iptt2; ptord1.Next = ptrEdge->End;
ptord2.Prev = ptrEdge->Begin; ptord2.Next = iptt1; }
// Update the duplicate field with the iptDup value passed in
ptord1.Dup = dupIndex1; ptord2.Dup = dupIndex2;
// Inside set to TRUE is the default
ptord1.Inside = TRUE; ptord1.Used = FALSE;
ptord2.Inside = TRUE; ptord2.Used = FALSE;
// And now add it to the array.
if (PtList.Add(ptord1) != Ok) { return FALSE; } else { ipto1 = (PtList.GetCount()-1); }
if (PtList.Add(ptord2) != Ok) { return FALSE; } else { ipto2 = (PtList.GetCount()-1); }
// Update ptord records for next and prev
pptordBeg = &PtList[ptrEdge->Begin]; pptordEnd = &PtList[ptrEdge->End]; if (ptrEdge->Begin == ptrEdge->SortBegin) { pptordBeg->Next = ipto1; pptordEnd->Prev = ipto2; } else { pptordBeg->Next = ipto2; pptordEnd->Prev = ipto1; }
// Both arrays - ptt and pto must have exactly the same # of elements
ASSERTMSG((iptt2 == ipto2),("Assert failed."));
//GpPointF pfpvBegin = *(PathPts.PGet(ptrEdge->SortBegin));
//GpPointF pfpvEnd = *(PathPts.PGet(ptrEdge->SortEnd));
// Lets create the new line segments. The sorted order of
// end points is easy - intersection point must be before the SortEnd.
ptrNew1->SortBegin = iptt1; ptrNew1->SortEnd = iptt2;
// remember the original end point of the edge
ptrNew1->OrigBegin = ptrEdge->OrigBegin; ptrNew1->OrigEnd = ptrEdge->OrigEnd;
ptrNew2->SortBegin = iptt2; ptrNew2->SortEnd = ptrEdge->SortEnd;
// remember the original end point of the edge
ptrNew2->OrigBegin = ptrEdge->OrigBegin; ptrNew2->OrigEnd = ptrEdge->OrigEnd;
// Also iptt (new point) becomes the new SortEnd of the old edge
ptrEdge->SortEnd = iptt1;
// Now, depending on whether the edge being broken up was swapped or not,
// the new edges need to be swapped
if (ptrEdge->Begin == ptrEdge->SortBegin) { // not swapped
ptrEdge->End = iptt1; ptrNew1->Begin = ptrNew1->SortBegin; ptrNew1->End = ptrNew1->SortEnd; ptrNew2->Begin = ptrNew2->SortBegin; ptrNew2->End = ptrNew2->SortEnd; } else { // swapped
ptrEdge->Begin = iptt1; ptrNew1->Begin = ptrNew1->SortEnd; ptrNew1->End = ptrNew1->SortBegin; ptrNew2->Begin = ptrNew2->SortEnd; ptrNew2->End = ptrNew2->SortBegin; } ptrNew1->Next = LIST_END; ptrNew2->Next = LIST_END;
// If the point of intersection is on the scan line, we need to insert
// the new edge to the Active table, otherwise to the table with edges
// to process.
if (CloseReal(XCur, ptrPt1->X)) { MarkToAdd(ptrNew1); } else { if(Ok != EdgeList.Add(*ptrNew1)) { return FALSE; // out of memory
} InsertEdgeIntoList( &InactiveEdgeList, EdgeList.GetCount()-1, CompareLine ); }
if (CloseReal(XCur, ptrPt2->X)) { MarkToAdd(ptrNew2); } else { if(Ok != EdgeList.Add(*ptrNew2)) { return FALSE; // out of memory
} InsertEdgeIntoList( &InactiveEdgeList, EdgeList.GetCount()-1, CompareLine ); }
return TRUE; }
/**************************************************************************\
* * Function Description: * * Breaks edge ptrEdge. We have found intersection point intersectPt, which is * guranteed to be somewhere on the line segment (not an end point). * The 'left' part of the edge will either remain in the active edges * or will be removed (only if the intersection point has the current * x value. In the latter case, the right edge segment will need to be * inserted to active edges, otherwise (the former case) it will go * to InactiveEdgeList. If it needs to go to active edges, Breakedge cannot * insert it because it would disrupt the order of edges there before * both edges broken up are handled. The caller would have to handle * the insertion in such case. Therefore, we return the new line * segment newEdge and a BOOL value specifying if the caller has to insert * the newEdge edge. * dupIndex is the index of the duplicate point created by this intersection: * When two edges intersect, we have to insert two points (identical) * to maintain the same shape of the polygon. These two points are * called duplicates. * Return FALSE on out of memory. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::BreakEdge( Edge *ptrEdge, GpPointF *intersectPt, Edge *newEdge, INT dupIndex ) { INT iptt, ipto; // Indecies to the point arrays
PointListNode ptNode; // Pointers to the linked list and point information
PointListNode *ptNodeBeg = NULL; PointListNode *ptNodeEnd = NULL;
// Let's first add the intersection point to the array of points.
if (PathPts.Add(*intersectPt) != Ok) { return FALSE; } else { iptt = (PathPts.GetCount())-1; }
// PointListNode record for the new point. It is in the middle of the
// edge, so Begin and End point of the edge will be its previous and next
ptNode.Prev = ptrEdge->Begin; ptNode.Next = ptrEdge->End; // Update the duplicate field with the dupIndex value passed in
ptNode.Dup = dupIndex; // Inside set to TRUE is the default
ptNode.Inside = TRUE; ptNode.Used = FALSE;
// And now add it to the array.
if (PtList.Add(ptNode) != Ok) { return FALSE; } else { ipto = (PtList.GetCount()-1); }
// Update ptNode records for next and prev
ptNodeBeg = &PtList[ptrEdge->Begin]; ptNodeEnd = &PtList[ptrEdge->End]; ptNodeBeg->Next = ipto; ptNodeEnd->Prev = ipto;
// Both arrays - ptt and pto must have exactly the same # of elements
ASSERTMSG((iptt == ipto),("Assert failed."));
// remember the original end point of the edge
newEdge->OrigBegin = ptrEdge->OrigBegin; newEdge->OrigEnd = ptrEdge->OrigEnd;
// Lets create the new line segment. The sorted order of end points
// is easy - intersection point must be before the SortEnd.
newEdge->SortBegin = iptt; newEdge->SortEnd = ptrEdge->SortEnd;
// Also iptt (new point) becomes the new SortEnd of the old edge
ptrEdge->SortEnd = iptt;
// Now, depending on whether the edge being broken up was swapped or not,
// the new edges need to be swapped
if (ptrEdge->Begin == ptrEdge->SortBegin) { // not swapped
ptrEdge->End = iptt; newEdge->Begin = newEdge->SortBegin; newEdge->End = newEdge->SortEnd; } else { // swapped
ptrEdge->Begin = iptt; newEdge->Begin = newEdge->SortEnd; newEdge->End = newEdge->SortBegin; } newEdge->Next = LIST_END;
// If the point of intersection is on the scan line, we need to insert
// the new edge to the Active table, otherwise to the table with edges
// to process.
if (CloseReal(XCur, intersectPt->X)) { MarkToAdd(newEdge); } else { if(Ok != EdgeList.Add(*newEdge)) { return FALSE; // out of memory
} InsertEdgeIntoList( &InactiveEdgeList, EdgeList.GetCount()-1, CompareLine ); }
return TRUE; }
/**************************************************************************\
* * Function Description: * * Eliminate Self Intersections in a widened path * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
GpStatus PathSelfIntersectRemover::RemoveSelfIntersects() { CanAddPts = FALSE;
// ------ Phase 1:
INT count = EdgeList.GetCount(); if (count <= 0) { return Ok; //nothing to correct
}
// Sort all the edges in EdgeList array.
Edge *edges = EdgeList.GetDataBuffer(); QuickSortEdges(edges, edges+count-1); InactiveEdgeList = 0; // Point to the first element in the inactive list.
// Initialize the linked list Next pointers:
for(int i = 0; i < count-1; i++) { EdgeList[i].Next = i+1; } EdgeList[i].Next = LIST_END;
if (!FindIntersects()) { return GenericError; } // ------ Phase 2:
// FindIntersects orphans all the edges from the list. Reconstruct and
// re-sort using QuickSort. This works out faster because the incremental
// sort during FindIntersects would have been at least O(n^2).
count = EdgeList.GetCount(); // we never actually delete anything from the array - only from the
// linked list, so if we had count > 0 above, we must have a larger or
// the same count now.
ASSERT(count > 0); // Sort all the edges in the EdgeList array.
edges = EdgeList.GetDataBuffer(); QuickSortEdges(edges, edges+count-1); InactiveEdgeList = 0; // Point to the first element in the inactive list.
// Initialize the linked list Next pointers:
for(int i = 0; i < count-1; i++) { EdgeList[i].Next = i+1; } EdgeList[i].Next = LIST_END;
if(!EliminatePoints()) { return GenericError; } // ... move on to phase 3 - collection.
return Ok; }
/**************************************************************************\
* * Function Description: * * Eliminate Self Intersections. * * This is considered 'Phase 2' of the algorithm. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::EliminatePoints() { // Initialize the array of active edges.
// Take the first edge from the edge array and add it to the active edgs.
// Add all other edges, which start at the same x.
if (InactiveEdgeList == LIST_END) { return FALSE; }
XCur = PathPts[EdgeList[InactiveEdgeList].SortBegin].X;
// "move" all edges starting at xCur to the active edge array
// PathPts in the active edge array will be sorted by y for the
// given xCur.
AddActiveForXScan(&InactiveEdgeList);
// As long as the Active edge array is not empty, keep scanning
while (TRUE) { // Scan the active edge array for the current XCur;
if (!ScanActive()) { return FALSE; }
RemoveVertAll();
// Update the XCur using edges from InactiveEdgeList
if (!ClosestActive(InactiveEdgeList)) { break; }
// Remove all edges which end BEFORE XCur;
ClearActiveListExclusiveX();
// Add new edges, which begin at XCur
AddActiveForXScan(&InactiveEdgeList); } return TRUE; }
/**************************************************************************\
* * Function Description: * * Scan through all active edges during the phase of edge elimination. * Calculates winding number to the left and to the right of the current * x value - XCur. Whenever finds an edge which has 0 winding number * on one side, marks it as an outside edge. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::ScanActive() { Edge *ptrEdge = NULL; Edge *plnNext = NULL;
GpPointF *pfpvBegin = NULL; GpPointF *pfpvEnd = NULL;
// We are starting from the outside.
INT lwindLeft = 0; INT lwindRight = 0;
// Look at all edges in the ective edge array.
INT index = ActiveEdgeList; while (index != LIST_END) { ptrEdge = &EdgeList[index]; index = ptrEdge->Next;
// Get the end points
ASSERTMSG((ptrEdge->SortBegin < PathPts.GetCount()), ("FATAL ERROR.")); pfpvBegin = &PathPts[ptrEdge->SortBegin];
ASSERTMSG((ptrEdge->SortEnd < PathPts.GetCount()), ("FATAL ERROR.")); pfpvEnd = &PathPts[ptrEdge->SortEnd];
// Is it vertical?
if (ptrEdge->IsVertical()) { if (NewInterval(ptrEdge)) { if (lwindLeft == 0 || lwindRight == 0) { MarkVertOutside(); } } RemoveVert(ptrEdge->YCur, TRUE /*inclusive*/);
//add it to the active vertical edges
//Edge insertion
if (ActiveVertEdges.InsertSorted(*ptrEdge, (DynSortArrayCompareFunc)&(CompareVertLine), this) != Ok) { return FALSE; } } else { if (lwindLeft == 0 || lwindRight == 0) { MarkVertOutside(); }
RemoveVert(ptrEdge->YCur, TRUE /*inclusive*/);
// Edge is not vertical, does it have an end point
// on this scan line
if ((!CloseReal(pfpvBegin->X, XCur)) && (!CloseReal(pfpvEnd->X, XCur))) { // we are crossing edge in the middle, so both winding numbers
// need to be updated
if (lwindLeft == 0 || lwindRight == 0) { ptrEdge->MarkOutside(); } if (ptrEdge->SortBegin == ptrEdge->Begin) { lwindLeft++; lwindRight++; } else { lwindLeft--; lwindRight--; } if (lwindLeft == 0 || lwindRight == 0) { ptrEdge->MarkOutside(); } } else if ((CloseReal(pfpvBegin->X, XCur)) && (!CloseReal(pfpvEnd->X, XCur))) { //right edge
if (lwindRight == 0) { ptrEdge->MarkOutside(); } if (ptrEdge->SortBegin == ptrEdge->Begin) { lwindRight++; } else { lwindRight--; } if (lwindRight == 0) { ptrEdge->MarkOutside(); } } else if ((!CloseReal(pfpvBegin->X, XCur)) && (CloseReal(pfpvEnd->X, XCur))) { //left edge
if (lwindLeft == 0) { ptrEdge->MarkOutside(); } if (ptrEdge->SortBegin == ptrEdge->Begin) { lwindLeft++; } else { lwindLeft--; } if (lwindLeft == 0) { ptrEdge->MarkOutside(); } } else {
WARNING(("Edge is not vertical, but not in XCur")); } // if we crossed to te outside, all current vertical edges need
// to be marked
if (lwindLeft == 0 || lwindRight == 0) { MarkVertOutside(); } RemoveVert(ptrEdge->YCur, TRUE /*inclusive*/); } } return TRUE; }
/**************************************************************************\
* * Function Description: * * Mark the one or two of the current vertical edges as outside. * If there is an even number of edge going in both directions, it means that * the winding number is the same on both sides. Since we are being called, * it must be 0. In this case, we pick one edge going up and one edge going * down and mark both of them as outside. * If there is more edges going in one direction than another, then the winding * numbers are different, but one of them is 0. We pick one of the edges from * that set edges (up or down) which is larger. So if more edges go down, we * pick one of those edges and mark them as outside. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
VOID PathSelfIntersectRemover::MarkVertOutside() { Edge *ptrEdge = NULL; INT index = 0; INT ndown = 0; INT nup = 0; INT idown = -1; INT iup = -1;
// we will mark the first one
while (index < ActiveVertEdges.GetCount() ) { //PGet on edges
ptrEdge = &ActiveVertEdges[index]; if (ptrEdge->SortBegin == ptrEdge->Begin) { //goes down
ndown++; idown = index; } else { nup++; iup = index; } index++; }
if (ndown > nup) { //PGet on edges
ptrEdge = &ActiveVertEdges[idown]; ptrEdge->MarkOutside(); } else if (nup > ndown) { //PGet on edges
ptrEdge = &ActiveVertEdges[iup]; ptrEdge->MarkOutside(); } else { if (nup != 0) { if (iup > -1) { //PGet on edges
ptrEdge = &ActiveVertEdges[iup]; ptrEdge->MarkOutside(); } } if (ndown != 0) { if (idown > -1) { //PGet on edges
ptrEdge = &ActiveVertEdges[idown]; ptrEdge->MarkOutside(); } } } }
/**************************************************************************\
* * Function Description: * * Returns TRUE if edge ptrEdge belongs to a different interval than the * edges currently stored in ActiveVertEdges. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::NewInterval(Edge *ptrEdge) { Edge *plnOld; if (ActiveVertEdges.GetCount() <= 0) { return FALSE; }
//PGet on edges
plnOld = &ActiveVertEdges.First();
REAL fpY1, fpY2;
fpY1 = PathPts[plnOld->SortEnd].Y; fpY2 = PathPts[ptrEdge->SortEnd].Y; if (CloseReal(fpY1, fpY2)) { return FALSE; }
if (fpY1 < fpY2) { return TRUE; } else { return FALSE; } }
/**************************************************************************\
* * Function Description: * * Remove all the edges from the active edge array. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
VOID PathSelfIntersectRemover::RemoveVertAll() { if( ActiveVertEdges.GetCount() > 0) { ActiveVertEdges.Reset(FALSE); } }
/**************************************************************************\
* * Function Description: * * Remove vertical edges which have end points below given y value. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
VOID PathSelfIntersectRemover::RemoveVert(REAL y, BOOL inclusive) { Edge *ptrEdge = NULL;
// edges are sorted, so as soon as we find an end point with y value > y
// we are done
while (ActiveVertEdges.GetCount() > 0) { //PGet on edges
ptrEdge = &ActiveVertEdges.First(); REAL fpY; fpY = PathPts[ptrEdge->SortEnd].Y; if (inclusive) { if (fpY < y || CloseReal(fpY,y)) { ActiveVertEdges.DeleteAt(0); } else { return; } } else { if (fpY < y && (!CloseReal(fpY,y))) { ActiveVertEdges.DeleteAt(0); } else { return; } } } }
/**************************************************************************\
* * Function Description: * * Scan the ActiveEdgeList for all edges which end at XCur (inclusive) and * simply orphan them. This is used in the first phase of the algorithm * (FindIntersects) which passes each edge from the InactiveEdgeList through * the ActiveEdgeList. When the edges are no longer needed they're removed * from all lists. * * Created * * 12/27/2000 asecchia * \**************************************************************************/
void PathSelfIntersectRemover::ClearActiveListInclusiveX() { INT *pIndex = &ActiveEdgeList; while(*pIndex != LIST_END) { Edge *pEdge = &EdgeList[*pIndex]; GpPointF *pSortEnd = &PathPts[pEdge->SortEnd];
// inclusive check.
if((pSortEnd->X < XCur) || CloseReal(pSortEnd->X, XCur)) { // delete the item and advance.
*pIndex = pEdge->Next; // point past the deleted item.
pEdge->Next = LIST_END; // disconnect the deleted item.
} else { pIndex = &EdgeList[*pIndex].Next; } } }
/**************************************************************************\
* * Function Description: * * Remove from ActiveEdgeList all edges which end at XCur. This uses * an exclusive check. This code is used for the second phase of the algorithm * (EliminatePoints). Each edge removed is orphaned from the list because * the linked list representation will not be used after this phase. * * Created: * * 12/23/2000 asecchia * \**************************************************************************/
void PathSelfIntersectRemover::ClearActiveListExclusiveX() { INT *pIndex = &ActiveEdgeList; while(*pIndex != LIST_END) { Edge *pEdge = &EdgeList[*pIndex]; GpPointF *pSortEnd = &PathPts[pEdge->SortEnd];
// exclusive check.
if((pSortEnd->X < XCur) && !CloseReal(pSortEnd->X, XCur)) { // delete the item and advance.
*pIndex = pEdge->Next; // point past the deleted item.
pEdge->Next = LIST_END; // disconnect the deleted item.
} else { pIndex = &EdgeList[*pIndex].Next; } } }
/**************************************************************************\
* * Function Description: * * Add all edges with begin point at xCur to the active edge table. * Update the index piLn to the edge array to point to the next edge, which * will have to be considered. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
void PathSelfIntersectRemover::AddActiveForX(INT *inactiveHead) { // We have a new current x, let's calculate new curent Y's for each edge
// They are needed to insert the new active edges in the right order
RecalcActiveYCur(); InsertNewEdges( &ActiveEdgeList, // insert
inactiveHead, // remove
XCur, CompareYCurLine ); }
/**************************************************************************\
* * Function Description: * * Add all edges with begin point at xCur to the active edge table. * Update the index piLn to the edge array to point to the next edge, which * will have to be considered. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
void PathSelfIntersectRemover::AddActiveForXScan(INT *inactiveHead) { // We have a new current x, let's calculate new curent Y's for each edge
// They are needed to insert the new active edges in the right order
RecalcActiveYCur();
InsertNewEdges( &ActiveEdgeList, // insert
inactiveHead, // remove
XCur, CompareYScanCurLine ); }
/**************************************************************************\
* * Function Description: * * Calculate the yCur position for each edge in the active edge table. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
VOID PathSelfIntersectRemover::RecalcActiveYCur(VOID) { REAL dx = 0; REAL dy = 0; REAL dxCur = 0;
GpPointF fpvBegin(0,0); GpPointF fpvEnd(0,0); GpPointF fpvOrigBegin(0,0); GpPointF fpvOrigEnd(0,0);
Edge *ptrEdge = NULL; INT active = ActiveEdgeList;
// Go through all active egdes
while(active != LIST_END) { ptrEdge = &EdgeList[active];
// If the edge will have an end point at XCur,
// use this end point's y value.
fpvBegin = PathPts[ptrEdge->SortBegin]; fpvEnd = PathPts[ptrEdge->SortEnd]; fpvOrigBegin = PathPts[ptrEdge->OrigBegin]; fpvOrigEnd = PathPts[ptrEdge->OrigEnd]; if ((XCur == fpvEnd.X) || (fpvEnd.X == fpvBegin.X)) { ptrEdge->YCur = fpvEnd.Y; } else { // Calculate the slope numerator and denominator
dx = fpvOrigEnd.X - fpvOrigBegin.X; dy = fpvOrigEnd.Y - fpvOrigBegin.Y; dxCur = XCur - fpvOrigBegin.X; ptrEdge->YCur = dy * dxCur / dx + fpvOrigBegin.Y; } active = EdgeList[active].Next; } }
/**************************************************************************\
* * Function Description: * * Compare two lines. Lines are sorted based on the yCur value. * If yCur's are identical, lines are sorted based on the begin point. * * Arguments: * * * Return Value: * * -1 if ptrEdge1 < ptrEdge2 * 0 if ther are equal * 1 if ptrEdge1 > ptrEdge2 * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
INT CompareYScanCurLine( PathSelfIntersectRemover *ptrCorrector, Edge *ptrEdge1, Edge *ptrEdge2 ) { if (!ptrEdge1->CloseReal(ptrEdge1->YCur, ptrEdge2->YCur)) { if(ptrEdge1->YCur < ptrEdge2->YCur) { return -1; } if(ptrEdge1->YCur > ptrEdge2->YCur) { return 1; } } // All left and vertical edges need to go before right edges if they have
// the same yCur;
// A left edge has a begin point < xCur, right edge x = xCur
BOOL fLeft1 = TRUE; BOOL fLeft2 = TRUE;
fLeft1 = ((ptrCorrector->PathPts[ptrEdge1->SortBegin].X < ptrCorrector->XCur && ptrEdge1->CloseReal(ptrCorrector->PathPts[ptrEdge1->SortEnd].X, ptrCorrector->XCur)) || ptrEdge1->IsVertical()); fLeft2 = ((ptrCorrector->PathPts[ptrEdge2->SortBegin].X < ptrCorrector->XCur && ptrEdge2->CloseReal(ptrCorrector->PathPts[ptrEdge2->SortEnd].X, ptrCorrector->XCur)) || ptrEdge2->IsVertical());
if (fLeft1 && (!fLeft2)) return 1; if ((!fLeft1) && fLeft2) return -1;
REAL slope1(0.0); REAL slope2(0.0);
// For vertical edges, we actually store them as +/-INF, and
// can use the sign to determine the direction.
if (ptrEdge1->IsVertical()) { // Avoid (inf x 0) which causes a real indefinite.
if( REALABS( ptrCorrector->PathPts[ptrEdge1->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge1->OrigBegin].Y ) > REAL_EPSILON ) { slope1 = SignReal( ptrCorrector->PathPts[ptrEdge1->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge1->OrigBegin].Y) * FP_INF; } } else { // Avoid divide by zero.
if( REALABS( ptrCorrector->PathPts[ptrEdge1->OrigEnd].X - ptrCorrector->PathPts[ptrEdge1->OrigBegin].X ) > REAL_EPSILON ) { slope1 = ptrCorrector->PathPts[ptrEdge1->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge1->OrigBegin].Y; slope1 = slope1 / (ptrCorrector->PathPts[ptrEdge1->OrigEnd].X - ptrCorrector->PathPts[ptrEdge1->OrigBegin].X); } }
if (ptrEdge2->IsVertical()) { // Avoid (inf x 0) which causes a real indefinite.
if( REALABS( ptrCorrector->PathPts[ptrEdge2->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge2->OrigBegin].Y ) > REAL_EPSILON ) { slope2 = SignReal(ptrCorrector->PathPts[ptrEdge2->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge2->OrigBegin].Y) * FP_INF; } } else { // Avoid divide by zero.
if( REALABS( ptrCorrector->PathPts[ptrEdge2->OrigEnd].X - ptrCorrector->PathPts[ptrEdge2->OrigBegin].X ) > REAL_EPSILON ) { slope2 = ptrCorrector->PathPts[ptrEdge2->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge2->OrigBegin].Y; slope2 = slope2 / (ptrCorrector->PathPts[ptrEdge2->OrigEnd].X - ptrCorrector->PathPts[ptrEdge2->OrigBegin].X); } }
if (slope1 < slope2) return -1;
if (slope1 > slope2) return 1;
// slopes are equal
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].Y < ptrCorrector->PathPts[ptrEdge2->SortEnd].Y) return -1;
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].Y > ptrCorrector->PathPts[ptrEdge2->SortEnd].Y) return 1;
// (ptrCorrector->PathPts.PGet(ptrEdge1->SortEnd))->Y ==
// (ptrCorrector->PathPts.PGet(ptrEdge2->SortEnd))->Y
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].X < ptrCorrector->PathPts[ptrEdge2->SortEnd].X) return -1;
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].X > ptrCorrector->PathPts[ptrEdge2->SortEnd].X) return 1;
// Now, all point coordinates are exactly the same, but in some cases,
// we may have two identical edges with the coordinates, these edges
// may have different points (actual indecies into points array, not
// coordinate values). We want to consider them as identical only if
// the indecies are the same.
if (ptrEdge1->SortBegin < ptrEdge2->SortBegin) return -1;
if (ptrEdge1->SortBegin > ptrEdge2->SortBegin) return 1;
if (ptrEdge1->SortEnd < ptrEdge2->SortEnd) return -1;
if (ptrEdge1->SortEnd > ptrEdge2->SortEnd) return 1;
return 0; }
/**************************************************************************\
* * Function Description: * * Compare two lines. Lines are sorted based on the yCur value. * If yCur's are identical, lines are sorted based on the begin point. * * Arguments: * * * Return Value: * * -1 if ptrEdge1 < ptrEdge2 * 0 if ther are equal * 1 if ptrEdge1 > ptrEdge2 * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
INT CompareYCurLine( PathSelfIntersectRemover *ptrCorrector, Edge *ptrEdge1, Edge *ptrEdge2 ) { if (!ptrEdge1->CloseReal(ptrEdge1->YCur, ptrEdge2->YCur)) { if(ptrEdge1->YCur < ptrEdge2->YCur) return -1;
if(ptrEdge1->YCur > ptrEdge2->YCur) return 1; }
// We have to sort based on slope.
REAL slope1(0.0); REAL slope2(0.0);
// For vertical edges, we actually store them as +/-INF, and
// can use the sign to determine the direction.
if (ptrEdge1->IsVertical()) { // Avoid INF * 0.
if( REALABS( ptrCorrector->PathPts[ptrEdge1->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge1->OrigBegin].Y ) > REAL_EPSILON ) { slope1 = SignReal( ptrCorrector->PathPts[ptrEdge1->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge1->OrigBegin].Y ) * FP_INF; } } else { // Avoid divide by zero.
if( REALABS( ptrCorrector->PathPts[ptrEdge1->OrigEnd].X - ptrCorrector->PathPts[ptrEdge1->OrigBegin].X ) > REAL_EPSILON ) { slope1 = ptrCorrector->PathPts[ptrEdge1->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge1->OrigBegin].Y; slope1 = slope1 / (ptrCorrector->PathPts[ptrEdge1->OrigEnd].X - ptrCorrector->PathPts[ptrEdge1->OrigBegin].X); } }
if (ptrEdge2->IsVertical()) { // Avoid INF * 0.
if( REALABS( ptrCorrector->PathPts[ptrEdge2->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge2->OrigBegin].Y ) > REAL_EPSILON ) { slope2 = SignReal( ptrCorrector->PathPts[ptrEdge2->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge2->OrigBegin].Y) * FP_INF; } } else { // Avoid divide by zero.
if( REALABS( ptrCorrector->PathPts[ptrEdge2->OrigEnd].X - ptrCorrector->PathPts[ptrEdge2->OrigBegin].X ) > REAL_EPSILON ) { slope2 = ptrCorrector->PathPts[ptrEdge2->OrigEnd].Y - ptrCorrector->PathPts[ptrEdge2->OrigBegin].Y; slope2 = slope2 / (ptrCorrector->PathPts[ptrEdge2->OrigEnd].X - ptrCorrector->PathPts[ptrEdge2->OrigBegin].X); } }
if (slope1 < slope2) return -1;
if (slope1 > slope2) return 1;
// slopes are equal
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].Y < ptrCorrector->PathPts[ptrEdge2->SortEnd].Y) return -1;
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].Y > ptrCorrector->PathPts[ptrEdge2->SortEnd].Y) return 1;
// (ptrCorrector->PathPts.PGet(ptrEdge1->SortEnd))->Y ==
// (ptrCorrector->PathPts.PGet(ptrEdge2->SortEnd))->Y
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].X < ptrCorrector->PathPts[ptrEdge2->SortEnd].X) return -1;
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].X > ptrCorrector->PathPts[ptrEdge2->SortEnd].X) return 1;
// Now, all point coordinates are exactly the same, but in some cases,
// we may have two identical edges with the coordinates, these edges
// may have different points (actual indecies into points array, not
// coordinate values). We want to consider them as identical only if the
// indecies are the same.
if (ptrEdge1->SortBegin < ptrEdge2->SortBegin) return -1;
if (ptrEdge1->SortBegin > ptrEdge2->SortBegin) return 1;
if (ptrEdge1->SortEnd < ptrEdge2->SortEnd) return -1;
if (ptrEdge1->SortEnd > ptrEdge2->SortEnd) return 1;
return 0; }
/**************************************************************************\
* * Function Description: * * Compares lines based on the y coordinate of the end point. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
INT CompareVertLine( PathSelfIntersectRemover *ptrCorrector, Edge *ptrEdge1, Edge *ptrEdge2 ) { if(ptrCorrector->PathPts[ptrEdge1->SortEnd].Y < ptrCorrector->PathPts[ptrEdge2->SortEnd].Y) return -1;
if(ptrCorrector->PathPts[ptrEdge1->SortEnd].Y > ptrCorrector->PathPts[ptrEdge2->SortEnd].Y) return 1;
if(ptrCorrector->PathPts[ptrEdge1->SortBegin].Y < ptrCorrector->PathPts[ptrEdge2->SortBegin].Y) return -1;
if(ptrCorrector->PathPts[ptrEdge1->SortBegin].Y > ptrCorrector->PathPts[ptrEdge2->SortBegin].Y) return 1;
// Now, all point coordinates are exactly the same, but in some cases,
// we may have two identical edges with the coordinates, these edges may
// have different points (actual indecies into points array, not
// coordinate values). We want to consider them as identical only if the
// indecies are the same.
if (ptrEdge1->SortBegin < ptrEdge2->SortBegin) return -1;
if (ptrEdge1->SortBegin > ptrEdge2->SortBegin) return 1;
if (ptrEdge1->SortEnd < ptrEdge2->SortEnd) return -1;
if (ptrEdge1->SortEnd > ptrEdge2->SortEnd) return 1;
return 0; }
/**************************************************************************\
* * Function Description: * * Finds the x value of the closest end point (in x) - the next scan line. * Depending on the phase of the algorithm, it needs to look at edges in * different arrays. The new value is stored in XCur. * Returns FALSE if there are no more points to look at - we are done. * In this case, XCur is set to longLast. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::ClosestActive(INT arrayIndex) { REAL xClosest = 0;
// We need to find the next X value for the scan line:
// take the minimum of any end point of active edges and the begin point
// of the first edge which will be inserted to active edges.
// Let's first look at the possible new edge
if (arrayIndex == LIST_END) // no more edges to add
{ xClosest = FP_INF; } else { xClosest = PathPts[EdgeList[arrayIndex].SortBegin].X; }
INT active = ActiveEdgeList;
// Now, look at all active edges
while (active != LIST_END) { REAL xActive = PathPts[EdgeList[active].SortEnd].X; if((xClosest > xActive) && (xActive > XCur) && (!CloseReal(xActive, XCur))) { xClosest = xActive; } active = EdgeList[active].Next; } if (xClosest != FP_INF) { XCur = xClosest; return TRUE; } else { return FALSE; } }
/**************************************************************************\
* * Function Description: * * Returns the new path. New path contains of 1 or more subpaths. * The subpaths are stored as a list of points and a list of points * per polygon. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
GpStatus PathSelfIntersectRemover::GetNewPoints( DynPointFArray *pts, DynIntArray *polyCounts ) { GpPointF *pptToCopy = NULL; INT iptFirst = 0; GpStatus status;
if (PathPts.GetCount() <= 0) { return Ok; }
if (PtList.GetCount() <= 0) { return Ok; }
// Initialize the array which will contain the resulting paths
// We don't know haw many points we are going to have
// Guess? TODO!
if ((status = pts->ReserveSpace(2*PathPts.GetCount()/3)) != Ok) { return status; }
if ((status = polyCounts->ReserveSpace(2*PathPts.GetCount())) != Ok) { return status; }
// Collect paths as long as there are unused (outside) points
INT cptOld = 0; INT npt = 0;
while (!AllPointsUsed(&iptFirst)) { if (!CollectPath(iptFirst)) { return GenericError; } // How many points do we have in the last path?
npt = ResultPts.GetCount() - cptOld; // Add the point count to the poly array
if ((status = polyCounts->Add(npt)) != Ok) { return status; } // Save the count of points
cptOld = ResultPts.GetCount(); }
pts->ReplaceWith(&ResultPts);
return Ok; }
/**************************************************************************\
* * Function Description: * * Return TRUE if all points have been used (added to the resulting paths) * or are inside. If returns FALSE, returns the index to the next unused * point. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::AllPointsUsed(INT *piptUnUsed) { PointListNode *ptNode = NULL; INT iptord = 0;
// TODO: Create a static or a member which would remember the last
// point returned here, so we don't have to start from the beginning each
// time
IntersectsWereRemoved = FALSE; while (iptord != -1) { if (iptord >= PtList.GetCount()) { break; } ptNode = &PtList[iptord]; if (!ptNode->Used) { if (ptNode->Inside) { IntersectsWereRemoved = TRUE; iptord = ptNode->Next; } else { *piptUnUsed = iptord; return FALSE; } } else { iptord = ptNode->Next; } }
*piptUnUsed = -1; return TRUE; }
/**************************************************************************\
* * Function Description: * * After the process of eliminating edges and marking points as inside * and outside, we need to go through the linked list of points and * build paths from the edges which are outside. CollectPath will * collect one path starting from point with index iptFirst. It * returns the actual value of this point in pptFirst. * CollectPath doesn't check if iptFirst is marked as Inside or Outside. * CollectPath returns FALSE on out of memory. * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
BOOL PathSelfIntersectRemover::CollectPath(INT iptFirst) { PointListNode *ptNode = NULL; GpPointF *pfpvThis = NULL; INT iptord = iptFirst; GpPointF fpvFirst(0,0);
// Copy the first point, it always belongs to the path, we don't check
// here if it is outside. AllPointsUsed did that.
if (ResultPts.Add(PathPts[iptFirst]) != Ok) { return FALSE; }
// Store the point, so we can compare with it
fpvFirst = PathPts[iptFirst];
// Get the index of the next point and update the fUsed field for the
// copied point.
ptNode = &PtList[iptord]; ptNode->Used = TRUE; iptord = ptNode->Next; BOOL fhavePptord = FALSE;
// The end of a subpath will have the next iptord == -1
while(iptord != -1) { if (!fhavePptord) { ptNode = &PtList[iptord]; } fhavePptord = FALSE; if (ptNode->Inside) { // The edge starting in this point is inside, but the
// point itself isn't.
// If it is the closing point (the same as the first one)
// return the collected subpath.
pfpvThis = &PathPts[iptord]; if (ClosePt(*pfpvThis, fpvFirst)) { ptNode->Used = TRUE; return TRUE; }
// If the point is not the same as the first one and we have
// already been here, something is wrong
if (ptNode->Used) { WARNING(("We have an infinite loop")); iptord = -1; return FALSE; } else { //This is the beginning of an inside edge, our path changes.
//Let's get the duplicate point
INT oldiptord = iptord; ptNode->Used = TRUE; iptord = ptNode->Dup; if (iptord >= 0) { ptNode = &PtList[iptord]; } else { WARNING(("Dup is negative (1)")); return FALSE; } while (ptNode->Inside || ptNode->Used) { iptord = ptNode->Dup; if (iptord == oldiptord) { WARNING(("Loop, cannot find a duplicate")); return FALSE; } else if (iptord >= 0) { ptNode = &PtList[iptord]; } else { WARNING(("Dup is negative (2)")); return FALSE; } } fhavePptord = TRUE; } } else { // The point is outside
if (ptNode->Used) { //This may be a longer list of dups, keep looking
INT oldiptord2 = iptord; ptNode->Used = TRUE; iptord = ptNode->Dup; if (iptord >= 0) { ptNode = &PtList[iptord]; } else { WARNING(("Dup is negative (3)")); return FALSE; } while (ptNode->Inside || ptNode->Used) { iptord = ptNode->Dup; if (iptord == oldiptord2) { WARNING(("Loop, cannot find a duplicate (2)")); return FALSE; } else if (iptord >= 0) { ptNode = &PtList[iptord]; } else { WARNING(("Dup is negative (4)")); return FALSE; } } fhavePptord = TRUE; } else { //New point, everything is OK
if (ResultPts.Add(PathPts[iptord]) != Ok) { WARNING(("Could not append to array")); return FALSE; } ptNode->Used = TRUE; iptord = ptNode->Next; } } }
return TRUE; }
/**************************************************************************\
* * Function Description: * * Function used to compare lines when we sort them by x coordinate of the * Begin point (SortBegin - smaller x). * * Arguments: * * * Return Value: * * * Created: * * 6/15/1999 t-wehunt * \**************************************************************************/
INT CompareLine( PathSelfIntersectRemover *ptrCorrector, Edge *ptrEdge1, Edge *ptrEdge2 ) { //PGet on edges
if (ptrCorrector->PathPts[ptrEdge1->SortBegin].X < ptrCorrector->PathPts[ptrEdge2->SortBegin].X) return -1;
if (ptrCorrector->PathPts[ptrEdge1->SortBegin].X > ptrCorrector->PathPts[ptrEdge2->SortBegin].X) return 1;
if (ptrCorrector->PathPts[ptrEdge1->SortBegin].Y < ptrCorrector->PathPts[ptrEdge2->SortBegin].Y) return -1;
if (ptrCorrector->PathPts[ptrEdge1->SortBegin].Y > ptrCorrector->PathPts[ptrEdge2->SortBegin].Y) return 1;
// Begin points must be exactly the same
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].X < ptrCorrector->PathPts[ptrEdge2->SortEnd].X) return -1;
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].X > ptrCorrector->PathPts[ptrEdge2->SortEnd].X) return 1;
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].Y < ptrCorrector->PathPts[ptrEdge2->SortEnd].Y) return -1;
if (ptrCorrector->PathPts[ptrEdge1->SortEnd].Y > ptrCorrector->PathPts[ptrEdge2->SortEnd].Y) return 1;
// Now, all point coordinates are exactly the same, but in some cases,
// we may have two identical edges with the coordinates, these edges
// may have different points (actual indecies into points array, not
// coordinate values). We want to consider them as identical only if the
// indecies are the same.
if (ptrEdge1->SortBegin < ptrEdge2->SortBegin) return -1;
if (ptrEdge1->SortBegin > ptrEdge2->SortBegin) return 1;
if (ptrEdge1->SortEnd < ptrEdge2->SortEnd) return -1;
if (ptrEdge1->SortEnd > ptrEdge2->SortEnd) return 1;
return 0; }
|