|
|
/**************************************************************************\
* * Copyright (c) 1999 Microsoft Corporation * * Module Name: * * One-pixel-wide solid aliased lines * * Abstract: * * Draws aliased solid-color lines which are one pixel wide. * Supports clipping against complex clipping regions. * * History: * * 03/31/1999 AMatos * Created it. * 08/17/1999 AGodfrey * Separated aliased from antialiased. * \**************************************************************************/
#include "precomp.hpp"
#pragma optimize("a",on)
//------------------------------------------------------------------------
// Global array that stores all the different options of drawing functions.
// If the order of the functions change, the offset constants must also
// change.
//------------------------------------------------------------------------
#define FUNC_X_MAJOR 0
#define FUNC_Y_MAJOR 1
#define FUNC_CLIP_OFFSET 2
typedef VOID (OnePixelLineDDAAliased::*DDAFunc)(DpScanBuffer*);
static DDAFunc gDrawFunctions[] = { OnePixelLineDDAAliased::DrawXMajor, OnePixelLineDDAAliased::DrawYMajor, OnePixelLineDDAAliased::DrawXMajorClip, OnePixelLineDDAAliased::DrawYMajorClip, };
//------------------------------------------------------------------------
// Constants used for manipulating fixed point and doing all the bitwise
// operations on the aliased and antialiased DDA. I know some of these
// are already defined elsewhere, but I do it again here as it might be nice to
// keep this independent of the rest of gdiplus.
//------------------------------------------------------------------------
// Fixed point
#define RealToFix GpRealToFix4
#define FBITS 4
#define FMASK 0xf
#define FINVMASK 0xfffffff0
#define FSIZE 16
#define FHALF 8
#define FHALFMASK 7
/**************************************************************************\
* * Function Description: * * Does all the DDA setup that is common to aliased and antialiased * lines. * * Arguments: * * [IN] point1 - end point * [IN] point2 - end point * [IN] drawLast - FALSE if the line is to be end-exclusive
* Return Value: * * Returns TRUE if the drawing should continue, meaning the line * has non-zero length. * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
BOOL OnePixelLineDDAAliased::SetupCommon( GpPointF *point1, GpPointF *point2, BOOL drawLast, INT width ) { MaximumWidth = width; // Turn the points into fixed 28.4
INT x1 = RealToFix(point1->X); INT x2 = RealToFix(point2->X); REAL rDeltaX = point2->X - point1->X; REAL rDeltaY = point2->Y - point1->Y;
if( rDeltaX == 0 && rDeltaY == 0 ) { return FALSE; }
INT xDir = 1;
if(rDeltaX < 0) { rDeltaX = -rDeltaX; xDir = -1; }
INT y1 = RealToFix(point1->Y); INT y2 = RealToFix(point2->Y);
INT yDir = 1;
if( rDeltaY < 0) { rDeltaY = -rDeltaY; yDir = -1; }
Flipped = FALSE;
if( rDeltaY >= rDeltaX ) { // y-major
// Invert the endpoints if necessary
if(yDir == -1) { INT tmp = y1; y1 = y2; y2 = tmp; tmp = x1; x1 = x2; x2 = tmp; xDir = -xDir; Flipped = TRUE; }
// Determine the Slope
Slope = xDir*rDeltaX/rDeltaY;
// Initialize the Start and End points
IsXMajor = FALSE; MajorStart = y1; MajorEnd = y2; MinorStart = x1; MinorEnd = x2; MinorDir = xDir;
// Mark that we'll use the y-major functions.
DrawFuncIndex = FUNC_Y_MAJOR; } else { // x-major
// Invert the endpoints if necessary
if(xDir == -1) { INT tmp = x1; x1 = x2; x2 = tmp; tmp = y1; y1 = y2; y2 = tmp; yDir = -yDir; Flipped = TRUE; }
Slope = yDir*rDeltaY/rDeltaX;
// Initialize the rest
IsXMajor = TRUE; MajorStart = x1; MajorEnd = x2; MinorStart = y1; MinorEnd = y2; MinorDir = yDir;
// Mark that we'll use the x-major functions.
DrawFuncIndex = FUNC_X_MAJOR; }
// Initialize the Deltas. In fixed point.
DMajor = MajorEnd - MajorStart; DMinor = (MinorEnd - MinorStart)*MinorDir;
// Mark if we're drawing end-exclusive
IsEndExclusive = !drawLast;
return TRUE; }
//------------------------------------------------------------------------
// Functions specific to the aliased lines
//------------------------------------------------------------------------
/**************************************************************************\
* * Function Description: * * Does the part of the DDA setup that is specific for aliased lines. * * Basically it uses the diamond rule to find the integer endpoints * based on the fixed point values and substitutes these for the * integer results coordinates. Also calculates the error values. * * Arguments: * * Return Value: * * Returns FALSE if the drawing should not continue, meaning the line * has a length of less than 1, and should not be drawn by the GIQ rule. * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
BOOL OnePixelLineDDAAliased::SetupAliased() { // Do the GIQ rule to determine which pixel to start at.
BOOL SlopeIsOne = (DMajor == DMinor); BOOL SlopeIsPosOne = SlopeIsOne && (1 == MinorDir);
// These will store the integer values.
INT major, minor; INT majorEnd, minorEnd;
// Find the rounded values in fixed point. The rounding
// rules when a coordinate is halfway between two
// integers is given by the GIQ rule.
minor = (MinorStart + FHALFMASK) & FINVMASK; minorEnd = (MinorEnd + FHALFMASK) & FINVMASK;
BOOL isEndIn, isStartIn;
if(IsXMajor) { if(SlopeIsPosOne) { major = (MajorStart + FHALF) & FINVMASK; majorEnd = (MajorEnd + FHALF) & FINVMASK; } else { major = (MajorStart + FHALFMASK) & FINVMASK; majorEnd = (MajorEnd + FHALFMASK) & FINVMASK; }
isStartIn = IsInDiamond(MajorStart - major, MinorStart - minor, SlopeIsOne, SlopeIsPosOne); isEndIn = IsInDiamond(MajorEnd - majorEnd, MinorEnd - minorEnd, SlopeIsOne, SlopeIsPosOne); } else { major = (MajorStart + FHALFMASK) & FINVMASK; majorEnd = (MajorEnd + FHALFMASK) & FINVMASK; isStartIn = IsInDiamond(MinorStart - minor, MajorStart - major, FALSE, FALSE); isEndIn = IsInDiamond(MinorEnd - minorEnd, MajorEnd - majorEnd, FALSE, FALSE); }
// Determine if we need to advance the initial point.
if(!(Flipped && IsEndExclusive)) { if(((MajorStart & FMASK) <= FHALF) && !isStartIn) { major += FSIZE; } } else { if(isStartIn || ((MajorStart & FMASK) <= FHALF)) { major += FSIZE; } } // Adjust the initial minor coordinate accodingly
minor = GpFloor(MinorStart + (major - MajorStart)*Slope);
// Bring the initial major coordinate to integer
major = major >> FBITS;
// Do the same for the end point.
if(!Flipped && IsEndExclusive) { if(((MajorEnd & FMASK) > FHALF) || isEndIn) { majorEnd -= FSIZE; } } else { if(!isEndIn && ((MajorEnd & FMASK) > FHALF)) { majorEnd -= FSIZE; } }
minorEnd = GpFloor(MinorEnd + (majorEnd - MajorEnd)*Slope);
majorEnd = majorEnd >> FBITS;
// If End is smaller than Start, that means we have a line that
// is smaller than a pixel and bu the diamond rule it should
// not be drawn.
if(majorEnd < major) { return FALSE; }
// Get the error correction values.
ErrorUp = DMinor << 1; ErrorDown = DMajor << 1;
INT MinorInt;
// Take out the fractions from the DDA. GDI's rounding
// doesn't depend on direction, so for compatability
// round down as GDI does when LINEADJUST281816 is
// defined (see Office 10 bug 281816). Otherwise the rounding
// rule for the minor coordinate depends on the direction
// we are going.
#ifdef LINEADJUST281816
MinorInt = (minor + FHALFMASK) & FINVMASK; minorEnd = (minorEnd + FHALFMASK) >> FBITS; #else
if(MinorDir == 1) { MinorInt = (minor + FHALF) & FINVMASK; minorEnd = (minorEnd + FHALF) >> FBITS; } else { MinorInt = (minor + FHALFMASK) & FINVMASK; minorEnd = (minorEnd + FHALFMASK) >> FBITS; } #endif
// Calculate the initial error based on our fractional
// position in fixed point and convert to integer.
Error = -ErrorDown*(FHALF + MinorDir*(MinorInt - minor)); minor = MinorInt >> FBITS; Error >>= FBITS;
// Update the class variables
MinorStart = minor; MinorEnd = minorEnd; MajorStart = major; MajorEnd = majorEnd; return TRUE; }
/**************************************************************************\
* * Function Description: * * Draws a y major line. Does not support clipping, it assumes that * it is completely inside any clipping area. * * Arguments: * * [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value: * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
VOID OnePixelLineDDAAliased::DrawYMajor( DpScanBuffer *scan ) { // Do the DDA loop for the case where there is no complex
// clipping region.
ARGB *buffer; INT numPixels = MajorEnd - MajorStart;
while(numPixels >= 0) { buffer = scan->NextBuffer(MinorStart, MajorStart, 1);
*buffer = Color; MajorStart++; Error += ErrorUp; if( Error > 0 ) { MinorStart += MinorDir; Error -= ErrorDown; }
numPixels--; } }
/**************************************************************************\
* * Function Description: * * Draws a x major line. Does not support clipping, it assumes that * it is completely inside any clipping area. * * Arguments: * * [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value: * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
VOID OnePixelLineDDAAliased::DrawXMajor( DpScanBuffer *scan ) { INT numPixels = MajorEnd - MajorStart + 1; ARGB *buffer; INT width = 0;
const INT maxWidth = MaximumWidth; // Run the DDA. First accumulate the width, and when
// the scanline changes write the whole scanline at
// once.
buffer = scan->NextBuffer(MajorStart, MinorStart, maxWidth);
while(numPixels--) { MajorStart++; *buffer++ = Color; width++; Error += ErrorUp;
if( Error > 0 && numPixels) { MinorStart += MinorDir; Error -= ErrorDown; scan->UpdateWidth(width); buffer = scan->NextBuffer(MajorStart, MinorStart, maxWidth); width = 0; } }
scan->UpdateWidth(width); }
/**************************************************************************\
* * Function Description: * * Draws a y major line taking clipping into account. It uses the member * variables MajorIn, MajorOut, MinorIn, MinorOut of the class as the * clip rectangle. It advances untill the line is in the clip rectangle and * draws untill it gets out or the end point is reached. In the first case, * it leaves the DDA in a state so that it can be called again with another * clipping rectangle. * * Arguments: * * [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value: * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
VOID OnePixelLineDDAAliased::DrawYMajorClip( DpScanBuffer *scan ) { INT saveMajor2 = MajorEnd; INT saveMinor2 = MinorEnd; // Do the DDA if all the clipping left the line
// valid.
if(StepUpAliasedClip()) { // The length given by the minor coord. Whichever length
// comes to 0 first, minor or major, we stop.
INT minorDiff = (MinorEnd - MinorStart)*MinorDir;
ARGB *buffer; INT numPixels = MajorEnd - MajorStart;
while((minorDiff >= 0) && (numPixels >= 0)) { buffer = scan->NextBuffer(MinorStart, MajorStart, 1); *buffer = Color; MajorStart++; Error += ErrorUp; if( Error > 0 ) { MinorStart += MinorDir; Error -= ErrorDown; minorDiff--; } numPixels--; }
}
// Restore the saved end values
MajorEnd = saveMajor2; MinorEnd = saveMinor2; }
/**************************************************************************\
* * Function Description: * * Draws a x major line taking clipping into account. It uses the member * variables MajorIn, MajorOut, MinorIn, MinorOut of the class as the * clip rectangle. It advances untill the line is in the clip rectangle and * draws untill it gets out or the end point is reached. In the first case, * it leaves the DDA in a state so that it can be called again with another * clipping rectangle. * * Arguments: * * [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value: * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
VOID OnePixelLineDDAAliased::DrawXMajorClip( DpScanBuffer *scan ) { INT saveMajor2 = MajorEnd; INT saveMinor2 = MinorEnd; const INT maxWidth = MaximumWidth;
if(StepUpAliasedClip()) { INT minorDiff = (MinorEnd - MinorStart)*MinorDir;
INT numPixels = MajorEnd - MajorStart + 1; ARGB *buffer; INT width = 0; // Run the DDA for the case where there is no
// complex clipping region, which is a lot easier.
buffer = scan->NextBuffer(MajorStart, MinorStart, maxWidth);
while(numPixels--) { MajorStart++; width++; *buffer++ = Color; Error += ErrorUp; if( Error > 0 && numPixels) { MinorStart += MinorDir; Error -= ErrorDown; minorDiff--; scan->UpdateWidth(width); // If all of the scanlines in the minor direction have
// been filled, then quit now.
if(minorDiff < 0) { break; }
buffer = scan->NextBuffer(MajorStart, MinorStart, maxWidth); width = 0;
} } scan->UpdateWidth(width); }
MajorEnd = saveMajor2; MinorEnd = saveMinor2; }
/**************************************************************************\
* * Function Description: * * Steps the DDA until the start point is at the edge of the * clipping rectangle. Also, correct the end values so that * they stop at the end of the rectangle. The caller must save * these values to restore at the end of the loop. * * Arguments: * * Return Value: * * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
BOOL OnePixelLineDDAAliased::StepUpAliasedClip() { // Step up on the DDA untill the major coordinate
// is aligned with the rectangles edge
while(MajorStart < MajorIn) { MajorStart++; Error += ErrorUp; if( Error > 0 ) { MinorStart += MinorDir; Error -= ErrorDown; } }
// If the minor coordinate is still out, step up untill
// this one is also aligned. In doing that we might pass
// the on the major coordinate, in which case we are done
// and there is no intersection.
INT minorDiff = (MinorIn - MinorStart)*MinorDir;
while(minorDiff > 0 && MajorStart <= MajorOut) { MajorStart++; Error += ErrorUp; if( Error > 0 ) { MinorStart += MinorDir; minorDiff--; Error -= ErrorDown; } } minorDiff = (MinorEnd - MinorOut)*MinorDir; if(minorDiff > 0) { if((MinorStart - MinorOut)*MinorDir > 0) { return FALSE; } MinorEnd = MinorOut; } if(MajorOut < MajorEnd) { MajorEnd = MajorOut; } // Return if the line is still valid.
return(MajorStart <= MajorEnd); }
//--------------------------------------------------------------------
// Auxiliary functions
//--------------------------------------------------------------------
/**************************************************************************\
* * Function Description: * * Clips the line against a rectangle. It assumes that the line endpoints * are stored in the class in floating point format. This sets an * order in which this function can be called. It must be after the * SetupCommon function and before the specific setups for antialiasing * and aliasing. This is a pain, but it's better than requirering on of * these to have to know about clipping. The clipping here is done by * using the Slope and InvSlope members of the class to advance the * endpoints to the rectangle edges. Thus the function also assumes that * Slope and InvSlope have been calculated. * * Arguments: * * [IN] clipRect - The rectangle to clip against
* Return Value: * * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
BOOL OnePixelLineDDAAliased::ClipRectangle( const GpRect* clipRect ) {
INT clipBottom, clipTop, clipLeft, clipRight;
// Set the major and minor edges of the clipping
// region, converting to fixed point 28.4. Note that
// we don't convert to the pixel center, but to a
// that goes all the way up to the pixel edges. This
// makes a difference for antialiasing. We don't go all
// the way to the edge since some rounding rules could
// endup lighting the next pixel outside of the clipping
// area. That's why we add/subtract 7 instead of 8 for the
// bottom and right, since these are exclusive.
// For the left and top, subtract 8 (1/2 pixel), since here
// we are inclusive.
INT majorMin = (clipRect->GetLeft() << FBITS) - FHALF; INT majorMax = ((clipRect->GetRight() - 1) << FBITS) + FHALFMASK; INT minorMax = ((clipRect->GetBottom() - 1) << FBITS) + FHALFMASK; INT minorMin = (clipRect->GetTop() << FBITS) - FHALF;
if(!IsXMajor) { INT tmp; tmp = majorMin; majorMin = minorMin; minorMin = tmp; tmp = majorMax; majorMax = minorMax; minorMax = tmp; }
// First clip in the major coordinate
BOOL minOut, maxOut;
minOut = MajorStart < majorMin; maxOut = MajorEnd > majorMax;
if( minOut || maxOut ) { if(MajorStart > majorMax || MajorEnd < majorMin) { return FALSE; }
if(minOut) { MinorStart += GpFloor((majorMin - MajorStart)*Slope); MajorStart = majorMin; }
if(maxOut) { MinorEnd += GpFloor((majorMax - MajorEnd)*Slope); MajorEnd = majorMax;
// If we clipped the last point, we don't need to be IsEndExclusive
// anymore, as the last point now is not the line's last
// point but some in the middle.
IsEndExclusive = FALSE; } }
// Now clip the minor coordinate
INT *pMajor1, *pMinor1, *pMajor2, *pMinor2;
if(MinorDir == 1) { pMajor1 = &MajorStart; pMajor2 = &MajorEnd; pMinor1 = &MinorStart; pMinor2 = &MinorEnd; } else { pMajor1 = &MajorEnd; pMajor2 = &MajorStart; pMinor1 = &MinorEnd; pMinor2 = &MinorStart; }
minOut = *pMinor1 < minorMin; maxOut = *pMinor2 > minorMax;
if(minOut || maxOut) { if(*pMinor1 > minorMax || *pMinor2 < minorMin) { return FALSE; }
if(minOut) { *pMajor1 += GpFloor((minorMin - *pMinor1)*InvSlope); *pMinor1 = minorMin; }
if(maxOut) { *pMajor2 += GpFloor((minorMax - *pMinor2)*InvSlope); *pMinor2 = minorMax;
// If we clipped the last point, we don't need to be endExclusive
// anymore, as the last point now is not the line's last
// point but some in the middle.
IsEndExclusive = FALSE; } }
return(TRUE); }
/**************************************************************************\
* * Function Description: * * Given the fractional parts of a coordinate in fixed point, this * function returns if the coordinate is inside the diamond at the * nearest integer position. * * Arguments: * * [IN] xFrac - Fractional part of the x coordinate * [IN] yFrac - Fractional part of the y coordinate * [IN] SlopeIsOne - TRUE if the line has Slope +/- 1 * [IN] SlopeIsPosOne - TRUE if the line has Slope +1
* Return Value: * * TRUE if the coordinate is inside the diamond * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
BOOL OnePixelLineDDAAliased::IsInDiamond( INT xFrac, INT yFrac, BOOL SlopeIsOne, BOOL SlopeIsPosOne ) { // Get the fractional parts of the fix points, and the
// sum of their absolute values.
INT fracSum = 0;
if(xFrac > 0) { fracSum += xFrac; } else { fracSum -= xFrac; }
if(yFrac > 0) { fracSum += yFrac; } else { fracSum -= yFrac; }
// Return true if the point is inside the diamond.
if(fracSum < FHALF) { return TRUE; }
// Check the cases where we are at the two vertices of the
// diamond which are considered inside.
if(yFrac == 0) { if((SlopeIsPosOne && xFrac == -FHALF) || (!SlopeIsPosOne && xFrac == FHALF)) { return TRUE; } }
if((xFrac == 0) && (yFrac == FHALF)) { return TRUE; }
// Check for the cases where we are at the edges of the
// diamond with a Slope of one.
if (SlopeIsOne && (fracSum == FHALF)) { if (SlopeIsPosOne && (xFrac < 0) && (yFrac > 0)) { return TRUE; }
if (!SlopeIsPosOne && (xFrac > 0) && (yFrac > 0)) { return TRUE; } } return FALSE; }
typedef GpStatus DrawSolidLineFunc( DpScanBuffer *scan, const GpRect *clipRect, const DpClipRegion* clipRegionIn, GpPointF *point1, GpPointF *point2, ARGB inColor, BOOL drawLast ); DrawSolidLineFunc DrawSolidLineOnePixelAliased; DrawSolidLineFunc DrawSolidLineOnePixelAntiAliased;
/**************************************************************************\
* * Function Description: * * Called back by the path enumeration function, this draws a list * of lines. * * Return Value: * * GpStatus - Ok or failure status * * Created: * * 03/31/2000 andrewgo * \**************************************************************************/
struct EpSolidStrokeOnePixelContext { DrawSolidLineFunc *DrawLineFunction; DpScanBuffer *Scan; GpRect *ClipBoundsPointer; DpClipRegion *ClipRegion; ARGB Argb; BOOL DrawLast; // TRUE if draw last pixel in subpaths
};
BOOL DrawSolidStrokeOnePixel( VOID *voidContext, POINT *point, // 28.4 format, an arary of size 'count'
INT vertexCount, PathEnumerateTermination lastSubpath ) { EpSolidStrokeOnePixelContext *context = static_cast<EpSolidStrokeOnePixelContext*>(voidContext);
ASSERT(vertexCount >= 2);
for (INT i = vertexCount - 1; i != 0; i--, point++) { PointF pointOne(TOREAL((point)->x) / 16, TOREAL((point)->y) / 16); PointF pointTwo(TOREAL((point + 1)->x) / 16, TOREAL((point + 1)->y) / 16) ;
// Note that we're always drawing the last pixel, which is
// fine when we're 100% opaque, because we'll be re-drawing
// the same pixel for consecutive joined lines (it's a little
// more work, but the cost is small and is actually comparable
// to the overhead of deciding whether to do the last pixel
// or not).
//
// This is the wrong thing to do for non-opaque lines, because
// of the redraw issue. But we shouldn't be coming through
// here for the non-opaque case anyway, since any self-overlaps
// of the lines will cause pixel overdraw, which produces the
// 'wrong' result (or at least different from the 'right' result
// as defined by the widener code).
(context->DrawLineFunction)( context->Scan, context->ClipBoundsPointer, context->ClipRegion, &pointOne, &pointTwo, context->Argb, (lastSubpath==PathEnumerateCloseSubpath) || context->DrawLast ); }
return(TRUE); }
/**************************************************************************\
* * Function Description: * * Draws a one-pixel wide path with a solid color. * * Arguments: * * [IN] context - the context (matrix and clipping) * [IN] surface - the surface to fill * [IN] drawBounds - the surface bounds * [IN] path - the path to fill * [IN] pen - the pen to use * [IN] drawLast - TRUE if last pixels in subpaths are to be drawn. * * Return Value: * * GpStatus - Ok or failure status * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
GpStatus DpDriver::SolidStrokePathOnePixel( DpContext *context, DpBitmap *surface, const GpRect *drawBounds, const DpPath *path, const DpPen *pen, BOOL drawLast ) { GpBrush *brush = GpBrush::GetBrush(pen->Brush);
ASSERT(pen->Brush->Type == BrushTypeSolidColor); ASSERT(pen->Brush->SolidColor.IsOpaque());
// Antialiased lines are usually drawn using aarasterizer.cpp
// rather than aaline.cpp. If aaline.cpp is to be used, define
// AAONEPIXELLINE_SUPPORT
#ifdef AAONEPIXELLINE_SUPPORT
DrawSolidLineFunc *drawLineFunc = context->AntiAliasMode ? DrawSolidLineOnePixelAntiAliased : DrawSolidLineOnePixelAliased; #else
ASSERT(context->AntiAliasMode == 0); DrawSolidLineFunc *drawLineFunc = DrawSolidLineOnePixelAliased; #endif
// Determine if alpha blending is necessary
BOOL noTransparentPixels; noTransparentPixels = (!context->AntiAliasMode) && (brush->IsOpaque());
DpScanBuffer scan( surface->Scan, this, context, surface, noTransparentPixels);
if (!scan.IsValid()) { return(GenericError); }
GpSolidFill * solidBrush = static_cast<GpSolidFill *>(brush); ARGB argb = solidBrush->GetColor().GetValue();
DpClipRegion *clipRegion = &context->VisibleClip;
GpRect clipBounds; GpRect *clipBoundsPointer; RECT clipRect; RECT *clipRectPointer; DpRegion::Visibility visibility;
visibility = clipRegion->GetRectVisibility( drawBounds->X, drawBounds->Y, drawBounds->X + drawBounds->Width, drawBounds->Y + drawBounds->Height);
if (visibility == DpRegion::TotallyVisible) { clipBoundsPointer = NULL; clipRectPointer = NULL; clipRegion = NULL; } else { // !!![andrewgo] Is clipBoundsPointer actually needed?
clipRegion->GetBounds(&clipBounds); clipBoundsPointer = &clipBounds;
// Scale the clip bounds rectangle by 16 to account for our scaling
// to 28.4 coordinates:
clipRect.left = clipBounds.GetLeft() << 4; clipRect.top = clipBounds.GetTop() << 4; clipRect.right = clipBounds.GetRight() << 4; clipRect.bottom = clipBounds.GetBottom() << 4; clipRectPointer = &clipRect;
// !!![andrewgo] Why is this needed? Why wasn't this covered in
// GetRectVisibility?
if (clipRegion->IsSimple()) { clipRegion = NULL; } }
EpSolidStrokeOnePixelContext drawContext;
drawContext.DrawLineFunction = drawLineFunc; drawContext.Scan = &scan; drawContext.ClipBoundsPointer = clipBoundsPointer; drawContext.ClipRegion = clipRegion; drawContext.Argb = argb; drawContext.DrawLast = drawLast;
// Scale the transform by 16 to get 28.4 units:
GpMatrix transform = context->WorldToDevice; transform.AppendScale(TOREAL(16), TOREAL(16));
FixedPointPathEnumerate(path, &transform, clipRectPointer, PathEnumerateTypeStroke, DrawSolidStrokeOnePixel, &drawContext);
return(Ok); }
/**************************************************************************\
* * Function Description: * * Draws a one-pixe-wide line with a solid color. Calls on the * OnePixelLineDDAAliased class to do the actual drawing. * * Arguments: * * [IN] scan - The DpScanBuffer to access the drawing surface * [IN] clipRect - A single rectangle that includes all the clipping * region. If there is no clipping, should be set to NULL. * [IN] clipRegionIn - A complex clipping region. If the clipping region is * simple, this should be NULL, and clipRect will be used. * [IN] point1 - line end point * [IN] point2 - line end point * [IN] inColor - the solid color * [IN] drawLast - FALSE if the line is to be end-exclusive. * * Return Value: * * GpStatus - Ok or failure status * * Created: * * 03/31/1999 AMatos * \**************************************************************************/
GpStatus DrawSolidLineOnePixelAliased( DpScanBuffer *scan, const GpRect *clipRect, const DpClipRegion* clipRegionIn, GpPointF *point1, GpPointF *point2, ARGB inColor, BOOL drawLast ) { // Take out the const for now because the Enumeration method
// is not const.
DpClipRegion *clipRegion = const_cast<DpClipRegion*>(clipRegionIn);
// Setup the common part of the DDA
OnePixelLineDDAAliased dda;
INT width = scan->GetSurface()->Width; if(clipRect) { // We have a bug in the driver architecture which allows the
// surface associated with the scan to be smaller than the actual
// surface in the screen case (EpScanGdiDci).
// Therefore we need to look at the visible clip bounds also.
// If it turns out that the visible clip is bigger, our maximum
// width needs to be expanded.
// 350997 Aliased line is not clipped to surface
width = max(width, clipRect->Width); }
if(!dda.SetupCommon(point1, point2, drawLast, width)) { return Ok; }
dda.Color = GpColor::ConvertToPremultiplied(inColor); // Now handle the different clipping cases
if(!clipRect) { // This is easy, there is no clipping so just draw.
if(!dda.SetupAliased()) { return Ok; }
(dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
return Ok; } else { // The inverse of the Slope might be needed.
// Can't use the inverse slope if the slope is zero.
if(dda.Slope==0.0F) { dda.InvSlope=0.0F; } else { dda.InvSlope = (1.0F/dda.Slope); }
// First of all clip against the bounding rectangle
if(!dda.ClipRectangle(clipRect)) { return Ok; }
// Do the specific setup
if(!dda.SetupAliased()) { return Ok; }
// For each clip rectangle we store it's limits in
// an array of four elements. We then index this array using
// the variables below which depend on the slope and
// direction of the line in the following way: majorIn is edge crossed
// to go into the rect in the major direction, majorOut is the edge
// crossed to go out of the rect in the major direction, and so on.
// The same for xIn, xOut, yIn, yOut.
INT majorIn, majorOut, minorIn, minorOut; INT xIn, xOut, yIn, yOut; // Direction to enumerate the rectangles which depends on the
// line
DpClipRegion::Direction enumDirection; INT clipBounds[4]; // We store all our info in terms of major and minor
// direction, but to deal with cliping rectangles we
// need to know them in terms of x and y, so calculate
// xDir, yDir, the advance slope.
REAL xAdvanceRate; INT xDir, yDir; INT yEndLine; // If the line crosses a span completely, (xStart, yStart)
// is the position where it enters the span and (xEnd, yEnd)
// is the position that it leaves. If it starts inside the
// span, then (xStart, yStart) is the start point
REAL yStart, xStart, xEnd, yEnd;
if(dda.IsXMajor) { // Calculate the in-out indices
majorIn = xIn = 0; majorOut = xOut = 2; if(dda.MinorDir == 1) { minorIn = 1; minorOut = 3; enumDirection = DpClipRegion::TopLeftToBottomRight; } else { minorIn = 3; minorOut = 1; enumDirection = DpClipRegion::BottomLeftToTopRight; } yIn = minorIn; yOut = minorOut;
// Make (xStart, yStart) be the initial point
yStart = (REAL)dda.MinorStart; xStart = (REAL)dda.MajorStart;
// Always advance in positive direction when X is major
xAdvanceRate = REALABS(dda.InvSlope); xDir = 1; yDir = dda.MinorDir; yEndLine = dda.MinorEnd; } else { majorIn = yIn = 1; majorOut = yOut = 3; if(dda.MinorDir == 1) { minorIn = 0; minorOut = 2; enumDirection = DpClipRegion::TopLeftToBottomRight; } else { minorIn = 2; minorOut = 0; enumDirection = DpClipRegion::TopRightToBottomLeft; } xIn = minorIn; xOut = minorOut;
// Make (xStart, yStart) be the initial point
yStart = (REAL)dda.MajorStart; xStart = (REAL)dda.MinorStart;
xAdvanceRate = dda.Slope; xDir = dda.MinorDir; yDir = 1; yEndLine = dda.MajorEnd; }
// Update the drawing function to the correct
// slipping version
dda.DrawFuncIndex += FUNC_CLIP_OFFSET; if(!clipRegion) { // In this case there is only a single rect, so just
// draw clipped to that
// Store the rectangle in an array so we can atribute the
// right values to the MajorIn, majorOut, etc... variables.
// Remember that bottom and right are exclusive.
clipBounds[0] = clipRect->GetLeft(); clipBounds[1] = clipRect->GetTop(); clipBounds[2] = clipRect->GetRight() - 1; clipBounds[3] = clipRect->GetBottom() - 1;
dda.MajorIn = clipBounds[majorIn]; dda.MajorOut = clipBounds[majorOut]; dda.MinorIn = clipBounds[minorIn]; dda.MinorOut = clipBounds[minorOut];
(dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
return Ok; } else { BOOL agregating = FALSE; INT agregateBounds[4];
// We have a complex clipping region. So what we'll do
// is clip against each individual rectangle in the
// cliping region.
clipRegion->StartEnumeration(GpFloor(yStart), enumDirection);
GpRect rect;
// Get the first rectangle.
INT numRects = 1;
clipRegion->Enumerate(&rect, numRects); clipBounds[0] = rect.GetLeft(); clipBounds[1] = rect.GetTop(); clipBounds[2] = rect.GetRight() - 1; clipBounds[3] = rect.GetBottom() - 1; // Store the y position into the span
INT currSpanYMin = clipBounds[yIn];
// We need some special treatment for the case where the
// line is horizontal, since is this case it's not going
// to cross different spans. And it it's not in the current
// span, it's totally clipped out.
if(dda.IsXMajor && dda.ErrorUp == 0) { if(yStart >= clipBounds[1] && yStart <= clipBounds[3]) { xStart = (REAL)dda.MajorStart; xEnd = (REAL)dda.MajorEnd; } else { return Ok; } } else { if(yStart < clipBounds[1] || yStart > clipBounds[3]) { xStart = xStart + (clipBounds[yIn] - yStart)*xAdvanceRate; yStart = (REAL)clipBounds[yIn]; }
// Account for initial DDA error when calculating xEnd so that clipping
// will track what the DDA is actually drawing.
xEnd = xStart + ((clipBounds[yOut] - yStart)*yDir - ((REAL)dda.Error / (REAL)dda.ErrorDown))*xAdvanceRate; } yEnd = (REAL)clipBounds[yOut];
while(1) { // Get to the first rectangle on the span that crosses the
// line
while((xStart - clipBounds[xOut])*xDir > 0) { numRects = 1; clipRegion->Enumerate(&rect, numRects); clipBounds[0] = rect.GetLeft(); clipBounds[1] = rect.GetTop(); clipBounds[2] = rect.GetRight() - 1; clipBounds[3] = rect.GetBottom() - 1;
if(numRects != 1) { goto draw_agregated; } if(clipBounds[yIn] != currSpanYMin) { // There may be pending aggregated drawing operations. If so
// perform them now before doing the next span.
if (agregating) break; else goto process_next_span; } }
// Draw on all the rectangles that intersect the
// line
if((xStart - clipBounds[xIn])*xDir > 0 && (clipBounds[xOut] - xEnd)*xDir > 0) { if(agregating) { if((clipBounds[xIn] - agregateBounds[xIn])*xDir < 0) { agregateBounds[xIn] = clipBounds[xIn]; } if((clipBounds[xOut] - agregateBounds[xOut])*xDir > 0) { agregateBounds[xOut] = clipBounds[xOut]; } agregateBounds[yOut] = clipBounds[yOut]; } else { agregateBounds[0] = clipBounds[0]; agregateBounds[1] = clipBounds[1]; agregateBounds[2] = clipBounds[2]; agregateBounds[3] = clipBounds[3];
agregating = TRUE; } } else { if(agregating) { dda.MajorIn = agregateBounds[majorIn]; dda.MajorOut = agregateBounds[majorOut]; dda.MinorIn = agregateBounds[minorIn]; dda.MinorOut = agregateBounds[minorOut]; (dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan); agregating = FALSE; } while((xEnd - clipBounds[xIn])*xDir > 0) { dda.MajorIn = clipBounds[majorIn]; dda.MajorOut = clipBounds[majorOut]; dda.MinorIn = clipBounds[minorIn]; dda.MinorOut = clipBounds[minorOut]; (dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
if(dda.MajorStart > dda.MajorEnd) { return Ok; }
numRects = 1; clipRegion->Enumerate(&rect, numRects); clipBounds[0] = rect.GetLeft(); clipBounds[1] = rect.GetTop(); clipBounds[2] = rect.GetRight() - 1; clipBounds[3] = rect.GetBottom() - 1; if(numRects != 1) { goto draw_agregated; } if(clipBounds[yIn] != currSpanYMin) { goto process_next_span; } } }
// Get to the next span
while(clipBounds[yIn] == currSpanYMin) { numRects = 1; clipRegion->Enumerate(&rect, numRects); clipBounds[0] = rect.GetLeft(); clipBounds[1] = rect.GetTop(); clipBounds[2] = rect.GetRight() - 1; clipBounds[3] = rect.GetBottom() - 1;
if(numRects != 1) { goto draw_agregated; } }
process_next_span:
if((clipBounds[yIn] - yEndLine)*yDir > 0) { // We are done.
goto draw_agregated; }
if((clipBounds[yIn] - yEnd)*yDir == 1) { xStart = xEnd; } else { if(agregating) { dda.MajorIn = agregateBounds[majorIn]; dda.MajorOut = agregateBounds[majorOut]; dda.MinorIn = agregateBounds[minorIn]; dda.MinorOut = agregateBounds[minorOut]; (dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan); if(dda.MajorStart > dda.MajorEnd) { return Ok; }
agregating = FALSE; }
xStart = xStart + (clipBounds[yIn] - yStart)*yDir*xAdvanceRate; }
yStart = (REAL)clipBounds[yIn]; // Add 1 to make the amount added to xStart proportional to height of
// the clipping rectangle, since clipBounds are inset by 1.
xEnd = xStart + ((clipBounds[yOut] - yStart)*yDir + 1)*xAdvanceRate; yEnd = (REAL)clipBounds[yOut]; currSpanYMin = GpFloor(yStart); }
draw_agregated:
if(agregating) { dda.MajorIn = agregateBounds[majorIn]; dda.MajorOut = agregateBounds[majorOut]; dda.MinorIn = agregateBounds[minorIn]; dda.MinorOut = agregateBounds[minorOut]; (dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan); }
} }
return Ok; }
#pragma optimize("a", off)
|