|
|
/*++
Copyright (c) 1991 Microsoft Corporation
Module Name:
MyNtfs.h
Current Version Numbers:
Major.Minor Version: 1.2
Abstract:
This module defines some on-disk structure of the Ntfs file system as needed by findfast.exe.
*/
//
// The following types and macros are used to help unpack the packed and
// misaligned fields found in the Bios parameter block
//
typedef union _UCHAR1 { UCHAR Uchar[1]; UCHAR ForceAlignment; } UCHAR1, *PUCHAR1;
typedef union _UCHAR2 { UCHAR Uchar[2]; USHORT ForceAlignment; } UCHAR2, *PUCHAR2;
typedef union _UCHAR4 { UCHAR Uchar[4]; ULONG ForceAlignment; } UCHAR4, *PUCHAR4;
#define CopyUchar1(D,S) { \
*((UCHAR1 *)(D)) = *((UNALIGNED UCHAR1 *)(S)); \ }
#define CopyUchar2(D,S) { \
*((UCHAR2 *)(D)) = *((UNALIGNED UCHAR2 *)(S)); \ }
#define CopyUchar4(D,S) { \
*((UCHAR4 *)(D)) = *((UNALIGNED UCHAR4 *)(S)); \ }
typedef LONGLONG LCN; typedef LCN *PLCN;
typedef LONGLONG VCN; typedef VCN *PVCN;
//
// Define the Packed and Unpacked BIOS Parameter Block
//
typedef struct _PACKED_BIOS_PARAMETER_BLOCK {
UCHAR BytesPerSector[2]; // offset = 0x000
UCHAR SectorsPerCluster[1]; // offset = 0x002
UCHAR ReservedSectors[2]; // offset = 0x003 (zero)
UCHAR Fats[1]; // offset = 0x005 (zero)
UCHAR RootEntries[2]; // offset = 0x006 (zero)
UCHAR Sectors[2]; // offset = 0x008 (zero)
UCHAR Media[1]; // offset = 0x00A
UCHAR SectorsPerFat[2]; // offset = 0x00B (zero)
UCHAR SectorsPerTrack[2]; // offset = 0x00D
UCHAR Heads[2]; // offset = 0x00F
UCHAR HiddenSectors[4]; // offset = 0x011 (zero)
UCHAR LargeSectors[4]; // offset = 0x015 (zero)
} PACKED_BIOS_PARAMETER_BLOCK; // sizeof = 0x019
typedef PACKED_BIOS_PARAMETER_BLOCK *PPACKED_BIOS_PARAMETER_BLOCK;
typedef struct BIOS_PARAMETER_BLOCK {
USHORT BytesPerSector; UCHAR SectorsPerCluster; USHORT ReservedSectors; UCHAR Fats; USHORT RootEntries; USHORT Sectors; UCHAR Media; USHORT SectorsPerFat; USHORT SectorsPerTrack; USHORT Heads; ULONG HiddenSectors; ULONG LargeSectors;
} BIOS_PARAMETER_BLOCK;
typedef BIOS_PARAMETER_BLOCK *PBIOS_PARAMETER_BLOCK;
//
// This macro takes a Packed BIOS and fills in its Unpacked
// equivalent
//
#define NtfsUnpackBios(Bios,Pbios) { \
CopyUchar2(&((Bios)->BytesPerSector), &(Pbios)->BytesPerSector ); \ CopyUchar1(&((Bios)->SectorsPerCluster), &(Pbios)->SectorsPerCluster); \ CopyUchar2(&((Bios)->ReservedSectors), &(Pbios)->ReservedSectors ); \ CopyUchar1(&((Bios)->Fats), &(Pbios)->Fats ); \ CopyUchar2(&((Bios)->RootEntries), &(Pbios)->RootEntries ); \ CopyUchar2(&((Bios)->Sectors), &(Pbios)->Sectors ); \ CopyUchar1(&((Bios)->Media), &(Pbios)->Media ); \ CopyUchar2(&((Bios)->SectorsPerFat), &(Pbios)->SectorsPerFat ); \ CopyUchar2(&((Bios)->SectorsPerTrack), &(Pbios)->SectorsPerTrack ); \ CopyUchar2(&((Bios)->Heads), &(Pbios)->Heads ); \ CopyUchar4(&((Bios)->HiddenSectors), &(Pbios)->HiddenSectors ); \ CopyUchar4(&((Bios)->LargeSectors), &(Pbios)->LargeSectors ); \ }
typedef ULONG ATTRIBUTE_TYPE_CODE; typedef ATTRIBUTE_TYPE_CODE *PATTRIBUTE_TYPE_CODE;
//
// System-defined Attribute Type Codes. For the System-defined
// attributes, the Unicode Name is exactly equal to the name of the
// following symbols. For this reason, all of the system-defined
// attribute names start with "$", to always distinguish them when
// attribute names are listed, and to reserve a namespace for
// attributes defined in the future. I.e., a User-Defined
// attribute name will never collide with a current or future
// system-defined attribute name if it does not start with "$".
// User attribute numbers should not start until
// $FIRST_USER_DEFINED_ATTRIBUTE, to allow the potential for
// upgrading existing volumes with new user-defined attributes in
// future versions of NTFS. The tagged attribute list is
// terminated with a lone-standing 0 ($END) - the rest of the
// attribute record does not exist.
//
// The type code value of 0 is reserved for convenience of the
// implementation.
//
#define $UNUSED (0X0)
#define $STANDARD_INFORMATION (0x10)
#define $ATTRIBUTE_LIST (0x20)
#define $FILE_NAME (0x30)
#define $OBJECT_ID (0x40)
#define $SECURITY_DESCRIPTOR (0x50)
#define $VOLUME_NAME (0x60)
#define $VOLUME_INFORMATION (0x70)
#define $DATA (0x80)
#define $INDEX_ROOT (0x90)
#define $INDEX_ALLOCATION (0xA0)
#define $BITMAP (0xB0)
#define $REPARSE_POINT (0xC0)
#define $EA_INFORMATION (0xD0)
#define $EA (0xE0)
// #define $LOGGED_UTILITY_STREAM (0x100) // defined in ntfsexp.h
#define $FIRST_USER_DEFINED_ATTRIBUTE (0x1000)
#define $END (0xFFFFFFFF)
//
// Define the boot sector. Note that MFT2 is exactly three file
// record segments long, and it mirrors the first three file record
// segments from the MFT, which are MFT, MFT2 and the Log File.
//
// The Oem field contains the ASCII characters "NTFS ".
//
// The Checksum field is a simple additive checksum of all of the
// ULONGs which precede the Checksum ULONG. The rest of the sector
// is not included in this Checksum.
//
typedef struct _PACKED_BOOT_SECTOR {
UCHAR Jump[3]; // offset = 0x000
UCHAR Oem[8]; // offset = 0x003
PACKED_BIOS_PARAMETER_BLOCK PackedBpb; // offset = 0x00B
UCHAR Unused[4]; // offset = 0x024
LONGLONG NumberSectors; // offset = 0x028
LCN MftStartLcn; // offset = 0x030
LCN Mft2StartLcn; // offset = 0x038
CHAR ClustersPerFileRecordSegment; // offset = 0x040
UCHAR Reserved0[3]; CHAR DefaultClustersPerIndexAllocationBuffer; // offset = 0x044
UCHAR Reserved1[3]; LONGLONG SerialNumber; // offset = 0x048
ULONG Checksum; // offset = 0x050
UCHAR BootStrap[0x200-0x054]; // offset = 0x054
} PACKED_BOOT_SECTOR; // sizeof = 0x200
typedef PACKED_BOOT_SECTOR *PPACKED_BOOT_SECTOR;
//
// The MFT Segment Reference is an address in the MFT tagged with
// a circularly reused sequence number set at the time that the MFT
// Segment Reference was valid. Note that this format limits the
// size of the Master File Table to 2**48 segments. So, for
// example, with a 1KB segment size the maximum size of the master
// file would be 2**58 bytes, or 2**28 gigabytes.
//
typedef struct _MFT_SEGMENT_REFERENCE {
//
// First a 48 bit segment number.
//
ULONG SegmentNumberLowPart; // offset = 0x000
USHORT SegmentNumberHighPart; // offset = 0x004
//
// Now a 16 bit nonzero sequence number. A value of 0 is
// reserved to allow the possibility of a routine accepting
// 0 as a sign that the sequence number check should be
// repressed.
//
USHORT SequenceNumber; // offset = 0x006
} MFT_SEGMENT_REFERENCE, *PMFT_SEGMENT_REFERENCE; // sizeof = 0x008
//
// A file reference in NTFS is simply the MFT Segment Reference of
// the Base file record.
//
typedef MFT_SEGMENT_REFERENCE FILE_REFERENCE, *PFILE_REFERENCE;
//
// File Record Segment. This is the header that begins every File
// Record Segment in the Master File Table.
//
typedef struct _FILE_RECORD_SEGMENT_HEADER {
//
// Multi-Sector Header as defined by the Cache Manager. This
// structure will always contain the signature "FILE" and a
// description of the location and size of the Update Sequence
// Array.
//
UCHAR Pad0[0x10]; // offset = 0x000
//
// Sequence Number. This is incremented each time that a File
// Record segment is freed, and 0 is not used. The
// SequenceNumber field of a File Reference must match the
// contents of this field, or else the File Reference is
// incorrect (presumably stale).
//
USHORT SequenceNumber; // offset = 0x010
//
// This is the count of the number of references which exist
// for this segment, from an INDEX_xxx attribute. In File
// Records Segments other than the Base File Record Segment,
// this field is 0.
//
USHORT ReferenceCount; // offset = 0x012
//
// Offset to the first Attribute record in bytes.
//
USHORT FirstAttributeOffset; // offset = 0x014
//
// FILE_xxx flags.
//
USHORT Flags; // offset = 0x016
//
// First free byte available for attribute storage, from start
// of this header. This value should always be aligned to a
// quad-word boundary, since attributes are quad-word aligned.
//
ULONG FirstFreeByte; // offset = x0018
//
// Total bytes available in this file record segment, from the
// start of this header. This is essentially the file record
// segment size.
//
ULONG BytesAvailable; // offset = 0x01C
//
// This is a File Reference to the Base file record segment for
// this file. If this is the Base, then the value of this
// field is all 0's.
//
UCHAR Pad1[8]; // offset = 0x020
//
// This is the attribute instance number to be used when
// creating an attribute. It is zeroed when the base file
// record is created, and captured for each new attribute as it
// is created and incremented afterwards for the next
// attribute. Instance numbering must also occur for the
// initial attributes. Zero is a valid attribute instance
// number, and typically used for standard information.
//
USHORT NextAttributeInstance; // offset = 0x028
//
// Current FRS record - this is here for recovery alone and added in 5.1
// Note: this is not aligned
//
USHORT SegmentNumberHighPart; // offset = 0x02A
ULONG SegmentNumberLowPart; // offset = 0x02C
//
// Update Sequence Array to protect multi-sector transfers of
// the File Record Segment. Accesses to already initialized
// File Record Segments should go through the offset above, for
// upwards compatibility.
//
UCHAR Pad2[1]; // offset = 0x030
} FILE_RECORD_SEGMENT_HEADER; typedef FILE_RECORD_SEGMENT_HEADER *PFILE_RECORD_SEGMENT_HEADER;
//
// FILE_xxx flags.
//
#define FILE_RECORD_SEGMENT_IN_USE (0x0001)
#define FILE_FILE_NAME_INDEX_PRESENT (0x0002)
#define FILE_SYSTEM_FILE (0x0004)
#define FILE_VIEW_INDEX_PRESENT (0x0008)
//
// Attribute Record. Logically an attribute has a type, an
// optional name, and a value, however the storage details make it
// a little more complicated. For starters, an attribute's value
// may either be resident in the file record segment itself, on
// nonresident in a separate data stream. If it is nonresident, it
// may actually exist multiple times in multiple file record
// segments to describe different ranges of VCNs.
//
// Attribute Records are always aligned on a quad word (64-bit)
// boundary.
//
typedef struct _ATTRIBUTE_RECORD_HEADER {
//
// Attribute Type Code.
//
ATTRIBUTE_TYPE_CODE TypeCode; // offset = 0x000
//
// Length of this Attribute Record in bytes. The length is
// always rounded to a quad word boundary, if necessary. Also
// the length only reflects the size necessary to store the
// given record variant.
//
ULONG RecordLength; // offset = 0x004
//
// Attribute Form Code (see below)
//
UCHAR FormCode; // offset = 0x008
//
// Length of the optional attribute name in characters, or 0 if
// there is none.
//
UCHAR NameLength; // offset = 0x009
//
// Offset to the attribute name from start of attribute record,
// in bytes, if it exists. This field is undefined if
// NameLength is 0.
//
USHORT NameOffset; // offset = 0x00A
//
// ATTRIBUTE_xxx flags.
//
USHORT Flags; // offset = 0x00C
//
// The file-record-unique attribute instance number for this
// attribute.
//
USHORT Instance; // offset = 0x00E
//
// The following union handles the cases distinguished by the
// Form Code.
//
union {
//
// Resident Form. Attribute resides in file record segment.
//
struct {
//
// Length of attribute value in bytes.
//
ULONG ValueLength; // offset = 0x010
//
// Offset to value from start of attribute record, in
// bytes.
//
USHORT ValueOffset; // offset = 0x014
//
// RESIDENT_FORM_xxx Flags.
//
UCHAR ResidentFlags; // offset = 0x016
//
// Reserved.
//
UCHAR Reserved; // offset = 0x017
} Resident;
//
// Nonresident Form. Attribute resides in separate stream.
//
struct {
//
// Lowest VCN covered by this attribute record.
//
VCN LowestVcn; // offset = 0x010
//
// Highest VCN covered by this attribute record.
//
VCN HighestVcn; // offset = 0x018
//
// Offset to the Mapping Pairs Array (defined below),
// in bytes, from the start of the attribute record.
//
USHORT MappingPairsOffset; // offset = 0x020
//
// Unit of Compression size for this stream, expressed
// as a log of the cluster size.
//
// 0 means file is not compressed
// 1, 2, 3, and 4 are potentially legal values if the
// stream is compressed, however the implementation
// may only choose to use 4, or possibly 3. Note
// that 4 means cluster size time 16. If convenient
// the implementation may wish to accept a
// reasonable range of legal values here (1-5?),
// even if the implementation only generates
// a smaller set of values itself.
//
UCHAR CompressionUnit; // offset = 0x022
//
// Reserved to get to quad word boundary.
//
UCHAR Reserved[5]; // offset = 0x023
//
// Allocated Length of the file in bytes. This is
// obviously an even multiple of the cluster size.
// (Not present if LowestVcn != 0.)
//
LONGLONG AllocatedLength; // offset = 0x028
//
// File Size in bytes (highest byte which may be read +
// 1). (Not present if LowestVcn != 0.)
//
LONGLONG FileSize; // offset = 0x030
//
// Valid Data Length (highest initialized byte + 1).
// This field must also be rounded to a cluster
// boundary, and the data must always be initialized to
// a cluster boundary. (Not present if LowestVcn != 0.)
//
LONGLONG ValidDataLength; // offset = 0x038
//
// Totally allocated. This field is only present for the first
// file record of a compressed stream. It represents the sum of
// the allocated clusters for a file.
//
LONGLONG TotalAllocated; // offset = 0x040
//
//
// Mapping Pairs Array, starting at the offset stored
// above.
//
// The Mapping Pairs Array is stored in a compressed
// form, and assumes that this information is
// decompressed and cached by the system. The reason
// for compressing this information is clear, it is
// done in the hopes that all of the retrieval
// information always fits in a single file record
// segment.
//
// Logically, the MappingPairs Array stores a series of
// NextVcn/CurrentLcn pairs. So, for example, given
// that we know the first Vcn (from LowestVcn above),
// the first Mapping Pair tells us what the next Vcn is
// (for the next Mapping Pair), and what Lcn the
// current Vcn is mapped to, or 0 if the Current Vcn is
// not allocated. (This is exactly the FsRtl MCB
// structure).
//
// For example, if a file has a single run of 8
// clusters, starting at Lcn 128, and the file starts
// at LowestVcn=0, then the Mapping Pairs array has
// just one entry, which is:
//
// NextVcn = 8
// CurrentLcn = 128
//
// The compression is implemented with the following
// algorithm. Assume that you initialize two "working"
// variables as follows:
//
// NextVcn = LowestVcn (from above)
// CurrentLcn = 0
//
// The MappingPairs array is byte stream, which simply
// store the changes to the working variables above,
// when processed sequentially. The byte stream is to
// be interpreted as a zero-terminated stream of
// triples, as follows:
//
// count byte = v + (l * 16)
//
// where v = number of changed low-order Vcn bytes
// l = number of changed low-order Lcn bytes
//
// v Vcn change bytes
// l Lcn change bytes
//
// The byte stream terminates when a count byte of 0 is
// encountered.
//
// The decompression algorithm goes as follows,
// assuming that Attribute is a pointer to the
// attribute record.
//
// 1. Initialize:
// NextVcn = Attribute->LowestVcn;
// CurrentLcn = 0;
//
// 2. Initialize byte stream pointer to: (PCHAR)Attribute +
// Attribute->AttributeForm->Nonresident->MappingPairsOffset
//
// 3. CurrentVcn = NextVcn;
//
// 4. Read next byte from stream. If it is 0, then
// break, else extract v and l (see above).
//
// 5. Interpret the next v bytes as a signed quantity,
// with the low-order byte coming first. Unpack it
// sign-extended into 64 bits and add it to NextVcn.
// (It can really only be positive, but the Lcn
// change can be positive or negative.)
//
// 6. Interpret the next l bytes as a signed quantity,
// with the low-order byte coming first. Unpack it
// sign-extended into 64 bits and add it to
// CurrentLcn. Remember, if this produces a
// CurrentLcn of 0, then the Vcns from the
// CurrentVcn to NextVcn-1 are unallocated.
//
// 7. Update cached mapping information from
// CurrentVcn, NextVcn and CurrentLcn.
//
// 8. Loop back to 3.
//
// The compression algorithm should now be obvious, as
// it is the reverse of the above. The compression and
// decompression algorithms will be available as common
// RTL routines, available to NTFS and file utilities.
//
// In defense of this algorithm, not only does it
// provide compression of the on-disk storage
// requirements, but it results in a single
// representation, independent of disk size and file
// size. Contrast this with solutions which are in use
// which define multiple sizes for virtual and logical
// cluster sizes, depending on the size of the disk,
// etc. For example, two byte cluster numbers might
// suffice for a floppy, while four bytes would be
// required for most hard disks today, and five or six
// bytes are required after a certain number of
// gigabytes, etc. This eventually results in more
// complex code than above (because of the cases) and
// worse yet - untested cases. So, more important than
// the compression, the above algorithm provides one
// case which efficiently handles any size disk.
//
} Nonresident;
} Form;
} ATTRIBUTE_RECORD_HEADER; typedef ATTRIBUTE_RECORD_HEADER *PATTRIBUTE_RECORD_HEADER;
//
// Attribute Form Codes
//
#define RESIDENT_FORM (0x00)
#define NONRESIDENT_FORM (0x01)
//
// File Name attribute. A file has one File Name attribute for
// every directory it is entered into (hard links).
//
typedef struct _FILE_NAME {
//
// This is a File Reference to the directory file which indexes
// to this name.
//
FILE_REFERENCE ParentDirectory; // offset = 0x000
//
// Information for faster directory operations.
//
UCHAR Pad0[0x38]; // offset = 0x008
//
// Length of the name to follow, in (Unicode) characters.
//
UCHAR FileNameLength; // offset = 0x040
//
// FILE_NAME_xxx flags
//
UCHAR Flags; // offset = 0x041
//
// First character of Unicode File Name
//
WCHAR FileName[1]; // offset = 0x042
} FILE_NAME; typedef FILE_NAME *PFILE_NAME;
|