|
|
subttl emtrig.asm - Trig functions sine, cosine, tangent page ;******************************************************************************* ; Copyright (c) Microsoft Corporation 1991 ; All Rights Reserved ; ;emtrig.asm - Trig functions sine, cosine, tangent ; by Tim Paterson ; ;Purpose: ; FCOS, FPTAN, FSIN, FSINCOS instructions ;Inputs: ; edi = [CURstk] ; ;Revision History: ; ; [] 09/05/91 TP Initial 32-bit version. ; ;*******************************************************************************
;XPi is the 66-bit value of Pi from the Intel manual XPiHi equ 0C90FDAA2H XPiMid equ 02168C234H XPiLo equ 0C0000000H ;Extension of pi PiOver4exp equ -1 ;Pi/4 ~= 3/4, so exponent is -1
TinyAngleExp equ -32 ;Smallest angle we bother with MaxAngleExp equ 63 ;Angle that's too big
Trig1Result: ;Trig function reduction routine used by functions returning 1 value ;(FSIN and FCOS) ;edi = [CURstk] = argument pointer ;Argument has already been checked for zero. ;ZF = (tag == bTAG_ZERO) jb TrigPrem ;Tagged special mov al,EMSEG:[edi].bTAG cmp al,bTAG_DEN jz TrigDenorm add sp,4 ;Don't return to caller cmp al,bTAG_INF jnz SpclDestNotDen ;Check for Empty or NAN mov EMSEG:[SWcc],C2 ;Can't reduce infinity jmp ReturnIndefinite
TrigDenorm: mov EMSEG:[CURerr],Denormal test EMSEG:[CWmask],Denormal ;Is denormal exception masked? jnz TrigPrem ;Yes, continue add sp,4 ;Don't return to caller TrigRet: ret
Trig2Inf: mov EMSEG:[SWcc],C2 ;Can't reduce infinity jmp Trig2Indefinite
Trig2StackOver: mov EMSEG:[SWcc],C1 ;Signal overflow Trig2StackUnder: mov EMSEG:[CURerr],Invalid+StackFlag Trig2Indefinite: add sp,4 ;Don't return to caller call ReturnIndefinite jz TrigRet ;Unmasked, don't change registers ;Produce masked response mov EMSEG:[CURstk],esi ;Push stack mov edi,esi jmp ReturnIndefinite
Trig2Special: cmp al,bTAG_DEN jz TrigDenorm cmp al,bTAG_INF jz Trig2Inf ;Must be a NAN add sp,4 ;Don't return to caller call DestNAN jz TrigRet ;Unmasked, don't change registers ;Produce masked response mov EMSEG:[CURstk],esi ;Push stack mov eax,EMSEG:[edi].ExpSgn mov EMSEG:[esi].ExpSgn,eax mov eax,EMSEG:[edi].lManHi mov EMSEG:[esi].lManHi,eax mov eax,EMSEG:[edi].lManLo mov EMSEG:[esi].lManLo,eax ret
Trig2Zero: add sp,4 ;Don't return to caller mov EMSEG:[CURstk],esi mov edi,esi ;Amazing coincidence: both FSINCOS and FPTAN return the same result for ;a zero argument: ; FSINCOS returns ST(0) = cos(0) = 1, ST(1) = sin(0) = 0. ; FPTAN returns ST(0) = 1 always, ST(1) = tan(0) = 0. ;Return zero has same sign as argument zero, so we don't need to touch ;it -- just push +1.0. jmp ReturnOne
TrigOutOfRange: mov EMSEG:[SWcc],C2 ;Signal argument not reduced add sp,4 ret
PrevStackWrap esi,Trig2 ;Tied to PrevStackElem below
Trig2Result: ;Trig function reduction routine used by functions returning 2 values ;(FSINCOS and FPTAN) ;edi = [CURstk] = argument pointer mov esi,edi PrevStackElem esi,Trig2 ;esi points to second result location mov al,EMSEG:[edi].bTAG ;Get tag cmp al,bTAG_EMPTY ;Stack underflow if empty jz Trig2StackUnder cmp EMSEG:[esi].bTAG,bTAG_EMPTY ;Stack overflow if not empty jnz Trig2StackOver cmp al,bTAG_ZERO ;Is it Special? ja Trig2Special jz Trig2Zero ;Fall into TrigPrem
;**** ;TrigPrem ; ;This routine reduces an angle in radians to the range [0, pi/4]. ;Angles in odd-numbered octants have been subtracted from pi/4. ;It uses a 66-bit value for pi, as required by the 387. ;TrigPrem uses the same two-stage algorithm as FPREM (see ;emfprem.asm). However, it is limited to an argument < 2^63. ; ;Inputs: ; edi = [CURstk] ;Outputs: ; ebx:esi = remainder, normalized ; high ecx = exponent, cl = tag ; al = octant ; edi = [CURstk]
TrigPrem: mov EMSEG:[Result],edi mov eax,EMSEG:[edi].lManLo mov edx,EMSEG:[edi].lManHi movsx ebx,EMSEG:[edi].wExp cmp ebx,MaxAngleExp jge TrigOutOfRange xor edi,edi ;Extend dividend xor esi,esi ;Quotient, in case we skip stage 1 .erre PiOver4exp eq -1 inc ebx ;Subtract exponent of pi/4 jl ExitTrigPrem ;If dividend is smaller, return it. ;We now know that 0 <= ExpDif < 64, so it fits in bl. cmp bl,31 ;Do we need to do stage 1? jl FitPi ;No, start stage 2
;FPREM stage 1 ; ;Exponent difference is at least 31. Use 32-bit division to compute ;quotient and exact remainder, reducing exponent difference by 31. ; ;edx:eax = dividend ;ebx = exponent difference
;Shift dividend right one bit to be sure DIV instruction won't overflow ;This means we'll be reducing the exponent difference by 31, not 32 xor ebp,ebp ;Dividend extension shrd ebp,eax,1 shrd eax,edx,1 shr edx,1
sub bl,31 ;Exponent reduced mov ecx,XPiHi div ecx ;Guess a quotient "digit"
;Check out our guess. ;Currently, remainder in edx = (high dividend) - (quotient * high pi). ;(High dividend is the upper 64 bits--ebp has 1 bit.) The definition ;of remainder is (all dividend) - (quotient * all pi). So if we ;subtract (quotient * low pi) from edx:ebp, we'll get the true ;remainder. If it's negative, our guess was too big.
mov esi,eax ;Save quotient mov ecx,edx ;Save remainder
;The pi/4 we use has two bits set below the first 64 bits. This means ;we must add another 3/4 of the quotient into the amount to subtract, ;which we'll compute by rounding the low 32 bits up 1, then subtracting ;1/4 of quotient. But since we're computing the amount to subtract from ;the remainder, we'll add the 1/4 of the quotient to the remainder instead ;of subtracting it from the amount to subtract.
.erre XPiLo eq (3 shl 30) mov eax,XPiMid+1 mul esi ;Quotient * low pi ;Note that ebp is either 0 or 800...00H shr ebp,30 ;Move down to low end shld ebp,esi,30 ;Move back up, adding 1/4 of quotient mov edi,esi ;Another copy of quotient shl edi,30 ;Keep last two bits ;edx:eax has amount to subtract to get correct remainder from ecx:ebp:edi sub ebp,eax sbb ecx,edx ;Subtract from remainder mov eax,ebp mov edx,ecx ;Remainder back to edx:eax:edi jnc TrigPremNorm ;Was quotient OK? TrigCorrect: dec esi ;Quotient was too big add edi,XPiLo adc eax,XPiMid ;Add divisor back into remainder adc edx,XPiHi jnc TrigCorrect ;Repeat if quotient is still too big jmp TrigPremNorm
;FPREM stage 2 ; ;Exponent difference is less than 32. Use restoring long division to ;compute quotient bits until exponent difference is zero. Note that we ;often get more than one bit/loop: BSR is used to scan off leading ;zeros each time around. Since the divisor is normalized, we can ;instantly compute a zero quotient bit for each leading zero bit.
TrigPremLoop: ;edx:eax:edi = dividend (remainder) minus pi/4 ;esi = quotient ;ebx = exponent difference ; ;If D is current dividend and p is pi/4, then we have edx:eax:edi = D - p, ;which is negative. We want 2*D - p, which is positive. ;2*D - p = 2*(D - p) + p. add edi,edi ;2*(D - p) adc eax,eax adc edx,edx
add edi,XPiLo ;2*(D-p) + p = 2*D - p adc eax,XPiMid adc edx,XPiHi
add esi,esi ;Double quotient too dec ebx ;Decrement exponent difference PiFit: inc esi TrigPremNorm: bsr ecx,edx ;Find first 1 bit jz TrigPremZero not cl and cl,1FH ;Convert bit no. to shift count sub ebx,ecx ;Reduce exponent difference jl TrigTooFar shld edx,eax,cl shld eax,edi,cl shl edi,cl ;Finish normalize shift shl esi,cl ;Shift quotient FitPi: ;Dividend could be larger or smaller than divisor sub edi,XPiLo sbb eax,XPiMid sbb edx,XPiHi jnc PiFit ;Couldn't subtract pi/2 from dividend. ;edx:eax:edi = dividend - pi/4, which is negative or ebx,ebx ;Is exponent difference zero? jg TrigPremLoop ;If quotient (octant number) is odd, we have subtracted an odd number of ;pi/4's. However, simple angle reductions work in multiples of pi/2. ;We will keep the extra pi/4 we just subtracted if the octant was odd. ;This will give a result range of [-pi/4, pi/4]. test esi,1 ;Is octant odd? jz EvenOctant NegPremResult: ;-pi/4 < dividend < 0. Negate this since we use sign-magnitude representation. not edx ;96-bit negation not eax neg edi sbb eax,-1 sbb edx,-1 ;May need to normalize bsr ecx,edx jz TrigNorm32 lea ebx,[ebx+ecx-31] ;Fix up exponent for normalization not cl ;Convert bit no. to shift count TrigShortNorm: shld edx,eax,cl shld eax,edi,cl shl edi,cl ;Finish normalize shift RoundPrem: ;Must round 66-bit result to 64 bits. ;To perform "round even" when the round bit is set and the sticky bits ;are zero, we treat the LSB as if it were a sticky bit. Thus if the LSB ;is set, that will always force a round up (to even) if the round bit is ;set. If the LSB is zero, then the sticky bits remain zero and we always ;round down. This rounding rule is implemented by adding RoundBit-1 ;(7F..FFH), setting CY if round up. bt eax,0 ;Is mantissa even or odd? (set CY) adc edi,(1 shl 31)-1 ;Sum LSB & sticky bits--CY if round up adc eax,0 adc edx,0 ExitTrigPrem: ;edx:eax = remainder, normalized ;esi = quotient ;ebx = exponent difference, zero or less .erre PiOver4exp eq -1 dec ebx ;True exponent .erre bTAG_SNGL eq 0 shrd ecx,ebx,16 ;Exponent to high ecx mov ebx,edx ;High mant. to ebx xchg esi,eax ;Low mant. to esi, octant to eax or esi,esi ;Any bits in low half? .erre bTAG_VALID eq 1 .erre bTAG_SNGL eq 0 setnz cl ;if low half==0 then cl=0 else cl=1 mov edi,EMSEG:[CURstk] test EMSEG:[edi].bSgn,bSign ;Was angle negative? jnz FlipOct ;Yes, flip octant over ret
FlipOct: ;Angle was negative. Subtract octant from 7. neg al add al,7 ret
EvenOctant: ;Restore dividend add edi,XPiLo adc eax,XPiMid adc edx,XPiHi jmp RoundPrem
TrigTooFar: ;Exponent difference in ebx went negative when reduced by shift count in ecx. ;We need a quotient corresponding to exponent difference of zero. add ecx,ebx ;Compute previous exponent difference shl esi,cl ;Fix up quotient sub ecx,ebx ;Restore shift count test esi,1 ;Is octant odd? jz TrigShortNorm ;No, go normalize xor ebx,ebx ;Restore old exponent difference (zero) SubPiOver4: ;We are here if exponent difference was zero and octant is odd. ;As noted above, we need to reduce the angle by a multiple of pi/2, ;not pi/4. We will subtract one more pi/4, which will make the ;result range [-pi/4, pi/4]. sub edi,XPiLo sbb eax,XPiMid sbb edx,XPiHi jmp NegPremResult
TrigPremZero: ;High dword of remainder is all zero, so we've reduced exponent difference ;by 32 bits and overshot. We need a quotient corresponding to exponent ;difference of zero, so we just shift it by the original difference. Then ;we need to normalize the rest of the remainder. mov ecx,ebx ;Get exponent difference shl esi,cl ;Fix up quotient test esi,1 ;Is octant odd? jnz SubPiOver4 ;Yes, go subtract another pi/4 TrigNorm32: bsr ecx,eax jz TinyTrig lea ebx,[ebx+ecx-31-32] ;Fix up exponent for normalization mov edx,eax mov eax,edi ;Shift left by 32 bits not cl ;Convert bit no. to shift count shld edx,eax,cl ;Normalize remainder shl eax,cl jmp ExitTrigPrem
TinyTrig: ;Upper 64 bits of remainder are all zero. We are assured that the extended ;remainder is never zero, though. mov edx,edi ;Shift left 64 bits bsr ecx,edi lea ebx,[ebx+ecx-31-64] ;Fix up exponent for normalization not cl ;Convert bit no. to shift count shl edx,cl ;Normalize jmp ExitTrigPrem
;*******************************************************************************
EM_ENTRY eFCOS eFCOS: and [esp].[OldLongStatus+4],NOT(C2 SHL 16) ;clear C2 cmp EMSEG:[edi].bTAG,bTAG_ZERO jz ReturnOne call Trig1Result ;ebx:esi,ecx = reduced argument ;eax = octant mov ch,80H ;Assume negative test al,110B ;Negative in octants 2 - 5 jpo @F ;Occurs when 1 of these bits are set xor ch,ch ;Actually positve @@: test al,011B ;Look for octants 0,3,4,7 jpo TakeSine ;Use sine if not TakeCosine: cmp ecx,TinyAngleExp shl 16 ;Is angle really small? jl CosReturnOne ;cos(x) = 1 for tiny x CosNotTiny: mov edi,offset tCosPoly ;Note that argument needs to be saved in ArgTemp (by EvalPolySetup) in case ;we were called from eFSINCOS and we'll need the arg for the sine. Argument ;is not needed for cosine, however (just its square). call EvalPolySetup ;In emftran.asm mov ch,EMSEG:[ArgTemp].bSgn ;Get sign we already figured out TransUnround: ;The last operation performed a simple round nearest, without setting the ;C1 status bit if round up occured. We reverse this last rounding now ;so we can do the user's selected rounding mode. We also ensure that ;the answer is never exact. sub eax,(1 shl 31)-1 ;Sum LSB & sticky bits--CY if round up jz UnroundExact ;Answer looks exact, but it's not sbb esi,0 sbb ebx,0 jns PolyDropExponent ;We had rounded up exponent too FinalTransRound: ;A jump through [TransRound] is only valid if the number is known not to ;underflow. Unmasked underflow requires [RoundMode] be set. mov edx,EMSEG:[TransRound] mov EMSEG:[RoundMode],edx call edx ;Perform user's rounding RestoreRound: ;Restore rounding vectors mov EMSEG:[ZeroVector],offset SaveResult mov eax,EMSEG:[SavedRoundMode] mov EMSEG:[RoundMode],eax ret
UnroundExact: inc eax ;Let's say our answer is a bit small jmp FinalTransRound
PolyDropExponent: sub ecx,1 shl 16 ;Decrement exponent or ebx,1 shl 31 ;Set MSB jmp FinalTransRound
SinRet: ret
SaveTinySin: ;Argument in ebx:esi,ecx is small enough so that sin(x) = x, which happens ;when x - x^3/6 = x [or 1 - x^2/6 = 1]. Note that the infinitely precise ;result is slightly less than the argument. To get the correct answer for ;any rounding mode, we decrement the argument and set up for rounding. mov eax,-1 ;Set up rounding bits sub esi,1 sbb ebx,0 ;Drop mantissa by one js FinalTransRound ;Still normalized? ;mantissa must have been 800..000H, set it to 0FFF...FFFH and drop exponent mov ebx,eax ;ebx = -1 sub ecx,1 shl 16 ;Drop exponent by one jmp FinalTransRound
EM_ENTRY eFSIN eFSIN: and [esp].[OldLongStatus+4],NOT(C2 SHL 16) ;clear C2 cmp EMSEG:[edi].bTAG,bTAG_ZERO jz SinRet ;Return zero for zero argument call Trig1Result mov ch,al shl ch,7-2 ;Move bit 2 to bit 7 as sign bit ReducedSine: ;ebx:esi,ecx = reduced argument ;ch = correct sign ;eax = octant test al,011B ;Look for octants 0,3,4,7 jpo TakeCosine ;Use cosine if not TakeSine: cmp ecx,TinyAngleExp shl 16 ;Is angle really small? jl SaveTinySin ;sin(x) = x for tiny x
;The polynomial for sine is sin(x) = x * P(x^2). However, the degree zero ;coefficient of P() is 1, so P() = R() + 1, where R() has no degree zero ;term. Thus sin(x) = x * [R(x^2) + 1] = x * R(x^2) + x. ; ;What's important here is that adding 1 to R(x^2) can blow away a lot of ;precision just before we do that last multiply by x. Note that x < pi/4 < 1, ;so that x^2 is often << 1. The precision is lost when R(x^2) is shifted ;right to align its binary point with 1.0. This can cause a loss of at ;least 1 bit of precision after the final multiply by x in addition to ;rounding errors. ; ;To avoid this precision loss, we use the alternate form given above, ;sin(x) = x * R(x^2) + x. Instead of adding 1.0 and multiplying by x, ;we multiply by x and add x--exactly the same level of difficulty. But ;the mulitply has all of R(x^2)'s precision available. ; ;Because the polynomial R() has no zero-degree term, we give EvalPoly ;one degree less (so we don't have to add zero as the last term). ;Then we have to multiply once more by x^2 since we left the loop early.
SineNotTiny: mov edi,offset tSinPoly call EvalPolySetup ;In emftran.asm SineFinish:
ifdef NT386 mov edi,YFloatTemp else mov edi,offset edata:FloatTemp endif call PolyMulDouble ;Last coefficient in R(x^2)
ifdef NT386 mov edi,YArgTemp ;Point to original x else mov edi,offset edata:ArgTemp ;Point to original x endif
call PolyMulDouble ;Compute x * R(x^2)
ifdef NT386 mov edi,YArgTemp ;Point to original x else mov edi,offset edata:ArgTemp ;Point to original x endif
push offset TransUnround jmp PolyAddDouble ;Compute x * R(x^2) + x
EM_ENTRY eFPTAN eFPTAN: and [esp].[OldLongStatus+4],NOT(C2 SHL 16) ;clear C2 call Trig2Result push offset TanPushOne ; Push 1.0 when we're all done ;ebx:esi,ecx = reduced argument ;eax = octant mov ch,al shl ch,7-1 ;Move bit 1 to bit 7 as sign bit ;Note that ch bit 6 now has even/odd octant, which we'll need when we're ;done to see if we should take reciprocal. cmp ecx,TinyAngleExp shl 16 ;Is angle really small? jl TinyTan mov edi,offset tTanPoly call Eval2Poly ;In emftran.asm mov edi,EMSEG:[CURstk] ;Point to first result push offset TransUnround ;Return address of divide test EMSEG:[ArgTemp].bSgn,0C0H ;Check low 2 bits of octant ;Given the reduced input range, the result can never overflow or underflow. ;It is must then be safe to assume neither operand is zero. jpe DivDouble ;Tan() octants 0,3,4,7 jmp DivrDouble ;CoTan()
TinyTan: test ch,0C0H ;Check low 2 bits of octant jpe SaveTinySin ;Octants 0,3,4,7: tan(x) = x for tiny x ;Need reciprocal of reduced argument mov edi,esi mov esi,ebx ;Mantissa in esi:edi mov ebx,ecx ;ExpSgn to ebx mov edx,1 shl 31 ;Load 1.0 xor eax,eax .erre TexpBias eq 0 xor ecx,ecx ;Sign and exponent are zero ;dividend mantissa in edx:eax, exponent in high ecx, sign in ch bit 7 ;divisor mantissa in esi:edi, exponent in high ebx, sign in bh bit 7 push offset TransUnround ;Return address of divide ;Note that this can never overflow, because the reduced argument is never ;smaller than about 2^-65. jmp DivDoubleReg
PrevStackWrap edi,Tan ;Tied to PrevStackElem below
TanPushOne: PrevStackElem edi,Tan ;edi points to second result location mov EMSEG:[CURstk],edi ReturnOne: mov EMSEG:[edi].lManLo,0 mov EMSEG:[edi].lManHi,1 shl 31 mov EMSEG:[edi].ExpSgn,(0-TexpBias) shl 16 + bTAG_SNGL ret
PrevStackWrap edi,SinCos ;Tied to PrevStackElem below
eFSINCOS: and [esp].[OldLongStatus+4],NOT(C2 SHL 16) ;clear C2 call Trig2Result ;Figure out signs mov ch,al ;Start with sign of sine shl ch,7-2 ;Move bit 2 to bit 7 as sign bit mov ah,80H ;Assume sign of cosine is negative test al,110B ;Negative in octants 2 - 5 jpo @F ;Occurs when 1 of these bits are set xor ah,ah ;Actually positve @@: ;ch = sign of sine ;ah = sign of cosine cmp ecx,TinyAngleExp shl 16 ;Is angle really small? jl TinySinCos push eax ;Save octant and sign of cosine call ReducedSine ;On exit, edi = [CURstk] pop eax ;The Sin() funcion restored the rounding vectors to normal. Set them back. mov EMSEG:[RoundMode],offset PolyRound mov EMSEG:[ZeroVector],offset PolyZero PrevStackElem edi,SinCos ;edi points to second result location mov EMSEG:[CURstk],edi mov EMSEG:[Result],edi ;Load x^2 back into registers mov ecx,EMSEG:[FloatTemp].ExpSgn mov ebx,EMSEG:[FloatTemp].lManHi mov esi,EMSEG:[FloatTemp].lManLo mov EMSEG:[ArgTemp].bSgn,ah ;Save sign test al,011B ;Look for octants 0,3,4,7 jpo FastSine ;Use sine if not mov edi,offset tCosPoly call EvalPoly ;In emftran.asm mov ch,EMSEG:[ArgTemp].bSgn ;Get sign we already figured out jmp TransUnround
FastSine: mov edi,offset tSinPoly push offset SineFinish jmp EvalPoly ;In emftran.asm
TinySinCos: ;ch = sign of sine ;ah = sign of cosine ;ebx:esi,high ecx = reduced argument ;edi = [CURstk] test al,011B ;Look for octants 0,3,4,7 jpo TinyCosSin ;Take cosine first if not push eax call SaveTinySin ;For sine, arg is result pop ecx ;edi = [CURstk] ;ch = sign of cosine ;Set cosine to 1.0 PrevStackElem edi,TinySinCos ;edi points to second result location mov EMSEG:[CURstk],edi mov EMSEG:[Result],edi CosReturnOne: ;Cosine is nearly equal to 1.0. Put in next smaller value and round it. mov ebx,-1 mov esi,ebx ;Set mantissa to -1 mov eax,ebx ;Set up rounding bits .erre TexpBias eq 0 and ecx,bSign shl 8 ;Keep only sign sub ecx,1 shl 16 ;Exponent of -1 ;A jump through [TransRound] is only valid if the number is known not to ;underflow. Unmasked underflow requires [RoundMode] be set. jmp EMSEG:[TransRound]
PrevStackWrap edi,TinySinCos
PrevStackWrap edi,TinyCosSin
TinyCosSin: ;Sine is nearly 1.0, cosine is argument ; ;ch = sign of sine ;ah = sign of cosine ;ebx:esi,high ecx = reduced argument ;edi = [CURstk] xchg ah,ch ;Cosine sign to ch, sine sign to ah push edi ;Save place for sine PrevStackElem edi,TinyCosSin ;edi points to second result location mov EMSEG:[CURstk],edi mov EMSEG:[Result],edi push eax call SaveTinySin ;For sine, arg is result pop ecx ;ch = sign of sine pop EMSEG:[Result] ;Set up location for sine jmp CosReturnOne
;*******************************************************************************
;********************* Polynomial Coefficients *********************
;These polynomial coefficients were all taken from "Computer Approximations" ;by J.F. Hart (reprinted 1978 w/corrections). All calculations and ;conversions to hexadecimal were done with a character-string calculator ;written in Visual Basic with precision set to 30 digits. Once the constants ;were typed into this file, all transfers were done with cut-and-paste ;operations to and from the calculator to help eliminate any typographical ;errors.
tCosPoly label word
;These constants are derived from Hart #3824: cos(x) = P(x^2), ;accurate to 19.45 digits over interval [0, pi/4]. The original ;constants in Hart required that the argument x be divided by pi/4. ;These constants have been scaled so this is no longer required. ;Scaling is done by multiplying the constant by a power of 4/pi. ;The power is given in the table.
dd 7 ;Degree seven
; Original Hart constant power Scaled constant ; ;-0.38577 62037 2 E-12 14 -0.113521232057839395845871741043E-10 ;Hex value: 0.C7B56AF786699CF1BD13FD290 HFFDC dq 0C7B56AF786699CF2H dw (bSign shl 8)+bTAG_VALID,0FFDCH-1
;+0.11500 49702 4263 E-9 12 +0.208755551456778828747793797596E-8 ;Hex value: 0.8F74AA3CCE49E68D6F5444A18 HFFE4 dq 08F74AA3CCE49E68DH dw bTAG_VALID,0FFE4H-1
;-0.24611 36382 63700 5 E-7 10 -0.275573128656960822243472872247E-6 ;Hex value: 0.93F27B7F10CC8A1703EFC8A04 HFFEB dq 093F27B7F10CC8A17H dw (bSign shl 8)+bTAG_VALID,0FFEBH-1
;+0.35908 60445 88581 953 E-5 8 +0.248015872828994630247806807317E-4 ;Hex value: 0.D00D00CD6BB3ECD17E10D5830 HFFF1 dq 0D00D00CD6BB3ECD1H dw bTAG_VALID,0FFF1H-1
;-0.32599 18869 26687 55044 E-3 6 -0.138888888888589604343951947246E-2 ;Hex value: 0.B60B60B609B165894CFE522AC HFFF7 dq 0B60B60B609B16589H dw (bSign shl 8)+bTAG_VALID,0FFF7H-1
;+0.15854 34424 38154 10897 54 E-1 4 +0.416666666666664302573692446873E-1 ;Hex value: 0.AAAAAAAAAAA99A1AF53042B08 HFFFC dq 0AAAAAAAAAAA99A1BH dw bTAG_VALID,0FFFCH-1
;-0.30842 51375 34042 45242 414 E0 2 -0.499999999999999992843582920899E0 ;Hex value: 0.FFFFFFFFFFFFFEF7F98D3BFA8 HFFFF dq 0FFFFFFFFFFFFFEF8H dw (bSign shl 8)+bTAG_VALID,0FFFFH-1
;+0.99999 99999 99999 99996 415 E0 0 (no change) ;Hex value 0.FFFFFFFFFFFFFFFF56B402618 H0 dq 0FFFFFFFFFFFFFFFFH dw bTAG_VALID,00H-1
tSinPoly label word
;These constants are derived from Hart #3044: sin(x) = x * P(x^2), ;accurate to 20.73 digits over interval [0, pi/4]. The original ;constants in Hart required that the argument x be divided by pi/4. ;These constants have been scaled so this is no longer required. ;Scaling is done by multiplying the constant by a power of 4/pi. ;The power is given in the table.
dd 7-1 ;Degree seven, but the last coefficient ;is 1.0 and is not listed here.
; Original Hart constant power Scaled constant ; ;-0.20225 31292 93 E-13 15 -0.757786788401271156262125540409E-12 ;Hex value: 0.D54C4AF2B524F0F2D6411C90A HFFD8 dq 0D54C4AF2B524F0F3H dw (bSign shl 8)+bTAG_VALID,0FFD8H-1
;+0.69481 52035 0522 E-11 13 +0.160583476232246065559545749398E-9 ;Hex value: 0.B0903AF085DA66030F16E43BC HFFE0 dq 0B0903AF085DA6603H dw bTAG_VALID,0FFE0H-1
;-0.17572 47417 61708 06 E-8 11 -0.250521047382673309542092418731E-7 ;Hex value: 0.D73229320D2AF05971AC96FF4 HFFE7 dq 0D73229320D2AF059H dw (bSign shl 8)+bTAG_VALID,0FFE7H-1
;+0.31336 16889 17325 348 E-6 9 +0.275573192133901687156480447942E-5 ;Hex value: 0.B8EF1D2984D2FBA28A9CC9DEE HFFEE dq 0B8EF1D2984D2FBA3H dw bTAG_VALID,0FFEEH-1
;-0.36576 20418 21464 00052 9 E-4 7 -0.198412698412531058609618529749E-3 ;Hex value: 0.D00D00D00C3FDDD7916E5CB28 HFFF4 dq 0D00D00D00C3FDDD8H dw (bSign shl 8)+bTAG_VALID,0FFF4H-1
;+0.24903 94570 19271 62752 519 E-2 5 +0.83333333333333203341753387264E-2 ;Hex value: 0.8888888888884C95D619A0343 HFFFA dq 08888888888884C96H dw bTAG_VALID,0FFFAH-1
;-0.80745 51218 82807 81520 2582 E-1 3 -0.166666666666666666281276062229E0 ;Hex value: 0.AAAAAAAAAAAAAA8E3AD80EAB8 HFFFE dq 0AAAAAAAAAAAAAA8EH dw (bSign shl 8)+bTAG_VALID,0FFFEH-1
;+0.78539 81633 97448 30961 41845 E0 1 +0.99999999999999999999812025812E0 ;Hex value: 0.FFFFFFFFFFFFFFFFF71F88110 H0 ; dq 8000000000000000H ;This constant of 1.0 omitted here. ; dw bTAG_VALID,0 ; It is handled in code.
tTanPoly label word
;These constants are derived from Hart #4286: tan(x) = x * P(x^2) / Q(x^2), ;accurate to 19.94 digits over interval [0, pi/4]. The original ;constants in Hart required that the argument x be divided by pi/4. ;These constants have been scaled so this is no longer required. ;Scaling is done by multiplying the constant by the same power of 4/pi ;as the power of x the constant is used on. However, the highest ;degree coefficient of Q() is 1, and after scaling this way it would ;become (4/pi)^8. In order to keep this coefficient equal to one, ;we scale everything again by (pi/4)^8. This scaling is partially ;canceled by the original scaling by powers of 4/pi, and the net ;resulting power of pi/4 is given in the table.
dd 3 ;First poly is degree 3
; Original Hart constant power Scaled constant ; ;-.45649 31943 86656 31873 96113 7 E2 1 -35.8528916474714232910463077546 ;Hex value: 0.8F695C6D93AF6F97B6E022AB3 H6 dq 08F695C6D93AF6F98H dw (bSign shl 8)+bTAG_VALID,06H-1
;+.14189 85425 27617 78388 00394 831 E5 3 +6874.60229709782436592720603503 ;Hex value: 0.D6D4D181240D0D08C88DF4AA6 HD dq 0D6D4D181240D0D09H dw bTAG_VALID,0DH-1
;-.89588 84400 67680 41087 29639 541 E6 5 -267733.884797157298951145495276 ;Hex value: 0.82BABC504220C62B1D0722684 H13 dq 082BABC504220C62BH dw (bSign shl 8)+bTAG_VALID,013H-1
;+.10888 60043 72816 87521 38857 983 E8 7 +2007248.9111748838841548144685 ;Hex value: 0.F506874A160EB9C0994AADD6A H15 dq 0F506874A160EB9C1H dw bTAG_VALID,015H-1
dd 4 ;Second poly is degree 4 ;NOTE: Eval2Poly assumes the first coefficient is 1.0, so it is omitted
; Original Hart constant power Scaled constant ; ;-.10146 56190 25288 53387 54401 947 E4 2 -625.890950057027419879480354834 ;Hex value: 0.9C790553635355A95241A5324 HA dq 09C790553635355A9H dw (bSign shl 8)+bTAG_VALID,0AH-1
;+.13538 27128 05119 09382 89294 872 E6 4 +51513.6992033752080924797647367 ;Hex value: 0.C939B2FEFE0DC585E649870FE H10 dq 0C939B2FEFE0DC586H dw bTAG_VALID,010H-1
;-.39913 09518 03516 51504 43427 94 E7 6 -936816.855188785264866481436899 ;Hex value: 0.E4B70DAEDA6F89E5A7CE626FA H14 dq 0E4B70DAEDA6F89E6H dw (bSign shl 8)+bTAG_VALID,014H-1
;+.13863 79666 35676 29165 33913 361 E8 8 +2007248.91117488388417770850458 ;Hex value: 0.F506874A160EB9C0CCD8313BC H15 dq 0F506874A160EB9C1H dw bTAG_VALID,015H-1
|