|
|
/*++
Copyright (c) Microsoft Corporation. All rights reserved.
Module Name:
cutil.c
Abstract:
This module contains general utility routines used by both cfgmgr32 and umpnpmgr.
IsLegalDeviceId SplitString SplitDeviceInstanceString SplitClassInstanceString DeletePrivateKey RegDeleteNode GetDevNodeKeyPath MapRpcExceptionToCR
Author:
Paula Tomlinson (paulat) 7-12-1995
Environment:
User mode only.
Revision History:
12-July-1995 paulat
Creation and initial implementation.
--*/
//
// includes
//
#include "precomp.h"
#pragma hdrstop
#include "umpnplib.h"
//
// Common private utility routines (used by client and server)
//
BOOL IsLegalDeviceId( IN LPCWSTR pszDeviceInstance )
/*++
Routine Description:
This routine parses the device instance string and validates whether it conforms to the appropriate rules, including:
- Total length of the device instance path must not be longer than MAX_DEVICE_ID_LEN characters.
- The device instance path must contain exactly 3 non-empty path components.
- The device instance path string must not contain any "invalid characters".
Invalid characters are: c <= 0x20 (' ') c > 0x7F c == 0x2C (',')
Arguments:
pszDeviceInstance - Device instance path.
Return value:
The return value is TRUE if the device instance path string conforms to the rules.
--*/
{ BOOL Status; LPCWSTR p; ULONG ulComponentLength = 0, ulComponents = 1; HRESULT hr; size_t len;
try { //
// A NULL or empty string is used for an optional device instance path.
//
// NOTE - Callers must explicitly check for this case themselves if it
// is not valid for a particular scenario.
//
if ((!ARGUMENT_PRESENT(pszDeviceInstance)) || (*pszDeviceInstance == L'\0')) { Status = TRUE; goto Clean0; }
//
// Make sure the device instance path isn't too long.
//
hr = StringCchLength(pszDeviceInstance, MAX_DEVICE_ID_LEN, &len); if (FAILED(hr)) { Status = FALSE; goto Clean0; }
//
// Walk over the entire device instance path, counting individual path
// component lengths, and checking for the presence of invalid
// characters.
//
for (p = pszDeviceInstance; *p; p++) {
//
// Check for the presence of invalid characters.
//
if ((*p <= L' ') || (*p > (WCHAR)0x7F) || (*p == L',')) { Status = FALSE; goto Clean0; }
//
// Check the length of individual path components.
//
if (*p == L'\\') {
//
// It is illegal for a device instance path to have multiple
// consecutive path separators, or to start with one.
//
if (ulComponentLength == 0) { Status = FALSE; goto Clean0; }
ulComponentLength = 0; ulComponents++;
} else { //
// Count the length of this path component to verify it's not empty.
//
ulComponentLength++; } }
//
// It is illegal for a device instance path to end with a path separator
// character.
//
if (ulComponentLength == 0) { Status = FALSE; goto Clean0; }
//
// A valid device instance path must contain exactly 3 path components:
// an enumerator id, a device id, and an instance id.
//
if (ulComponents != 3) { Status = FALSE; goto Clean0; }
//
// Success.
//
Status = TRUE;
Clean0: NOTHING;
} except(EXCEPTION_EXECUTE_HANDLER) { Status = FALSE; }
return Status;
} // IsLegalDeviceId
BOOL SplitString( IN LPCWSTR SourceString, IN WCHAR SearchChar, IN ULONG nOccurrence, OUT LPWSTR String1, IN ULONG Length1, OUT LPWSTR String2, IN ULONG Length2 )
/*++
Routine Description:
Splits a string into two substring parts, occuring at at the specified instance of the specified search charatcter.
Arguments:
SourceString - Specifies the string to be split.
SearchChar - Specifies the character to search for.
nOccurrence - Specifies the instance of the search character in the source string to split the string at.
String1 - Specifies a buffer to receive the first substring component.
Length1 - Specifies the length, in characters of the buffer specified by String1.
String2 - Specifies a buffer to receive the second substring component.
Length2 - Specifies the length, in characters of the buffer specified by String2. Return Value:
The return value is TRUE if the function suceeds and FALSE if it fails.
Notes:
The buffers specified by String1 and String2 should be large enough to hold the SourceString.
--*/
{ BOOL Status = TRUE; HRESULT hr; LPWSTR p; ULONG i;
try { //
// make sure valid buffers were supplied
//
if ((SourceString == NULL) || (String1 == NULL) || (Length1 == 0) || (String2 == NULL) || (Length2 == 0)) { Status = FALSE; goto Clean0; }
//
// initialize the output strings
//
*String1 = L'\0'; *String2 = L'\0';
//
// copy the entire source string to String1
//
hr = StringCchCopyEx(String1, Length1, SourceString, NULL, NULL, STRSAFE_NULL_ON_FAILURE); if (FAILED(hr)) { Status = FALSE; goto Clean0; }
//
// if splitting at the zero'th occurrence of a character, return the
// entire source string as String1.
//
if (nOccurrence == 0) { Status = TRUE; goto Clean0; }
//
// Special case the NULL search character.
//
if (SearchChar == L'\0') {
if (nOccurrence == 1) { //
// since the source string must be NULL terminated, splitting at
// the first occurrence of a NULL character returns the source
// string as String1, and an empty string as String2.
//
Status = TRUE; } else { //
// requesting any other instance of a NULL character returns an
// error, and no strings.
//
*String1 = L'\0'; Status = FALSE; } goto Clean0; }
//
// find the nth instance of the delimiter character. note that we know
// the buffer is NULL terminated before Length1 characters, so we can
// walk the string safely, all the to the end if necessary.
//
p = String1; i = 0;
for (i = 0; i < nOccurrence; i++) { //
// search for the nth occurrence of the search character
//
p = wcschr(p, SearchChar);
//
// if we're reached the end of the string, we're done.
//
if (p == NULL) { break; }
//
// start the next search immediately following this occurrence of
// the search character
//
p++; }
if (p == NULL) { //
// there's no such occurance of the delimeter character in the
// string. return an error, but return the entire string in
// String1 so the caller knows why the failure occured..
//
Status = FALSE; goto Clean0; }
ASSERT(p != String1); ASSERT((*(p - 1)) == SearchChar);
//
// separate the first string from the rest of the string by NULL'ing out
// this occurance the search character.
//
*(p - 1) = L'\0';
//
// if there's nothing left, we're done.
//
if (*p == L'\0') { Status = TRUE; goto Clean0; }
//
// copy the remainder of the string to string2.
//
hr = StringCchCopyEx(String2, Length2, p, NULL, NULL, STRSAFE_NULL_ON_FAILURE); ASSERT(SUCCEEDED(hr)); if (FAILED(hr)) { *String1 = L'\0'; Status = FALSE; goto Clean0; }
//
// Success
//
Status = TRUE;
Clean0: NOTHING;
} except(EXCEPTION_EXECUTE_HANDLER) { Status = FALSE; }
return Status;
} // SplitString
BOOL SplitDeviceInstanceString( IN LPCWSTR pszDeviceInstance, OUT LPWSTR pszEnumerator, OUT LPWSTR pszDeviceID, OUT LPWSTR pszInstanceID )
/*++
Routine Description:
This routine parses a device instance string into it's three component parts. This routine assumes that the specified device instance is a valid device instance path, whose length is no more than MAX_DEVICE_ID_LEN characters, including the NULL terminating character.
This routine assumes that each of the buffers supplied to receive the device instance path components are each at least MAX_DEVICE_ID_LEN characters in length.
Arguments:
pszDeviceInstance - Specifies a complete device instance path to separate into it's constituent parts.
pszEnumerator - Specifies a buffer to receive the Enumerator component of the device instance path.
pszDeviceID - Specifies a buffer to receive the Device ID component of the device instance path.
pszInstanceID - Specifies a buffer to receive the Instance ID component of the device instance path.
Return value:
The return value is TRUE if the function suceeds and FALSE if it fails.
--*/
{ BOOL Status; WCHAR szTempString[MAX_DEVICE_ID_LEN];
//
// initialize the output strings
//
*pszEnumerator = L'\0'; *pszDeviceID = L'\0'; *pszInstanceID = L'\0';
//
// Split off the enumerator component.
//
Status = SplitString( pszDeviceInstance, L'\\', 1, pszEnumerator, MAX_DEVICE_ID_LEN, szTempString, MAX_DEVICE_ID_LEN );
if (Status) { //
// Split off the device id component. Consider the rest to be the
// instance id. The device instance id should have been previously
// validated to ensure that it has exactly thee components.
//
Status = SplitString( szTempString, L'\\', 1, pszDeviceID, MAX_DEVICE_ID_LEN, pszInstanceID, MAX_DEVICE_ID_LEN ); }
return Status;
} // SplitDeviceInstanceString
BOOL SplitClassInstanceString( IN LPCWSTR pszClassInstance, OUT LPWSTR pszClass, OUT LPWSTR pszInstance )
/*++
Routine Description:
This routine parses a class instance string into it's two component parts. This routine assumes that the specified device instance is a valid class instance path, whose length is no more than MAX_GUID_STRING_LEN + 5 characters, including the NULL terminating character.
This routine assumes that each of the buffers supplied to receive the device instance path components are each at least MAX_GUID_STRING_LEN + 5 characters in length.
Arguments:
pszClassInstance - Specifies a complete class instance path to separate into it's constituent parts.
pszClass - Specifies a buffer to receive the ClassGUID component of the class instance path.
pszInstance - Specifies a buffer to receive the Instance component of the class instance path.
Return value:
The return value is TRUE if the function suceeds and FALSE if it fails.
--*/
{ BOOL Status;
//
// initialize the output strings
//
*pszClass = L'\0'; *pszInstance = L'\0';
//
// Split off the class and instance components.
//
Status = SplitString( pszClassInstance, L'\\', 1, pszClass, MAX_GUID_STRING_LEN + 5, pszInstance, MAX_GUID_STRING_LEN + 5 );
return Status;
} // SplitClassInstanceString
CONFIGRET DeletePrivateKey( IN HKEY hBranchKey, IN LPCWSTR pszParentKey, IN LPCWSTR pszChildKey ) { CONFIGRET Status = CR_SUCCESS; LONG RegStatus = ERROR_SUCCESS; WCHAR RegStr[2 * MAX_CM_PATH]; WCHAR szKey1[MAX_CM_PATH], szKey2[MAX_CM_PATH]; HKEY hKey = NULL; ULONG ulSubKeys = 0; HRESULT hr; size_t ParentKeyLen = 0, ChildKeyLen = 0;
try { //
// Make sure the specified registry key paths are valid.
//
if ((!ARGUMENT_PRESENT(pszParentKey)) || (!ARGUMENT_PRESENT(pszChildKey))) { Status = CR_INVALID_POINTER; goto Clean0; }
hr = StringCchLength(pszParentKey, MAX_CM_PATH, &ParentKeyLen); if (FAILED(hr) || (ParentKeyLen == 0)) { Status = CR_INVALID_POINTER; goto Clean0; }
hr = StringCchLength(pszChildKey, MAX_CM_PATH, &ChildKeyLen); if (FAILED(hr) || (ChildKeyLen == 0)) { Status = CR_INVALID_POINTER; goto Clean0; }
//
// is the specified child key a compound registry key?
//
if (!SplitString(pszChildKey, L'\\', 1, szKey1, SIZECHARS(szKey1), szKey2, SIZECHARS(szKey2))) {
//------------------------------------------------------------------
// If unable to split the string, assume only a single child key
// was specified, so just open the parent registry key and delete
// the child (and any of its subkeys)
//------------------------------------------------------------------
if (RegOpenKeyEx(hBranchKey, pszParentKey, 0, KEY_READ | KEY_WRITE, &hKey) != ERROR_SUCCESS) { goto Clean0; // no error, nothing to delete
}
if (!RegDeleteNode(hKey, pszChildKey)) { Status = CR_REGISTRY_ERROR; goto Clean0; }
} else {
//------------------------------------------------------------------
// if a compound registry path was passed in, such as key1\key2
// then always delete key2 but delete key1 only if it has no other
// subkeys besides key2.
//------------------------------------------------------------------
//
// open the first level key
//
hr = StringCchPrintf(RegStr, SIZECHARS(RegStr), L"%s\\%s", pszParentKey, szKey1); ASSERT(SUCCEEDED(hr)); if (FAILED(hr)) { Status = CR_FAILURE; goto Clean0; }
RegStatus = RegOpenKeyEx( hBranchKey, RegStr, 0, KEY_QUERY_VALUE | KEY_SET_VALUE, &hKey);
if (RegStatus != ERROR_SUCCESS) { goto Clean0; // no error, nothing to delete
}
//
// try to delete the second level key
//
if (!RegDeleteNode(hKey, szKey2)) { goto Clean0; // no error, nothing to delete
}
//
// How many subkeys are remaining?
//
RegStatus = RegQueryInfoKey( hKey, NULL, NULL, NULL, &ulSubKeys, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
if (RegStatus != ERROR_SUCCESS) { goto Clean0; // nothing to delete
}
//
// if no more subkeys, then delete the first level key
//
if (ulSubKeys == 0) {
RegCloseKey(hKey); hKey = NULL;
RegStatus = RegOpenKeyEx( hBranchKey, pszParentKey, 0, KEY_QUERY_VALUE | KEY_SET_VALUE, &hKey);
if (RegStatus != ERROR_SUCCESS) { goto Clean0; // no error, nothing to delete
}
if (!RegDeleteNode(hKey, szKey1)) { Status = CR_REGISTRY_ERROR; goto Clean0; } } }
Clean0: NOTHING;
} except(EXCEPTION_EXECUTE_HANDLER) { Status = CR_FAILURE;
//
// Reference the following variables so the compiler will respect
// statement ordering w.r.t. their assignment.
//
hKey = hKey; }
if (hKey != NULL) { RegCloseKey(hKey); }
return Status;
} // DeletePrivateKey
BOOL RegDeleteNode( HKEY hParentKey, LPCWSTR szKey ) { ULONG ulSize = 0; LONG RegStatus = ERROR_SUCCESS; HKEY hKey = NULL; WCHAR szSubKey[MAX_PATH];
//
// attempt to delete the key
//
if (RegDeleteKey(hParentKey, szKey) != ERROR_SUCCESS) {
//
// If we couldn't delete the key itself, delete any subkeys it may have.
// In case the specified key is actually a registry link, always open it
// directly, rather than the target of the link. The target may point
// outside this subtree, and we're only looking to delete subkeys.
//
RegStatus = RegOpenKeyEx( hParentKey, szKey, REG_OPTION_OPEN_LINK, KEY_ALL_ACCESS, &hKey);
//
// enumerate subkeys and delete those nodes
//
while (RegStatus == ERROR_SUCCESS) { //
// enumerate the first level children under the profile key
// (always use index 0, enumeration looses track when a key
// is added or deleted)
//
ulSize = MAX_PATH; RegStatus = RegEnumKeyEx( hKey, 0, szSubKey, &ulSize, NULL, NULL, NULL, NULL);
if (RegStatus == ERROR_SUCCESS) { RegDeleteNode(hKey, szSubKey); } }
//
// either an error occured that prevents me from deleting the
// keys (like the key doesn't exist in the first place or an
// access violation) or the subkeys have been deleted, try
// deleting the top level key again
//
RegCloseKey(hKey); RegDeleteKey(hParentKey, szKey); }
return TRUE;
} // RegDeleteNode
CONFIGRET GetDevNodeKeyPath( IN handle_t hBinding, IN LPCWSTR pDeviceID, IN ULONG ulFlags, IN ULONG ulHardwareProfile, OUT LPWSTR pszBaseKey, IN ULONG ulBaseKeyLength, OUT LPWSTR pszPrivateKey, IN ULONG ulPrivateKeyLength, IN BOOL bCreateAlways )
{ CONFIGRET Status = CR_SUCCESS; WCHAR szClassInstance[MAX_PATH], szEnumerator[MAX_DEVICE_ID_LEN]; WCHAR szTemp[MAX_PATH]; ULONG ulSize, ulDataType = 0; ULONG ulTransferLen; HRESULT hr;
if (ulFlags & CM_REGISTRY_SOFTWARE) { //-------------------------------------------------------------
// form the key for the software branch case
//-------------------------------------------------------------
//
// retrieve the class name and instance ordinal by calling
// the server's reg prop routine
//
ulSize = ulTransferLen = sizeof(szClassInstance); szClassInstance[0] = L'\0';
RpcTryExcept { //
// call rpc service entry point
//
// if calling from the client-side, this is a call to the rpc client
// stub, resulting in an rpc call to the server. if calling from
// the server-side, this is simply a call to the server routine
// directly.
//
Status = PNP_GetDeviceRegProp( hBinding, pDeviceID, CM_DRP_DRIVER, &ulDataType, (LPBYTE)szClassInstance, &ulTransferLen, &ulSize, 0); } RpcExcept (I_RpcExceptionFilter(RpcExceptionCode())) { KdPrintEx((DPFLTR_PNPMGR_ID, DBGF_ERRORS, "PNP_GetDeviceRegProp caused an exception (%d)\n", RpcExceptionCode()));
Status = MapRpcExceptionToCR(RpcExceptionCode()); } RpcEndExcept
if (((Status != CR_SUCCESS) || (szClassInstance[0] == L'\0')) && (bCreateAlways)) {
//
// no Driver (class instance) value yet so ask the server to
// create a new unique one
//
ulSize = sizeof(szClassInstance);
RpcTryExcept { //
// call rpc service entry point
//
// if calling from the client-side, this is a call to the rpc client
// stub, resulting in an rpc call to the server. if calling from
// the server-side, this is simply a call to the server routine
// directly.
//
Status = PNP_GetClassInstance( hBinding, pDeviceID, szClassInstance, ulSize); } RpcExcept (I_RpcExceptionFilter(RpcExceptionCode())) { KdPrintEx((DPFLTR_PNPMGR_ID, DBGF_ERRORS, "PNP_GetClassInstance caused an exception (%d)\n", RpcExceptionCode()));
Status = MapRpcExceptionToCR(RpcExceptionCode()); } RpcEndExcept }
if (Status != CR_SUCCESS) { //
// If the CM_DRP_DRIVER did not exist and we were not to create it, or
// the attempt to create one was unsuccessful, return the error.
//
goto Clean0; }
//
// the <instance> part of the class instance is the private part
//
if (!SplitString(szClassInstance, L'\\', 1, szTemp, SIZECHARS(szTemp), pszPrivateKey, ulPrivateKeyLength)) { ASSERT(0); Status = CR_FAILURE; goto Clean0; }
hr = StringCchCopy(szClassInstance, SIZECHARS(szClassInstance), szTemp); ASSERT(SUCCEEDED(hr)); if (FAILED(hr)) { Status = CR_FAILURE; goto Clean0; }
if (ulFlags & CM_REGISTRY_CONFIG) { //
// config-specific software branch case
//
if (ulHardwareProfile == 0) { //
// curent config
//
// System\CCC\Hardware Profiles\Current
// \System\CCC\Control\Class\<DevNodeClassInstance>
//
hr = StringCchPrintfEx(pszBaseKey, ulBaseKeyLength, NULL, NULL, STRSAFE_NULL_ON_FAILURE, L"%s\\%s\\%s\\%s", REGSTR_PATH_HWPROFILES, REGSTR_KEY_CURRENT, REGSTR_PATH_CLASS_NT, szClassInstance);
} else if (ulHardwareProfile == 0xFFFFFFFF) { //
// all configs, use substitute string for profile id
//
hr = StringCchPrintfEx(pszBaseKey, ulBaseKeyLength, NULL, NULL, STRSAFE_NULL_ON_FAILURE, L"%s\\%s\\%s\\%s", REGSTR_PATH_HWPROFILES, L"%s", REGSTR_PATH_CLASS_NT, szClassInstance);
} else { //
// specific profile specified
//
// System\CCC\Hardware Profiles\<profile>
// \System\CCC\Control\Class\<DevNodeClassInstance>
//
hr = StringCchPrintfEx(pszBaseKey, ulBaseKeyLength, NULL, NULL, STRSAFE_NULL_ON_FAILURE, L"%s\\%04u\\%s\\%s", REGSTR_PATH_HWPROFILES, ulHardwareProfile, REGSTR_PATH_CLASS_NT, szClassInstance); }
} else { //
// not config-specific
// System\CCC\Control\Class\<DevNodeClassInstance>
//
hr = StringCchPrintfEx(pszBaseKey, ulBaseKeyLength, NULL, NULL, STRSAFE_NULL_ON_FAILURE, L"%s\\%s", REGSTR_PATH_CLASS_NT, szClassInstance); }
ASSERT(SUCCEEDED(hr)); if (FAILED(hr)) { Status = CR_FAILURE; goto Clean0; }
} else { //-------------------------------------------------------------
// form the key for the hardware branch case
//-------------------------------------------------------------
if (ulFlags & CM_REGISTRY_CONFIG) { //
// config-specific hardware branch case
//
//
// for profile specific, the <device>\<instance> part of
// the device id is the private part
//
if (!SplitString(pDeviceID, L'\\', 1, szEnumerator, SIZECHARS(szEnumerator), pszPrivateKey, ulPrivateKeyLength)) { ASSERT(0); Status = CR_FAILURE; goto Clean0; }
if (ulHardwareProfile == 0) { //
// curent config
//
hr = StringCchPrintfEx(pszBaseKey, ulBaseKeyLength, NULL, NULL, STRSAFE_NULL_ON_FAILURE, L"%s\\%s\\%s\\%s", REGSTR_PATH_HWPROFILES, REGSTR_KEY_CURRENT, REGSTR_PATH_SYSTEMENUM, szEnumerator);
} else if (ulHardwareProfile == 0xFFFFFFFF) { //
// all configs, use replacement symbol for profile id
//
hr = StringCchPrintfEx(pszBaseKey, ulBaseKeyLength, NULL, NULL, STRSAFE_NULL_ON_FAILURE, L"%s\\%s\\%s\\%s", REGSTR_PATH_HWPROFILES, L"%s", REGSTR_PATH_SYSTEMENUM, szEnumerator);
} else { //
// specific profile specified
//
hr = StringCchPrintfEx(pszBaseKey, ulBaseKeyLength, NULL, NULL, STRSAFE_NULL_ON_FAILURE, L"%s\\%04u\\%s\\%s", REGSTR_PATH_HWPROFILES, ulHardwareProfile, REGSTR_PATH_SYSTEMENUM, szEnumerator); }
} else if (ulFlags & CM_REGISTRY_USER) { //
// for hardware user key, the <device>\<instance> part of
// the device id is the private part
//
if (!SplitString(pDeviceID, L'\\', 1, szEnumerator, SIZECHARS(szEnumerator), pszPrivateKey, ulPrivateKeyLength)) { Status = CR_FAILURE; goto Clean0; }
hr = StringCchPrintfEx(pszBaseKey, ulBaseKeyLength, NULL, NULL, STRSAFE_NULL_ON_FAILURE, L"%s\\%s", REGSTR_PATH_SYSTEMENUM, szEnumerator); } else { //
// not config-specific
//
hr = StringCchPrintfEx(pszBaseKey, ulBaseKeyLength, NULL, NULL, STRSAFE_NULL_ON_FAILURE, L"%s\\%s", REGSTR_PATH_SYSTEMENUM, pDeviceID);
ASSERT(SUCCEEDED(hr));
if (SUCCEEDED(hr)) { hr = StringCchCopyEx(pszPrivateKey, ulPrivateKeyLength, REGSTR_KEY_DEVICEPARAMETERS, NULL, NULL, STRSAFE_NULL_ON_FAILURE); } }
ASSERT(SUCCEEDED(hr));
if (FAILED(hr)) { Status = CR_FAILURE; goto Clean0; } }
Clean0:
return Status;
} // GetDevNodeKeyPath
CONFIGRET MapRpcExceptionToCR( ULONG ulRpcExceptionCode )
/*++
Routine Description:
This routine takes an rpc exception code (typically received by calling RpcExceptionCode) and returns a corresponding CR_ error code.
Arguments:
ulRpcExceptionCode An RPC_S_ or RPC_X_ exception error code.
Return Value:
Return value is one of the CR_ error codes.
--*/
{ CONFIGRET Status = CR_FAILURE;
switch(ulRpcExceptionCode) {
//
// binding or machine name errors
//
case RPC_S_INVALID_STRING_BINDING: // 1700L
case RPC_S_WRONG_KIND_OF_BINDING: // 1701L
case RPC_S_INVALID_BINDING: // 1702L
case RPC_S_PROTSEQ_NOT_SUPPORTED: // 1703L
case RPC_S_INVALID_RPC_PROTSEQ: // 1704L
case RPC_S_INVALID_STRING_UUID: // 1705L
case RPC_S_INVALID_ENDPOINT_FORMAT: // 1706L
case RPC_S_INVALID_NET_ADDR: // 1707L
case RPC_S_NO_ENDPOINT_FOUND: // 1708L
case RPC_S_NO_MORE_BINDINGS: // 1806L
case RPC_S_CANT_CREATE_ENDPOINT: // 1720L
Status = CR_INVALID_MACHINENAME; break;
//
// general rpc communication failure
//
case RPC_S_INVALID_NETWORK_OPTIONS: // 1724L
case RPC_S_CALL_FAILED: // 1726L
case RPC_S_CALL_FAILED_DNE: // 1727L
case RPC_S_PROTOCOL_ERROR: // 1728L
case RPC_S_UNSUPPORTED_TRANS_SYN: // 1730L
Status = CR_REMOTE_COMM_FAILURE; break;
//
// couldn't make connection to that machine
//
case RPC_S_SERVER_UNAVAILABLE: // 1722L
case RPC_S_SERVER_TOO_BUSY: // 1723L
Status = CR_MACHINE_UNAVAILABLE; break;
//
// server doesn't exist or not right version
//
case RPC_S_INVALID_VERS_OPTION: // 1756L
case RPC_S_INTERFACE_NOT_FOUND: // 1759L
case RPC_S_UNKNOWN_IF: // 1717L
Status = CR_NO_CM_SERVICES; break;
//
// access denied
//
case RPC_S_ACCESS_DENIED:
Status = CR_ACCESS_DENIED; break;
//
// any other RPC exceptions will just be general failures
//
default: Status = CR_FAILURE; break; }
return Status;
} // MapRpcExceptionToCR
|