|
|
/*++
Copyright (c) 1991-2000, Microsoft Corporation All rights reserved.
Module Name:
map.c
Abstract:
This file contains functions that deal with map tables.
APIs found in this file: FoldStringW LCMapStringW
Revision History:
05-31-91 JulieB Created.
--*/
//
// Include Files.
//
#include "nls.h"
#include "nlssafe.h"
#include "jamo.h"
//
// Constant Declarations.
//
//
// Invalid weight value.
//
#define MAP_INVALID_UW 0xffff
//
// Number of bytes in each weight.
//
// Note: Total number of bytes is limited by MAX_WEIGHTS definition.
// The padding is needed if SW is not on a WORD boundary.
//
#define NUM_BYTES_UW 8
#define NUM_BYTES_DW 1
#define NUM_BYTES_CW 1
#define NUM_BYTES_XW 4
#define NUM_BYTES_PADDING 0
#define NUM_BYTES_SW 4
//
// Flags to drop the 3rd weight (CW).
//
#define NORM_DROP_CW (NORM_IGNORECASE | NORM_IGNOREWIDTH)
//
// XW Values for FE Special Weights.
//
BYTE pXWDrop[] = // values to drop from XW
{ 0xc6, // weight 4
0x03, // weight 5
0xe4, // weight 6
0xc5 // weight 7
}; BYTE pXWSeparator[] = // separator values for XW
{ 0xff, // weight 4
0x02, // weight 5
0xff, // weight 6
0xff // weight 7
};
//
// Forward Declarations.
//
int FoldCZone( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest);
int FoldDigits( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest);
int FoldCZone_Digits( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest);
int FoldLigatures( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest);
int FoldPreComposed( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest);
int FoldComposite( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest);
int MapCase( PLOC_HASH pHashN, LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest, PCASE pCaseTbl);
int MapSortKey( PLOC_HASH pHashN, DWORD dwFlags, LPCWSTR pSrc, int cchSrc, LPBYTE pDest, int cchDest, BOOL fModify);
int MapNormalization( PLOC_HASH pHashN, DWORD dwFlags, LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest);
int MapKanaWidth( PLOC_HASH pHashN, DWORD dwFlags, LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest);
int MapHalfKana( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest, PKANA pKana, PCASE pCase);
int MapFullKana( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest, PKANA pKana, PCASE pCase);
int MapTraditionalSimplified( PLOC_HASH pHashN, DWORD dwFlags, LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest, PCHINESE pChinese);
//-------------------------------------------------------------------------//
// API ROUTINES //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// FoldStringW
//
// Maps one wide character string to another performing the specified
// translation. This mapping routine only takes flags that are locale
// independent.
//
// 05-31-91 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int WINAPI FoldStringW( DWORD dwMapFlags, LPCWSTR lpSrcStr, int cchSrc, LPWSTR lpDestStr, int cchDest) { int Count = 0; // word count
//
// Invalid Parameter Check:
// - length of src string is 0
// - either buffer size is negative (except cchSrc == -1)
// - src string is NULL
// - length of dest string is NOT zero AND dest string is NULL
// - same buffer - src = destination
//
// - flags are checked in switch statement below
//
if ((cchSrc == 0) || (cchDest < 0) || (lpSrcStr == NULL) || ((cchDest != 0) && (lpDestStr == NULL)) || (lpSrcStr == lpDestStr)) { SetLastError(ERROR_INVALID_PARAMETER); return (0); }
//
// If cchSrc is -1, then the source string is null terminated and we
// need to get the length of the source string. Add one to the
// length to include the null termination.
// (This will always be at least 1.)
//
if (cchSrc <= -1) { cchSrc = NlsStrLenW(lpSrcStr) + 1; }
//
// Map the string based on the given flags.
//
switch (dwMapFlags) { case ( MAP_FOLDCZONE ) : { //
// Map the string to fold the Compatibility Zone.
//
Count = FoldCZone( lpSrcStr, cchSrc, lpDestStr, cchDest ); break; } case ( MAP_FOLDDIGITS ) : { //
// Map the string to fold the Ascii Digits.
//
Count = FoldDigits( lpSrcStr, cchSrc, lpDestStr, cchDest ); break; } case ( MAP_EXPAND_LIGATURES ) : { //
// Map the string to expand all Ligatures.
//
Count = FoldLigatures( lpSrcStr, cchSrc, lpDestStr, cchDest ); break; } case ( MAP_PRECOMPOSED ) : { //
// Map the string to compress all composite forms of
// characters to their precomposed form.
//
Count = FoldPreComposed( lpSrcStr, cchSrc, lpDestStr, cchDest ); break; } case ( MAP_COMPOSITE ) : { //
// Map the string to expand out all precomposed characters
// to their composite form.
//
Count = FoldComposite( lpSrcStr, cchSrc, lpDestStr, cchDest ); break; } case ( MAP_FOLDCZONE | MAP_FOLDDIGITS ) : { //
// Map the string to fold the Compatibility Zone and fold the
// Ascii Digits.
//
Count = FoldCZone_Digits( lpSrcStr, cchSrc, lpDestStr, cchDest ); break; } case ( MAP_EXPAND_LIGATURES | MAP_FOLDCZONE ) : { //
// Map the string to expand the ligatures and fold the
// Compatibility Zone.
//
Count = FoldLigatures( lpSrcStr, cchSrc, lpDestStr, cchDest ); Count = FoldCZone( lpDestStr, Count, lpDestStr, cchDest ); break; } case ( MAP_EXPAND_LIGATURES | MAP_FOLDDIGITS ) : { //
// Map the string to expand the ligatures and fold the
// Ascii Digits.
//
Count = FoldLigatures( lpSrcStr, cchSrc, lpDestStr, cchDest ); Count = FoldDigits( lpDestStr, Count, lpDestStr, cchDest ); break; } case ( MAP_EXPAND_LIGATURES | MAP_FOLDCZONE | MAP_FOLDDIGITS ) : { //
// Map the string to expand the ligatures, fold the
// Compatibility Zone and fold the Ascii Digits.
//
Count = FoldLigatures( lpSrcStr, cchSrc, lpDestStr, cchDest ); Count = FoldCZone_Digits( lpDestStr, Count, lpDestStr, cchDest ); break; } case ( MAP_PRECOMPOSED | MAP_FOLDCZONE ) : { //
// Map the string to convert to precomposed forms and to
// fold the Compatibility Zone.
//
Count = FoldPreComposed( lpSrcStr, cchSrc, lpDestStr, cchDest ); Count = FoldCZone( lpDestStr, Count, lpDestStr, cchDest ); break; } case ( MAP_PRECOMPOSED | MAP_FOLDDIGITS ) : { //
// Map the string to convert to precomposed forms and to
// fold the Ascii Digits.
//
Count = FoldPreComposed( lpSrcStr, cchSrc, lpDestStr, cchDest ); Count = FoldDigits( lpDestStr, Count, lpDestStr, cchDest ); break; } case ( MAP_PRECOMPOSED | MAP_FOLDCZONE | MAP_FOLDDIGITS ) : { //
// Map the string to convert to precomposed forms,
// fold the Compatibility Zone, and fold the Ascii Digits.
//
Count = FoldPreComposed( lpSrcStr, cchSrc, lpDestStr, cchDest ); Count = FoldCZone_Digits( lpDestStr, Count, lpDestStr, cchDest ); break; } case ( MAP_COMPOSITE | MAP_FOLDCZONE ) : { //
// Map the string to convert to composite forms and to
// fold the Compatibility Zone.
//
Count = FoldComposite( lpSrcStr, cchSrc, lpDestStr, cchDest ); Count = FoldCZone( lpDestStr, Count, lpDestStr, cchDest ); break; } case ( MAP_COMPOSITE | MAP_FOLDDIGITS ) : { //
// Map the string to convert to composite forms and to
// fold the Ascii Digits.
//
Count = FoldComposite( lpSrcStr, cchSrc, lpDestStr, cchDest ); Count = FoldDigits( lpDestStr, Count, lpDestStr, cchDest ); break; } case ( MAP_COMPOSITE | MAP_FOLDCZONE | MAP_FOLDDIGITS ) : { //
// Map the string to convert to composite forms,
// fold the Compatibility Zone, and fold the Ascii Digits.
//
Count = FoldComposite( lpSrcStr, cchSrc, lpDestStr, cchDest ); Count = FoldCZone_Digits( lpDestStr, Count, lpDestStr, cchDest ); break; } default : { SetLastError(ERROR_INVALID_FLAGS); return (0); } }
//
// Return the number of characters written to the buffer.
// Or, if cchDest == 0, then return the number of characters
// that would have been written to the buffer.
//
return (Count); }
////////////////////////////////////////////////////////////////////////////
//
// LCMapStringW
//
// Maps one wide character string to another performing the specified
// translation. This mapping routine only takes flags that are locale
// dependent.
//
// 05-31-91 JulieB Created.
// 07-26-93 JulieB Added new flags for NT-J.
////////////////////////////////////////////////////////////////////////////
int WINAPI LCMapStringW( LCID Locale, DWORD dwMapFlags, LPCWSTR lpSrcStr, int cchSrc, LPWSTR lpDestStr, int cchDest) { PLOC_HASH pHashN; // ptr to LOC hash node
int Count = 0; // word count or byte count
int ctr; // loop counter
//
// Invalid Parameter Check:
// - validate LCID
// - length of src string is 0
// - destination buffer size is negative
// - src string is NULL
// - length of dest string is NOT zero AND dest string is NULL
// - same buffer - src = destination
// if not UPPER or LOWER or
// UPPER or LOWER used with Japanese flags
//
VALIDATE_LANGUAGE(Locale, pHashN, dwMapFlags & LCMAP_LINGUISTIC_CASING, TRUE); if ( (pHashN == NULL) || (cchSrc == 0) || (cchDest < 0) || (lpSrcStr == NULL) || ((cchDest != 0) && (lpDestStr == NULL)) || ((lpSrcStr == lpDestStr) && ((!(dwMapFlags & (LCMAP_UPPERCASE | LCMAP_LOWERCASE))) || (dwMapFlags & (LCMAP_HIRAGANA | LCMAP_KATAKANA | LCMAP_HALFWIDTH | LCMAP_FULLWIDTH)))) ) { SetLastError(ERROR_INVALID_PARAMETER); return (0); }
//
// Invalid Flags Check:
// - flags other than valid ones or 0
// - (any NORM_ flag) AND (any LCMAP_ flag except byterev and sortkey)
// - (NORM_ flags for sortkey) AND (NOT LCMAP_SORTKEY)
// - more than one of lower, upper, sortkey
// - more than one of hiragana, katakana, sortkey
// - more than one of half width, full width, sortkey
// - more than one of traditional, simplified, sortkey
// - (LINGUISTIC flag) AND (NOT LCMAP_UPPER OR LCMAP_LOWER)
//
dwMapFlags &= (~LOCALE_USE_CP_ACP); if ( (dwMapFlags & LCMS_INVALID_FLAG) || (dwMapFlags == 0) || ((dwMapFlags & (NORM_ALL | SORT_STRINGSORT)) && (dwMapFlags & LCMAP_NO_NORM)) || ((dwMapFlags & NORM_SORTKEY_ONLY) && (!(dwMapFlags & LCMAP_SORTKEY))) || (MORE_THAN_ONE(dwMapFlags, LCMS1_SINGLE_FLAG)) || (MORE_THAN_ONE(dwMapFlags, LCMS2_SINGLE_FLAG)) || (MORE_THAN_ONE(dwMapFlags, LCMS3_SINGLE_FLAG)) || (MORE_THAN_ONE(dwMapFlags, LCMS4_SINGLE_FLAG)) || ((dwMapFlags & LCMAP_LINGUISTIC_CASING) && (!(dwMapFlags & (LCMAP_UPPERCASE | LCMAP_LOWERCASE)))) ) { SetLastError(ERROR_INVALID_FLAGS); return (0); }
//
// If cchSrc is -1, then the source string is null terminated and we
// need to get the length of the source string. Add one to the
// length to include the null termination.
// (This will always be at least 1.)
//
if (cchSrc <= -1) { cchSrc = NlsStrLenW(lpSrcStr) + 1; }
//
// Map the string based on the given flags.
//
if (dwMapFlags & LCMAP_SORTKEY) { //
// Map the string to its sortkey.
//
// NOTE: This returns the number of BYTES, instead of the
// number of wide characters (words).
//
Count = MapSortKey( pHashN, dwMapFlags, lpSrcStr, cchSrc, (LPBYTE)lpDestStr, cchDest, IS_KOREAN(Locale) ); } else { switch (dwMapFlags & ~(LCMAP_BYTEREV | LCMAP_LINGUISTIC_CASING)) { case ( LCMAP_LOWERCASE ) : { //
// Map the string to Lower Case.
//
Count = MapCase( pHashN, lpSrcStr, cchSrc, lpDestStr, cchDest, (dwMapFlags & LCMAP_LINGUISTIC_CASING) ? pHashN->pLowerLinguist : pHashN->pLowerCase ); break; } case ( LCMAP_UPPERCASE ) : { //
// Map the string to Upper Case.
//
Count = MapCase( pHashN, lpSrcStr, cchSrc, lpDestStr, cchDest, (dwMapFlags & LCMAP_LINGUISTIC_CASING) ? pHashN->pUpperLinguist : pHashN->pUpperCase ); break; } case ( NORM_IGNORENONSPACE ) : case ( NORM_IGNORESYMBOLS ) : case ( NORM_IGNORENONSPACE | NORM_IGNORESYMBOLS ) : { //
// Map the string to strip out nonspace marks and/or symbols.
//
Count = MapNormalization( pHashN, dwMapFlags & ~LCMAP_BYTEREV, lpSrcStr, cchSrc, lpDestStr, cchDest ); break; } case ( LCMAP_TRADITIONAL_CHINESE ) : case ( LCMAP_TRADITIONAL_CHINESE | LCMAP_LOWERCASE ) : case ( LCMAP_TRADITIONAL_CHINESE | LCMAP_UPPERCASE) : { //
// Map the string to Traditional Chinese.
//
Count = MapTraditionalSimplified( pHashN, dwMapFlags & ~LCMAP_BYTEREV, lpSrcStr, cchSrc, lpDestStr, cchDest, pTblPtrs->pTraditional ); break; } case ( LCMAP_SIMPLIFIED_CHINESE ) : case ( LCMAP_SIMPLIFIED_CHINESE | LCMAP_LOWERCASE ) : case ( LCMAP_SIMPLIFIED_CHINESE | LCMAP_UPPERCASE ) : { //
// Map the string to Simplified Chinese.
//
Count = MapTraditionalSimplified( pHashN, dwMapFlags & ~LCMAP_BYTEREV, lpSrcStr, cchSrc, lpDestStr, cchDest, pTblPtrs->pSimplified ); break; } default : { //
// Make sure the Chinese flags are not used with the
// Japanese flags.
//
if (dwMapFlags & (LCMAP_TRADITIONAL_CHINESE | LCMAP_SIMPLIFIED_CHINESE)) { SetLastError(ERROR_INVALID_FLAGS); return (0); }
//
// The only flags not yet handled are the variations
// containing the Kana and/or Width flags.
// This handles all variations for:
// LCMAP_HIRAGANA
// LCMAP_KATAKANA
// LCMAP_HALFWIDTH
// LCMAP_FULLWIDTH
//
// Allow LCMAP_LOWERCASE and LCMAP_UPPERCASE
// in combination with the kana and width flags.
//
Count = MapKanaWidth( pHashN, dwMapFlags & ~LCMAP_BYTEREV, lpSrcStr, cchSrc, lpDestStr, cchDest ); break; } } }
//
// Always check LCMAP_BYTEREV last and do it in place.
// LCMAP_BYTEREV may be used in combination with any other flag
// (except ignore case without sortkey) or by itself.
//
if (dwMapFlags & LCMAP_BYTEREV) { //
// Reverse the bytes of each word in the string.
//
if (dwMapFlags == LCMAP_BYTEREV) { //
// Byte Reversal flag is used by itself.
//
// Make sure that the size of the destination buffer is
// larger than zero. If it is zero, return the size of
// the source string only. Do NOT touch lpDestStr.
//
if (cchDest != 0) { //
// Flag is used by itself. Reverse the bytes from
// the source string and store them in the destination
// string.
//
if (cchSrc > cchDest) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
for (ctr = 0; ctr < cchSrc; ctr++) { lpDestStr[ctr] = MAKEWORD( HIBYTE(lpSrcStr[ctr]), LOBYTE(lpSrcStr[ctr]) ); } }
//
// Return the size of the source string.
//
Count = cchSrc; } else { //
// Make sure that the size of the destination buffer is
// larger than zero. If it is zero, return the count and
// do NOT touch lpDestStr.
//
if (cchDest != 0) { //
// Check for sortkey flag.
//
if (dwMapFlags & LCMAP_SORTKEY) { //
// Sortkey flag is also set, so 'Count' contains the
// number of BYTES instead of the number of words.
//
// Reverse the bytes in place in the destination string.
// No need to check the size of the destination buffer
// here - it's been done elsewhere.
//
for (ctr = 0; ctr < Count / 2; ctr++) { lpDestStr[ctr] = MAKEWORD( HIBYTE(lpDestStr[ctr]), LOBYTE(lpDestStr[ctr]) ); } } else { //
// Flag is used in combination with another flag.
// Reverse the bytes in place in the destination string.
// No need to check the size of the destination buffer
// here - it's been done elsewhere.
//
for (ctr = 0; ctr < Count; ctr++) { lpDestStr[ctr] = MAKEWORD( HIBYTE(lpDestStr[ctr]), LOBYTE(lpDestStr[ctr]) ); } } } } }
//
// Return the number of characters (or number of bytes for sortkey)
// written to the buffer.
//
return (Count); }
//-------------------------------------------------------------------------//
// INTERNAL ROUTINES //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// FoldCZone
//
// Stores the compatibility zone values for the given string in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 02-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldCZone( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest) { int ctr; // loop counter
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0) { return (cchSrc); }
//
// If cchSrc is greater than cchDest, then the destination buffer
// is too small to hold the new string. Return an error.
//
if (cchSrc > cchDest) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
//
// Fold the Compatibility Zone and store it in the destination string.
//
for (ctr = 0; ctr < cchSrc; ctr++) { pDest[ctr] = GET_FOLD_CZONE(pTblPtrs->pCZone, pSrc[ctr]); }
//
// Return the number of wide characters written.
//
return (ctr); }
////////////////////////////////////////////////////////////////////////////
//
// FoldDigits
//
// Stores the ascii digits values for the given string in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 02-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldDigits( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest) { int ctr; // loop counter
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0) { return (cchSrc); }
//
// If cchSrc is greater than cchDest, then the destination buffer
// is too small to hold the new string. Return an error.
//
if (cchSrc > cchDest) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
//
// Fold the Ascii Digits and store it in the destination string.
//
for (ctr = 0; ctr < cchSrc; ctr++) { pDest[ctr] = GET_ASCII_DIGITS(pTblPtrs->pADigit, pSrc[ctr]); }
//
// Return the number of wide characters written.
//
return (ctr); }
////////////////////////////////////////////////////////////////////////////
//
// FoldCZone_Digits
//
// Stores the compatibility zone and ascii digits values for the given
// string in the destination buffer, and returns the number of wide
// characters written to the buffer.
//
// 02-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldCZone_Digits( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest) { int ctr; // loop counter
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0) { return (cchSrc); }
//
// If cchSrc is greater than cchDest, then the destination buffer
// is too small to hold the new string. Return an error.
//
if (cchSrc > cchDest) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
//
// Fold the compatibility zone and the ascii digits values and store
// it in the destination string.
//
for (ctr = 0; ctr < cchSrc; ctr++) { pDest[ctr] = GET_FOLD_CZONE(pTblPtrs->pCZone, pSrc[ctr]); pDest[ctr] = GET_ASCII_DIGITS(pTblPtrs->pADigit, pDest[ctr]); }
//
// Return the number of wide characters written.
//
return (ctr); }
////////////////////////////////////////////////////////////////////////////
//
// FoldLigatures
//
// Stores the expanded ligature values for the given string in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 10-15-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldLigatures( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest) { int ctr = 0; // source char counter
int ctr2 = 0; // destination char counter
DWORD Weight; // sort weight - used for expansions
//
// Make sure the default sorting table is available. If not,
// return an error.
//
if (pTblPtrs->pDefaultSortkey == NULL) { KdPrint(("NLSAPI: No Default Sorting Table Loaded.\n")); SetLastError(ERROR_FILE_NOT_FOUND); return (0); }
//
// If the destination value is zero, then just return the
// length of the string that would be returned. Do NOT touch pDest.
//
if (cchDest == 0) { //
// Convert the source string to expand all ligatures and calculate
// the number of characters that would have been written to a
// destination buffer.
//
while (ctr < cchSrc) { Weight = MAKE_SORTKEY_DWORD((pTblPtrs->pDefaultSortkey)[pSrc[ctr]]); if (GET_SCRIPT_MEMBER(&Weight) == EXPANSION) { do { ctr2++; Weight = MAKE_SORTKEY_DWORD( (pTblPtrs->pDefaultSortkey)[GET_EXPANSION_2(&Weight)]); } while (GET_SCRIPT_MEMBER(&Weight) == EXPANSION); ctr2++; } else { ctr2++; } ctr++; } } else { //
// Convert the source string to expand all ligatures and store
// the result in the destination buffer.
//
while ((ctr < cchSrc) && (ctr2 < cchDest)) { Weight = MAKE_SORTKEY_DWORD((pTblPtrs->pDefaultSortkey)[pSrc[ctr]]); if (GET_SCRIPT_MEMBER(&Weight) == EXPANSION) { do { if ((ctr2 + 1) < cchDest) { pDest[ctr2] = GET_EXPANSION_1(&Weight); pDest[ctr2 + 1] = GET_EXPANSION_2(&Weight); ctr2++; } else { ctr2++; break; } Weight = MAKE_SORTKEY_DWORD( (pTblPtrs->pDefaultSortkey)[pDest[ctr2]]); } while (GET_SCRIPT_MEMBER(&Weight) == EXPANSION);
if (ctr2 >= cchDest) { break; } ctr2++; } else { pDest[ctr2] = pSrc[ctr]; ctr2++; } ctr++; } }
//
// Make sure destination buffer was large enough.
//
if (ctr < cchSrc) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
//
// Return the number of wide characters written.
//
return (ctr2); }
////////////////////////////////////////////////////////////////////////////
//
// FoldPreComposed
//
// Stores the precomposed values for the given string in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 02-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldPreComposed( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest) { int ctr = 0; // source char counter
int ctr2 = 0; // destination char counter
WCHAR wch = 0; // wchar holder
//
// Make sure the default sorting table is available. If not,
// return an error.
//
if (pTblPtrs->pDefaultSortkey == NULL) { KdPrint(("NLSAPI: No Default Sorting Table Loaded.\n")); SetLastError(ERROR_FILE_NOT_FOUND); return (0); }
//
// If the destination value is zero, then just return the
// length of the string that would be returned. Do NOT touch pDest.
//
if (cchDest == 0) { //
// Convert the source string to precomposed and calculate the
// number of characters that would have been written to a
// destination buffer.
//
while (ctr < cchSrc) { if ((ctr2 != 0) && (IS_NONSPACE_ONLY(pTblPtrs->pDefaultSortkey, pSrc[ctr]))) { //
// Composite form. Write the precomposed form.
//
// If the precomposed character is written to the buffer,
// do NOT increment the destination pointer or the
// character count (the precomposed character was
// written over the previous character).
//
if (wch) { if ((wch = GetPreComposedChar(pSrc[ctr], wch)) == 0) { //
// No translation for composite form, so just
// increment the destination counter.
//
ctr2++; } } else { if ((wch = GetPreComposedChar( pSrc[ctr], pSrc[ctr - 1] )) == 0) { //
// No translation for composite form, so just
// increment the destination counter.
//
ctr2++; } } } else { //
// Not part of a composite character, so just
// increment the destination counter.
//
wch = 0; ctr2++; } ctr++; } } else { //
// Convert the source string to precomposed and store it in the
// destination string.
//
while ((ctr < cchSrc) && (ctr2 < cchDest)) { if ((ctr2 != 0) && (IS_NONSPACE_ONLY(pTblPtrs->pDefaultSortkey, pSrc[ctr]))) { //
// Composite form. Write the precomposed form.
//
// If the precomposed character is written to the buffer,
// do NOT increment the destination pointer or the
// character count (the precomposed character was
// written over the previous character).
//
wch = pDest[ctr2 - 1]; if ((pDest[ctr2 - 1] = GetPreComposedChar( pSrc[ctr], pDest[ctr2 - 1] )) == 0) { //
// No translation for composite form, so must
// rewrite the base character and write the
// composite character.
//
pDest[ctr2 - 1] = wch; pDest[ctr2] = pSrc[ctr]; ctr2++; } } else { //
// Not part of a composite character, so just write
// the character to the destination string.
//
pDest[ctr2] = pSrc[ctr]; ctr2++; } ctr++; } }
//
// Make sure destination buffer was large enough.
//
if (ctr < cchSrc) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
//
// Return the number of wide characters written.
//
return (ctr2); }
////////////////////////////////////////////////////////////////////////////
//
// FoldComposite
//
// Stores the composite values for the given string in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 02-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldComposite( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest) { int ctr = 0; // source char counter
int ctr2 = 0; // destination char counter
LPWSTR pEndDest; // ptr to end of destination string
WCHAR pTmp[MAX_COMPOSITE]; // tmp buffer for composite chars
//
// If the destination value is zero, then just return the
// length of the string that would be returned. Do NOT touch pDest.
//
if (cchDest == 0) { //
// Get the end of the tmp buffer.
//
pEndDest = (LPWSTR)pTmp + MAX_COMPOSITE;
//
// Convert the source string to precomposed and calculate the
// number of characters that would have been written to a
// destination buffer.
//
while (ctr < cchSrc) { //
// Write the character to the destination string.
//
*pTmp = pSrc[ctr];
//
// See if it needs to be expanded to its composite form.
//
// If no composite form is found, the routine returns 1 for
// the base character. Simply increment by the return value.
//
ctr2 += InsertCompositeForm(pTmp, pEndDest);
//
// Increment the source string counter.
//
ctr++; } } else { //
// Get the end of the destination string.
//
pEndDest = (LPWSTR)pDest + cchDest;
//
// Convert the source string to precomposed and store it in the
// destination string.
//
while ((ctr < cchSrc) && (ctr2 < cchDest)) { //
// Write the character to the destination string.
//
pDest[ctr2] = pSrc[ctr];
//
// See if it needs to be expanded to its composite form.
//
// If no composite form is found, the routine returns 1 for
// the base character. Simply increment by the return value.
//
ctr2 += InsertCompositeForm(&(pDest[ctr2]), pEndDest);
//
// Increment the source string counter.
//
ctr++; } }
//
// Make sure destination buffer was large enough.
//
if (ctr < cchSrc) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
//
// Return the number of wide characters written.
//
return (ctr2); }
////////////////////////////////////////////////////////////////////////////
//
// MapCase
//
// Stores the lower or upper case values for the given string in the
// destination buffer, and returns the number of wide characters written to
// the buffer.
//
// 05-31-91 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapCase( PLOC_HASH pHashN, LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest, PCASE pCaseTbl) { int ctr; // loop counter
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0) { return (cchSrc); }
//
// If cchSrc is greater than cchDest, then the destination buffer
// is too small to hold the lower or upper case string. Return an
// error.
//
if (cchSrc > cchDest) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
//
// Lower or Upper case the source string and store it in the
// destination string.
//
for (ctr = 0; ctr < cchSrc; ctr++) { pDest[ctr] = GET_LOWER_UPPER_CASE(pCaseTbl, pSrc[ctr]); }
//
// Return the number of wide characters written.
//
return (ctr); }
////////////////////////////////////////////////////////////////////////////
//
// SPECIAL_CASE_HANDLER
//
// Handles all of the special cases for each character. This includes only
// the valid values less than or equal to MAX_SPECIAL_CASE.
//
// DEFINED AS A MACRO.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
#define EXTRA_WEIGHT_POS(WtNum) (*(pPosXW + (WtNum * WeightLen)))
#define SPECIAL_CASE_HANDLER( SM, \
pWeight, \ pSortkey, \ pExpand, \ Position, \ fStringSort, \ fIgnoreSymbols, \ pCur, \ pBegin, \ fModify ) \ { \ PSORTKEY pExpWt; /* weight of 1 expansion char */ \ BYTE AW; /* alphanumeric weight */ \ BYTE XW; /* case weight value with extra bits */ \ DWORD PrevWt; /* previous weight */ \ BYTE PrevSM; /* previous script member */ \ BYTE PrevAW; /* previuos alphanumeric weight */ \ BYTE PrevCW; /* previuos case weight */ \ LPWSTR pPrev; /* ptr to previous char */ \ \ \ switch (SM) \ { \ case ( UNSORTABLE ) : \ { \ /* \
* Character is unsortable, so skip it. \ */ \ break; \ } \ case ( NONSPACE_MARK ) : \ { \ /* \
* Character is a nonspace mark, so only store \ * the diacritic weight. \ */ \ if (pPosDW > pDW) \ { \ (*(pPosDW - 1)) += GET_DIACRITIC(pWeight); \ } \ else \ { \ *pPosDW = GET_DIACRITIC(pWeight); \ pPosDW++; \ } \ \ break; \ } \ case ( EXPANSION ) : \ { \ /* \
* Expansion character - one character has 2 \ * different weights. Store each weight separately. \ */ \ pExpWt = &(pSortkey[(pExpand[GET_EXPAND_INDEX(pWeight)]).UCP1]); \ *pPosUW = GET_UNICODE_MOD(pExpWt, fModify); \ *pPosDW = GET_DIACRITIC(pExpWt); \ *pPosCW = GET_CASE(pExpWt) & CaseMask; \ pPosUW++; \ pPosDW++; \ pPosCW++; \ \ pExpWt = &(pSortkey[(pExpand[GET_EXPAND_INDEX(pWeight)]).UCP2]); \ while (GET_SCRIPT_MEMBER(pExpWt) == EXPANSION) \ { \ pWeight = pExpWt; \ pExpWt = &(pSortkey[(pExpand[GET_EXPAND_INDEX(pWeight)]).UCP1]); \ *pPosUW = GET_UNICODE_MOD(pExpWt, fModify); \ *pPosDW = GET_DIACRITIC(pExpWt); \ *pPosCW = GET_CASE(pExpWt) & CaseMask; \ pPosUW++; \ pPosDW++; \ pPosCW++; \ pExpWt = &(pSortkey[(pExpand[GET_EXPAND_INDEX(pWeight)]).UCP2]); \ } \ *pPosUW = GET_UNICODE_MOD(pExpWt, fModify); \ *pPosDW = GET_DIACRITIC(pExpWt); \ *pPosCW = GET_CASE(pExpWt) & CaseMask; \ pPosUW++; \ pPosDW++; \ pPosCW++; \ \ break; \ } \ case ( PUNCTUATION ) : \ { \ if (!fStringSort) \ { \ /* \
* Word Sort Method. \ * \ * Character is punctuation, so only store the special \ * weight. \ */ \ *((LPBYTE)pPosSW) = HIBYTE(GET_POSITION_SW(Position)); \ *(((LPBYTE)pPosSW) + 1) = LOBYTE(GET_POSITION_SW(Position)); \ pPosSW++; \ *pPosSW = GET_SPECIAL_WEIGHT(pWeight); \ pPosSW++; \ \ break; \ } \ \ /* \
* If using STRING sort method, treat punctuation the same \ * as symbol. So, FALL THROUGH to the symbol cases. \ */ \ } \ case ( SYMBOL_1 ) : \ case ( SYMBOL_2 ) : \ case ( SYMBOL_3 ) : \ case ( SYMBOL_4 ) : \ case ( SYMBOL_5 ) : \ { \ /* \
* Character is a symbol. \ * Store the Unicode weights ONLY if the NORM_IGNORESYMBOLS \ * flag is NOT set. \ */ \ if (!fIgnoreSymbols) \ { \ *pPosUW = GET_UNICODE_MOD(pWeight, fModify); \ *pPosDW = GET_DIACRITIC(pWeight); \ *pPosCW = GET_CASE(pWeight) & CaseMask; \ pPosUW++; \ pPosDW++; \ pPosCW++; \ } \ \ break; \ } \ case ( FAREAST_SPECIAL ) : \ { \ /* \
* Get the alphanumeric weight and the case weight of the \ * current code point. \ */ \ AW = GET_ALPHA_NUMERIC(pWeight); \ XW = (GET_CASE(pWeight) & CaseMask) | CASE_XW_MASK; \ \ /* \
* Special case Repeat and Cho-On. \ * AW = 0 => Repeat \ * AW = 1 => Cho-On \ * AW = 2+ => Kana \ */ \ if (AW <= MAX_SPECIAL_AW) \ { \ /* \
* If the script member of the previous character is \ * invalid, then give the special character an \ * invalid weight (highest possible weight) so that it \ * will sort AFTER everything else. \ */ \ pPrev = pCur - 1; \ *pPosUW = MAP_INVALID_UW; \ while (pPrev >= pBegin) \ { \ PrevWt = GET_DWORD_WEIGHT(pHashN, *pPrev); \ PrevSM = GET_SCRIPT_MEMBER(&PrevWt); \ if (PrevSM < FAREAST_SPECIAL) \ { \ if (PrevSM != EXPANSION) \ { \ /* \
* UNSORTABLE or NONSPACE_MARK. \ * \ * Just ignore these, since we only care \ * about the previous UW value. \ */ \ pPrev--; \ continue; \ } \ } \ else if (PrevSM == FAREAST_SPECIAL) \ { \ PrevAW = GET_ALPHA_NUMERIC(&PrevWt); \ if (PrevAW <= MAX_SPECIAL_AW) \ { \ /* \
* Handle case where two special chars follow \ * each other. Keep going back in the string. \ */ \ pPrev--; \ continue; \ } \ \ *pPosUW = MAKE_UNICODE_WT(KANA, PrevAW, fModify); \ \ /* \
* Only build weights 4, 5, 6, and 7 if the \ * previous character is KANA. \ * \ * Always: \ * 4W = previous CW & ISOLATE_SMALL \ * 6W = previous CW & ISOLATE_KANA \ * \ */ \ PrevCW = (GET_CASE(&PrevWt) & CaseMask) | \ CASE_XW_MASK; \ \ EXTRA_WEIGHT_POS(0) = PrevCW & ISOLATE_SMALL; \ EXTRA_WEIGHT_POS(2) = PrevCW & ISOLATE_KANA; \ \ if (AW == AW_REPEAT) \ { \ /* \
* Repeat: \ * UW = previous UW (set above) \ * 5W = WT_FIVE_REPEAT \ * 7W = previous CW & ISOLATE_WIDTH \ */ \ EXTRA_WEIGHT_POS(1) = WT_FIVE_REPEAT; \ EXTRA_WEIGHT_POS(3) = PrevCW & ISOLATE_WIDTH; \ } \ else \ { \ /* \
* Cho-On: \ * UW = previous UW & CHO_ON_UW_MASK \ * 5W = WT_FIVE_CHO_ON \ * 7W = current CW & ISOLATE_WIDTH \ */ \ *pPosUW &= CHO_ON_UW_MASK; \ EXTRA_WEIGHT_POS(1) = WT_FIVE_CHO_ON; \ EXTRA_WEIGHT_POS(3) = XW & ISOLATE_WIDTH; \ } \ \ pPosXW++; \ } \ else \ { \ *pPosUW = GET_UNICODE_MOD(&PrevWt, fModify); \ } \ \ break; \ } \ \ /* \
* Make sure there is a valid UW. If not, quit out \ * of switch case. \ */ \ if (*pPosUW == MAP_INVALID_UW) \ { \ pPosUW++; \ break; \ } \ } \ else \ { \ /* \
* Kana: \ * SM = KANA \ * AW = current AW \ * 4W = current CW & ISOLATE_SMALL \ * 5W = WT_FIVE_KANA \ * 6W = current CW & ISOLATE_KANA \ * 7W = current CW & ISOLATE_WIDTH \ */ \ *pPosUW = MAKE_UNICODE_WT(KANA, AW, fModify); \ EXTRA_WEIGHT_POS(0) = XW & ISOLATE_SMALL; \ EXTRA_WEIGHT_POS(1) = WT_FIVE_KANA; \ EXTRA_WEIGHT_POS(2) = XW & ISOLATE_KANA; \ EXTRA_WEIGHT_POS(3) = XW & ISOLATE_WIDTH; \ \ pPosXW++; \ } \ \ /* \
* Always: \ * DW = current DW \ * CW = minimum CW \ */ \ *pPosDW = GET_DIACRITIC(pWeight); \ *pPosCW = MIN_CW; \ \ pPosUW++; \ pPosDW++; \ pPosCW++; \ \ break; \ } \ case ( JAMO_SPECIAL ) : \ { \ /* \
* See if it's a leading Jamo. \ */ \ if (IsLeadingJamo(*pPos)) \ { \ int OldHangulCount; /* number of old Hangul found */ \ WORD JamoUW; \ BYTE JamoXW[3]; \ \ /* \
* If the characters beginning from pPos are a valid old \ * Hangul composition, create the sortkey according to \ * the old Hangul rule. \ */ \ if ((OldHangulCount = \ MapOldHangulSortKey( pHashN, \ pPos, \ cchSrc - PosCtr, \ &JamoUW, \ JamoXW, \ fModify )) > 0) \ { \ *pPosUW = JamoUW; \ pPosUW++; \ *pPosUW = MAKE_UNICODE_WT(SM_UW_XW, JamoXW[0], FALSE); \ pPosUW++; \ *pPosUW = MAKE_UNICODE_WT(SM_UW_XW, JamoXW[1], FALSE); \ pPosUW++; \ *pPosUW = MAKE_UNICODE_WT(SM_UW_XW, JamoXW[2], FALSE); \ pPosUW++; \ \ *pPosDW = MIN_DW; \ *pPosCW = MIN_CW; \ pPosDW++; \ pPosCW++; \ \ /* \
* Decrement OldHangulCount because the for loop will \ * increase PosCtr and pPos as well. \ */ \ OldHangulCount--; \ PosCtr += OldHangulCount; \ pPos += OldHangulCount; \ \ break; \ } \ } \ \ /* \
* Otherwise, fall back to the normal behavior. \ * \ * No special case on character, so store the various \ * weights for the character. \ */ \ \ /* \
* We store the real script member in the diacritic weight \ * since both the diacritic weight and case weight are not \ * used in Korean. \ */ \ *pPosUW = MAKE_UNICODE_WT( GET_DIACRITIC(pWeight), \ GET_ALPHA_NUMERIC(pWeight), \ fModify ); \ *pPosDW = MIN_DW; \ *pPosCW = GET_CASE(pWeight); \ pPosUW++; \ pPosDW++; \ pPosCW++; \ \ break; \ } \ case ( EXTENSION_A ) : \ { \ /* \
* UW = SM_EXT_A, AW_EXT_A, AW, DW \ * DW = miniumum DW \ * CW = minimum CW \ */ \ *pPosUW = MAKE_UNICODE_WT(SM_EXT_A, AW_EXT_A, fModify); \ pPosUW++; \ \ *pPosUW = MAKE_UNICODE_WT( GET_ALPHA_NUMERIC(pWeight), \ GET_DIACRITIC(pWeight), \ FALSE ); \ pPosUW++; \ \ *pPosDW = MIN_DW; \ *pPosCW = MIN_CW; \ pPosDW++; \ pPosCW++; \ \ break; \ } \ } \ }
////////////////////////////////////////////////////////////////////////////
//
// MapSortKey
//
// Stores the sortkey weights for the given string in the destination
// buffer and returns the number of BYTES written to the buffer.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapSortKey( PLOC_HASH pHashN, DWORD dwFlags, LPCWSTR pSrc, int cchSrc, LPBYTE pDest, int cbDest, BOOL fModify) { register int WeightLen; // length of one set of weights
LPWSTR pUW; // ptr to Unicode Weights
LPBYTE pDW; // ptr to Diacritic Weights
LPBYTE pCW; // ptr to Case Weights
LPBYTE pXW; // ptr to Extra Weights
LPWSTR pSW; // ptr to Special Weights
LPWSTR pPosUW; // ptr to position in pUW buffer
LPBYTE pPosDW; // ptr to position in pDW buffer
LPBYTE pPosCW; // ptr to position in pCW buffer
LPBYTE pPosXW; // ptr to position in pXW buffer
LPWSTR pPosSW; // ptr to position in pSW buffer
PSORTKEY pWeight; // ptr to weight of character
BYTE SM; // script member value
BYTE CaseMask; // mask for case weight
int PosCtr; // position counter in string
LPWSTR pPos; // ptr to position in string
LPBYTE pTmp; // ptr to go through UW, XW, and SW
LPBYTE pPosTmp; // ptr to tmp position in XW
PCOMPRESS_2 pComp2; // ptr to compression 2 list
PCOMPRESS_3 pComp3; // ptr to compression 3 list
WORD pBuffer[MAX_SORTKEY_BUF_LEN]; // buffer to hold weights
int ctr; // loop counter
BOOL IfDblCompress; // if double compress possibility
BOOL fStringSort; // if using string sort method
BOOL fIgnoreSymbols; // if ignore symbols flag is set
//
// Make sure the sorting information is available in the system.
//
if ((pHashN->pSortkey == NULL) || (pHashN->IfIdeographFailure == TRUE)) { KdPrint(("NLSAPI: Appropriate Sorting Tables Not Loaded.\n")); SetLastError(ERROR_FILE_NOT_FOUND); return (0); }
//
// See if the length of the string is too large for the static
// buffer. If so, allocate a buffer that is large enough.
//
if (cchSrc > MAX_SMALL_BUF_LEN) { //
// Allocate buffer to hold all of the weights.
// (cchSrc) * (max # of expansions) * (# of weights)
//
WeightLen = cchSrc * MAX_EXPANSION; if ((pUW = (LPWSTR)NLS_ALLOC_MEM( WeightLen * MAX_WEIGHTS * sizeof(WCHAR) )) == NULL) { SetLastError(ERROR_OUTOFMEMORY); return (0); } } else { WeightLen = MAX_SMALL_BUF_LEN * MAX_EXPANSION; pUW = (LPWSTR)pBuffer; }
//
// Set the case weight mask based on the given flags.
// If none or all of the ignore case flags are set, then
// just leave the mask as 0xff.
//
CaseMask = 0xff; switch (dwFlags & NORM_ALL_CASE) { case ( NORM_IGNORECASE ) : { CaseMask &= CASE_UPPER_MASK; break; } case ( NORM_IGNOREKANATYPE ) : { CaseMask &= CASE_KANA_MASK; break; } case ( NORM_IGNOREWIDTH ) : { CaseMask &= CASE_WIDTH_MASK; break; } case ( NORM_IGNORECASE | NORM_IGNOREKANATYPE ) : { CaseMask &= (CASE_UPPER_MASK & CASE_KANA_MASK); break; } case ( NORM_IGNORECASE | NORM_IGNOREWIDTH ) : { CaseMask &= (CASE_UPPER_MASK & CASE_WIDTH_MASK); break; } case ( NORM_IGNOREKANATYPE | NORM_IGNOREWIDTH ) : { CaseMask &= (CASE_KANA_MASK & CASE_WIDTH_MASK); break; } case ( NORM_IGNORECASE | NORM_IGNOREKANATYPE | NORM_IGNOREWIDTH ) : { CaseMask &= (CASE_UPPER_MASK & CASE_KANA_MASK & CASE_WIDTH_MASK); break; } }
//
// Set pointers to positions of weights in buffer.
//
// UW => 4 word length (extension A and Jamo need extra words)
// DW => byte length
// CW => byte length
// XW => 4 byte length (4 weights, 1 byte each) FE Special
// SW => dword length (2 words each)
//
// Note: SW must start on a WORD boundary, so XW needs to be padded
// appropriately.
//
pDW = (LPBYTE)(pUW + (WeightLen * (NUM_BYTES_UW / sizeof(WCHAR)))); pCW = (LPBYTE)(pDW + (WeightLen * NUM_BYTES_DW)); pXW = (LPBYTE)(pCW + (WeightLen * NUM_BYTES_CW)); pSW = (LPWSTR)(pXW + (WeightLen * (NUM_BYTES_XW + NUM_BYTES_PADDING))); pPosUW = pUW; pPosDW = pDW; pPosCW = pCW; pPosXW = pXW; pPosSW = pSW;
//
// Initialize flags and loop values.
//
fStringSort = dwFlags & SORT_STRINGSORT; fIgnoreSymbols = dwFlags & NORM_IGNORESYMBOLS; pPos = (LPWSTR)pSrc; PosCtr = 1;
//
// Check if given locale has compressions.
//
if (pHashN->IfCompression == FALSE) { //
// Go through string, code point by code point.
//
// No compressions exist in the given locale, so
// DO NOT check for them.
//
for (; PosCtr <= cchSrc; PosCtr++, pPos++) { //
// Get weights.
//
pWeight = &((pHashN->pSortkey)[*pPos]); SM = GET_SCRIPT_MEMBER(pWeight);
if (SM > MAX_SPECIAL_CASE) { //
// No special case on character, so store the
// various weights for the character.
//
*pPosUW = GET_UNICODE_MOD(pWeight, fModify); *pPosDW = GET_DIACRITIC(pWeight); *pPosCW = GET_CASE(pWeight) & CaseMask; pPosUW++; pPosDW++; pPosCW++; } else { SPECIAL_CASE_HANDLER( SM, pWeight, pHashN->pSortkey, pTblPtrs->pExpansion, pPosUW - pUW + 1, fStringSort, fIgnoreSymbols, pPos, (LPWSTR)pSrc, fModify ); } } } else if (pHashN->IfDblCompression == FALSE) { //
// Go through string, code point by code point.
//
// Compressions DO exist in the given locale, so
// check for them.
//
// No double compressions exist in the given locale,
// so DO NOT check for them.
//
for (; PosCtr <= cchSrc; PosCtr++, pPos++) { //
// Get weights.
//
pWeight = &((pHashN->pSortkey)[*pPos]); SM = GET_SCRIPT_MEMBER(pWeight);
if (SM > MAX_SPECIAL_CASE) { //
// No special case on character, but must check for
// compression characters.
//
switch (GET_COMPRESSION(pWeight)) { case ( COMPRESS_3_MASK ) : { if ((PosCtr + 2) <= cchSrc) { ctr = pHashN->pCompHdr->Num3; pComp3 = pHashN->pCompress3; for (; ctr > 0; ctr--, pComp3++) { if ((pComp3->UCP1 == *pPos) && (pComp3->UCP2 == *(pPos + 1)) && (pComp3->UCP3 == *(pPos + 2))) { pWeight = &(pComp3->Weights); *pPosUW = GET_UNICODE_MOD(pWeight, fModify); *pPosDW = GET_DIACRITIC(pWeight); *pPosCW = GET_CASE(pWeight) & CaseMask; pPosUW++; pPosDW++; pPosCW++;
//
// Add only two to source, since one
// will be added by "for" structure.
//
pPos += 2; PosCtr += 2; break; } } if (ctr > 0) { break; } }
//
// Fall through if not found.
//
} case ( COMPRESS_2_MASK ) : { if ((PosCtr + 1) <= cchSrc) { ctr = pHashN->pCompHdr->Num2; pComp2 = pHashN->pCompress2; for (; ctr > 0; ctr--, pComp2++) { if ((pComp2->UCP1 == *pPos) && (pComp2->UCP2 == *(pPos + 1))) { pWeight = &(pComp2->Weights); *pPosUW = GET_UNICODE_MOD(pWeight, fModify); *pPosDW = GET_DIACRITIC(pWeight); *pPosCW = GET_CASE(pWeight) & CaseMask; pPosUW++; pPosDW++; pPosCW++;
//
// Add only one to source, since one
// will be added by "for" structure.
//
pPos++; PosCtr++; break; } } if (ctr > 0) { break; } }
//
// Fall through if not found.
//
} default : { //
// No possible compression for character, so store
// the various weights for the character.
//
*pPosUW = GET_UNICODE_SM_MOD(pWeight, SM, fModify); *pPosDW = GET_DIACRITIC(pWeight); *pPosCW = GET_CASE(pWeight) & CaseMask; pPosUW++; pPosDW++; pPosCW++; } } } else { SPECIAL_CASE_HANDLER( SM, pWeight, pHashN->pSortkey, pTblPtrs->pExpansion, pPosUW - pUW + 1, fStringSort, fIgnoreSymbols, pPos, (LPWSTR)pSrc, fModify ); } } } else { //
// Go through string, code point by code point.
//
// Compressions DO exist in the given locale, so
// check for them.
//
// Double Compressions also exist in the given locale,
// so check for them.
//
for (; PosCtr <= cchSrc; PosCtr++, pPos++) { //
// Get weights.
//
pWeight = &((pHashN->pSortkey)[*pPos]); SM = GET_SCRIPT_MEMBER(pWeight);
if (SM > MAX_SPECIAL_CASE) { //
// No special case on character, but must check for
// compression characters and double compression
// characters.
//
IfDblCompress = (((PosCtr + 1) <= cchSrc) && ((GET_DWORD_WEIGHT(pHashN, *pPos) & CMP_MASKOFF_CW) == (GET_DWORD_WEIGHT(pHashN, *(pPos + 1)) & CMP_MASKOFF_CW))) ? 1 : 0;
switch (GET_COMPRESSION(pWeight)) { case ( COMPRESS_3_MASK ) : { if (IfDblCompress) { if ((PosCtr + 3) <= cchSrc) { ctr = pHashN->pCompHdr->Num3; pComp3 = pHashN->pCompress3; for (; ctr > 0; ctr--, pComp3++) { if ((pComp3->UCP1 == *(pPos + 1)) && (pComp3->UCP2 == *(pPos + 2)) && (pComp3->UCP3 == *(pPos + 3))) { pWeight = &(pComp3->Weights); *pPosUW = GET_UNICODE_MOD(pWeight, fModify); *pPosDW = GET_DIACRITIC(pWeight); *pPosCW = GET_CASE(pWeight) & CaseMask; *(pPosUW + 1) = *pPosUW; *(pPosDW + 1) = *pPosDW; *(pPosCW + 1) = *pPosCW; pPosUW += 2; pPosDW += 2; pPosCW += 2;
//
// Add only three to source, since one
// will be added by "for" structure.
//
pPos += 3; PosCtr += 3; break; } } if (ctr > 0) { break; } } }
//
// Fall through if not found.
//
if ((PosCtr + 2) <= cchSrc) { ctr = pHashN->pCompHdr->Num3; pComp3 = pHashN->pCompress3; for (; ctr > 0; ctr--, pComp3++) { if ((pComp3->UCP1 == *pPos) && (pComp3->UCP2 == *(pPos + 1)) && (pComp3->UCP3 == *(pPos + 2))) { pWeight = &(pComp3->Weights); *pPosUW = GET_UNICODE_MOD(pWeight, fModify); *pPosDW = GET_DIACRITIC(pWeight); *pPosCW = GET_CASE(pWeight) & CaseMask; pPosUW++; pPosDW++; pPosCW++;
//
// Add only two to source, since one
// will be added by "for" structure.
//
pPos += 2; PosCtr += 2; break; } } if (ctr > 0) { break; } } //
// Fall through if not found.
//
} case ( COMPRESS_2_MASK ) : { if (IfDblCompress) { if ((PosCtr + 2) <= cchSrc) { ctr = pHashN->pCompHdr->Num2; pComp2 = pHashN->pCompress2; for (; ctr > 0; ctr--, pComp2++) { if ((pComp2->UCP1 == *(pPos + 1)) && (pComp2->UCP2 == *(pPos + 2))) { pWeight = &(pComp2->Weights); *pPosUW = GET_UNICODE_MOD(pWeight, fModify); *pPosDW = GET_DIACRITIC(pWeight); *pPosCW = GET_CASE(pWeight) & CaseMask; *(pPosUW + 1) = *pPosUW; *(pPosDW + 1) = *pPosDW; *(pPosCW + 1) = *pPosCW; pPosUW += 2; pPosDW += 2; pPosCW += 2;
//
// Add only two to source, since one
// will be added by "for" structure.
//
pPos += 2; PosCtr += 2; break; } } if (ctr > 0) { break; } } }
//
// Fall through if not found.
//
if ((PosCtr + 1) <= cchSrc) { ctr = pHashN->pCompHdr->Num2; pComp2 = pHashN->pCompress2; for (; ctr > 0; ctr--, pComp2++) { if ((pComp2->UCP1 == *pPos) && (pComp2->UCP2 == *(pPos + 1))) { pWeight = &(pComp2->Weights); *pPosUW = GET_UNICODE_MOD(pWeight, fModify); *pPosDW = GET_DIACRITIC(pWeight); *pPosCW = GET_CASE(pWeight) & CaseMask; pPosUW++; pPosDW++; pPosCW++;
//
// Add only one to source, since one
// will be added by "for" structure.
//
pPos++; PosCtr++; break; } } if (ctr > 0) { break; } }
//
// Fall through if not found.
//
} default : { //
// No possible compression for character, so store
// the various weights for the character.
//
*pPosUW = GET_UNICODE_SM_MOD(pWeight, SM, fModify); *pPosDW = GET_DIACRITIC(pWeight); *pPosCW = GET_CASE(pWeight) & CaseMask; pPosUW++; pPosDW++; pPosCW++; } } } else { SPECIAL_CASE_HANDLER( SM, pWeight, pHashN->pSortkey, pTblPtrs->pExpansion, pPosUW - pUW + 1, fStringSort, fIgnoreSymbols, pPos, (LPWSTR)pSrc, fModify ); } } }
//
// Store the final sortkey weights in the destination buffer.
//
// PosCtr will be a BYTE count.
//
PosCtr = 0;
//
// If the destination value is zero, then just return the
// length of the string that would be returned. Do NOT touch pDest.
//
if (cbDest == 0) { //
// Count the Unicode Weights.
//
PosCtr += (int)((LPBYTE)pPosUW - (LPBYTE)pUW);
//
// Count the Separator.
//
PosCtr++;
//
// Count the Diacritic Weights.
//
// - Eliminate minimum DW.
// - Count the number of diacritic weights.
//
if (!(dwFlags & NORM_IGNORENONSPACE)) { pPosDW--; if (pHashN->IfReverseDW == TRUE) { //
// Reverse diacritics:
// - remove diacritics from left to right.
// - count diacritics from right to left.
//
while ((pDW <= pPosDW) && (*pDW <= MIN_DW)) { pDW++; } PosCtr += (int)(pPosDW - pDW + 1); } else { //
// Regular diacritics:
// - remove diacritics from right to left.
// - count diacritics from left to right.
//
while ((pPosDW >= pDW) && (*pPosDW <= MIN_DW)) { pPosDW--; } PosCtr += (int)(pPosDW - pDW + 1); } }
//
// Count the Separator.
//
PosCtr++;
//
// Count the Case Weights.
//
// - Eliminate minimum CW.
// - Count the number of case weights.
//
if ((dwFlags & NORM_DROP_CW) != NORM_DROP_CW) { pPosCW--; while ((pPosCW >= pCW) && (*pPosCW <= MIN_CW)) { pPosCW--; } PosCtr += (int)(pPosCW - pCW + 1); }
//
// Count the Separator.
//
PosCtr++;
//
// Count the Extra Weights for Far East Special.
//
// - Eliminate unnecessary XW.
// - Count the number of extra weights and separators.
//
if (pXW < pPosXW) { if (dwFlags & NORM_IGNORENONSPACE) { //
// Ignore 4W and 5W. Must count separators for
// 4W and 5W, though.
//
PosCtr += 2; ctr = 2; } else { ctr = 0; }
pPosXW--; for (; ctr < NUM_BYTES_XW; ctr++) { pTmp = pXW + (WeightLen * ctr); pPosTmp = pPosXW + (WeightLen * ctr); while ((pPosTmp >= pTmp) && (*pPosTmp == pXWDrop[ctr])) { pPosTmp--; } PosCtr += (int)(pPosTmp - pTmp + 1);
//
// Count the Separator.
//
PosCtr++; } }
//
// Count the Separator.
//
PosCtr++;
//
// Count the Special Weights.
//
if (!fIgnoreSymbols) { PosCtr += (int)((LPBYTE)pPosSW - (LPBYTE)pSW); }
//
// Count the Terminator.
//
PosCtr++; } else { //
// Store the Unicode Weights in the destination buffer.
//
// - Make sure destination buffer is large enough.
// - Copy unicode weights to destination buffer.
//
// NOTE: cbDest is the number of BYTES.
// Also, must add one to length for separator.
//
if (cbDest < (((LPBYTE)pPosUW - (LPBYTE)pUW) + 1)) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } pTmp = (LPBYTE)pUW; while (pTmp < (LPBYTE)pPosUW) { //
// Copy Unicode weight to destination buffer.
//
// NOTE: Unicode Weight is stored in the data file as
// Alphanumeric Weight, Script Member
// so that the WORD value will be read correctly.
//
pDest[PosCtr] = *(pTmp + 1); pDest[PosCtr + 1] = *pTmp; PosCtr += 2; pTmp += 2; }
//
// Copy Separator to destination buffer.
//
// Destination buffer is large enough to hold the separator,
// since it was checked with the Unicode weights above.
//
pDest[PosCtr] = SORTKEY_SEPARATOR; PosCtr++;
//
// Store the Diacritic Weights in the destination buffer.
//
// - Eliminate minimum DW.
// - Make sure destination buffer is large enough.
// - Copy diacritic weights to destination buffer.
//
if (!(dwFlags & NORM_IGNORENONSPACE)) { pPosDW--; if (pHashN->IfReverseDW == TRUE) { //
// Reverse diacritics:
// - remove diacritics from left to right.
// - store diacritics from right to left.
//
while ((pDW <= pPosDW) && (*pDW <= MIN_DW)) { pDW++; } if ((cbDest - PosCtr) <= (pPosDW - pDW + 1)) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } while (pPosDW >= pDW) { pDest[PosCtr] = *pPosDW; PosCtr++; pPosDW--; } } else { //
// Regular diacritics:
// - remove diacritics from right to left.
// - store diacritics from left to right.
//
while ((pPosDW >= pDW) && (*pPosDW <= MIN_DW)) { pPosDW--; } if ((cbDest - PosCtr) <= (pPosDW - pDW + 1)) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } while (pDW <= pPosDW) { pDest[PosCtr] = *pDW; PosCtr++; pDW++; } } }
//
// Copy Separator to destination buffer if the destination
// buffer is large enough.
//
if (PosCtr == cbDest) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } pDest[PosCtr] = SORTKEY_SEPARATOR; PosCtr++;
//
// Store the Case Weights in the destination buffer.
//
// - Eliminate minimum CW.
// - Make sure destination buffer is large enough.
// - Copy case weights to destination buffer.
//
if ((dwFlags & NORM_DROP_CW) != NORM_DROP_CW) { pPosCW--; while ((pPosCW >= pCW) && (*pPosCW <= MIN_CW)) { pPosCW--; } if ((cbDest - PosCtr) <= (pPosCW - pCW + 1)) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } while (pCW <= pPosCW) { pDest[PosCtr] = *pCW; PosCtr++; pCW++; } }
//
// Copy Separator to destination buffer if the destination
// buffer is large enough.
//
if (PosCtr == cbDest) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } pDest[PosCtr] = SORTKEY_SEPARATOR; PosCtr++;
//
// Store the Extra Weights in the destination buffer for
// Far East Special.
//
// - Eliminate unnecessary XW.
// - Make sure destination buffer is large enough.
// - Copy extra weights to destination buffer.
//
if (pXW < pPosXW) { if (dwFlags & NORM_IGNORENONSPACE) { //
// Ignore 4W and 5W. Must count separators for
// 4W and 5W, though.
//
if ((cbDest - PosCtr) <= 2) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
pDest[PosCtr] = pXWSeparator[0]; pDest[PosCtr + 1] = pXWSeparator[1]; PosCtr += 2; ctr = 2; } else { ctr = 0; }
pPosXW--; for (; ctr < NUM_BYTES_XW; ctr++) { pTmp = pXW + (WeightLen * ctr); pPosTmp = pPosXW + (WeightLen * ctr); while ((pPosTmp >= pTmp) && (*pPosTmp == pXWDrop[ctr])) { pPosTmp--; } if ((cbDest - PosCtr) <= (pPosTmp - pTmp + 1)) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } while (pTmp <= pPosTmp) { pDest[PosCtr] = *pTmp; PosCtr++; pTmp++; }
//
// Copy Separator to destination buffer.
//
pDest[PosCtr] = pXWSeparator[ctr]; PosCtr++; } }
//
// Copy Separator to destination buffer if the destination
// buffer is large enough.
//
if (PosCtr == cbDest) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } pDest[PosCtr] = SORTKEY_SEPARATOR; PosCtr++;
//
// Store the Special Weights in the destination buffer.
//
// - Make sure destination buffer is large enough.
// - Copy special weights to destination buffer.
//
if (!fIgnoreSymbols) { if ((cbDest - PosCtr) <= (((LPBYTE)pPosSW - (LPBYTE)pSW))) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } pTmp = (LPBYTE)pSW; while (pTmp < (LPBYTE)pPosSW) { pDest[PosCtr] = *pTmp; pDest[PosCtr + 1] = *(pTmp + 1);
//
// NOTE: Special Weight is stored in the data file as
// Weight, Script
// so that the WORD value will be read correctly.
//
pDest[PosCtr + 2] = *(pTmp + 3); pDest[PosCtr + 3] = *(pTmp + 2);
PosCtr += 4; pTmp += 4; } }
//
// Copy Terminator to destination buffer if the destination
// buffer is large enough.
//
if (PosCtr == cbDest) { NLS_FREE_TMP_BUFFER(pUW, pBuffer); SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } pDest[PosCtr] = SORTKEY_TERMINATOR; PosCtr++; }
//
// Free the buffer used for the weights, if one was allocated.
//
NLS_FREE_TMP_BUFFER(pUW, pBuffer);
//
// Return number of BYTES written to destination buffer.
//
return (PosCtr); }
////////////////////////////////////////////////////////////////////////////
//
// MapNormalization
//
// Stores the result of the normalization for the given string in the
// destination buffer, and returns the number of wide characters written
// to the buffer.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapNormalization( PLOC_HASH pHashN, DWORD dwFlags, LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest) { int ctr; // source char counter
int ctr2 = 0; // destination char counter
//
// Make sure the ctype table is available in the system.
//
if (GetCTypeFileInfo()) { SetLastError(ERROR_FILE_NOT_FOUND); return (0); }
//
// Make sure the sorting information is available in the system.
//
if ((pHashN->pSortkey == NULL) || (pHashN->IfIdeographFailure == TRUE)) { KdPrint(("NLSAPI: Appropriate Sorting Tables Not Loaded.\n")); SetLastError(ERROR_FILE_NOT_FOUND); return (0); }
//
// Normalize based on the flags.
//
switch (dwFlags) { case ( NORM_IGNORENONSPACE ) : { //
// If the destination value is zero, then only return
// the count of characters. Do NOT touch pDest.
//
if (cchDest == 0) { //
// Count the number of characters that would be written
// to the destination buffer.
//
for (ctr = 0, ctr2 = 0; ctr < cchSrc; ctr++) { if (!IS_NONSPACE(pHashN->pSortkey, pSrc[ctr])) { //
// Not a nonspacing character, so just write the
// character to the destination string.
//
ctr2++; } else if (!(IS_NONSPACE_ONLY(pHashN->pSortkey, pSrc[ctr]))) { //
// PreComposed Form. Write the base character only.
//
ctr2++; } //
// Else - nonspace character only, so don't write
// anything.
//
} } else { //
// Store the normalized string in the destination string.
//
for (ctr = 0, ctr2 = 0; (ctr < cchSrc) && (ctr2 < cchDest); ctr++) { if (!IS_NONSPACE(pHashN->pSortkey, pSrc[ctr])) { //
// Not a nonspacing character, so just write the
// character to the destination string.
//
pDest[ctr2] = pSrc[ctr]; ctr2++; } else if (!(IS_NONSPACE_ONLY(pHashN->pSortkey, pSrc[ctr]))) { //
// PreComposed Form. Write the base character only.
//
GET_BASE_CHAR(pSrc[ctr], pDest[ctr2]); if (pDest[ctr2] == 0) { //
// No translation for precomposed character,
// so must write the precomposed character.
//
pDest[ctr2] = pSrc[ctr]; } ctr2++; } //
// Else - nonspace character only, so don't write
// anything.
//
} }
break; } case ( NORM_IGNORESYMBOLS ) : { //
// If the destination value is zero, then only return
// the count of characters. Do NOT touch pDest.
//
if (cchDest == 0) { //
// Count the number of characters that would be written
// to the destination buffer.
//
for (ctr = 0, ctr2 = 0; ctr < cchSrc; ctr++) { if (!IS_SYMBOL(pHashN->pSortkey, pSrc[ctr])) { //
// Not a symbol, so write the character.
//
ctr2++; } } } else { //
// Store the normalized string in the destination string.
//
for (ctr = 0, ctr2 = 0; (ctr < cchSrc) && (ctr2 < cchDest); ctr++) { if (!IS_SYMBOL(pHashN->pSortkey, pSrc[ctr])) { //
// Not a symbol, so write the character.
//
pDest[ctr2] = pSrc[ctr]; ctr2++; } } }
break; } case ( NORM_IGNORENONSPACE | NORM_IGNORESYMBOLS ) : { //
// If the destination value is zero, then only return
// the count of characters. Do NOT touch pDest.
//
if (cchDest == 0) { //
// Count the number of characters that would be written
// to the destination buffer.
//
for (ctr = 0, ctr2 = 0; ctr < cchSrc; ctr++) { if (!IS_SYMBOL(pHashN->pSortkey, pSrc[ctr])) { //
// Not a symbol, so check for nonspace.
//
if (!IS_NONSPACE(pHashN->pSortkey, pSrc[ctr])) { //
// Not a nonspacing character, so just write the
// character to the destination string.
//
ctr2++; } else if (!(IS_NONSPACE_ONLY( pHashN->pSortkey, pSrc[ctr] ))) { //
// PreComposed Form. Write the base character
// only.
//
ctr2++; } //
// Else - nonspace character only, so don't write
// anything.
//
} } } else { //
// Store the normalized string in the destination string.
//
for (ctr = 0, ctr2 = 0; (ctr < cchSrc) && (ctr2 < cchDest); ctr++) { //
// Check for symbol and nonspace.
//
if (!IS_SYMBOL(pHashN->pSortkey, pSrc[ctr])) { //
// Not a symbol, so check for nonspace.
//
if (!IS_NONSPACE(pHashN->pSortkey, pSrc[ctr])) { //
// Not a nonspacing character, so just write the
// character to the destination string.
//
pDest[ctr2] = pSrc[ctr]; ctr2++; } else if (!(IS_NONSPACE_ONLY( pHashN->pSortkey, pSrc[ctr] ))) { //
// PreComposed Form. Write the base character
// only.
//
GET_BASE_CHAR(pSrc[ctr], pDest[ctr2]); if (pDest[ctr2] == 0) { //
// No translation for precomposed character,
// so must write the precomposed character.
//
pDest[ctr2] = pSrc[ctr]; } ctr2++; } //
// Else - nonspace character only, so don't write
// anything.
//
} } }
break; } }
//
// Return the number of wide characters written.
//
return (ctr2); }
////////////////////////////////////////////////////////////////////////////
//
// MapKanaWidth
//
// Stores the result of the Kana, Width, and/or Casing mappings for the
// given string in the destination buffer, and returns the number of wide
// characters written to the buffer.
//
// 07-26-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapKanaWidth( PLOC_HASH pHashN, DWORD dwFlags, LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest) { int ctr; // loop counter
PCASE pCase; // ptr to case table (if case flag is set)
//
// See if lower or upper case flags are present.
//
if (dwFlags & LCMAP_LOWERCASE) { pCase = (dwFlags & LCMAP_LINGUISTIC_CASING) ? pHashN->pLowerLinguist : pHashN->pLowerCase; } else if (dwFlags & LCMAP_UPPERCASE) { pCase = (dwFlags & LCMAP_LINGUISTIC_CASING) ? pHashN->pUpperLinguist : pHashN->pUpperCase; } else { pCase = NULL; }
//
// Remove lower, upper, and linguistic casing flags.
//
dwFlags &= ~(LCMAP_LOWERCASE | LCMAP_UPPERCASE | LCMAP_LINGUISTIC_CASING);
//
// Map the string based on the given flags.
//
switch (dwFlags) { case ( LCMAP_HIRAGANA ) : case ( LCMAP_KATAKANA ) : { //
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0) { return (cchSrc); }
//
// If cchSrc is greater than cchDest, then the destination
// buffer is too small to hold the string. Return an error.
//
if (cchSrc > cchDest) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
if (dwFlags == LCMAP_HIRAGANA) { //
// Map all Katakana full width to Hiragana full width.
// Katakana half width will remain Katakana half width.
//
if (pCase) { for (ctr = 0; ctr < cchSrc; ctr++) { pDest[ctr] = GET_KANA(pTblPtrs->pHiragana, pSrc[ctr]);
pDest[ctr] = GET_LOWER_UPPER_CASE(pCase, pDest[ctr]); } } else { for (ctr = 0; ctr < cchSrc; ctr++) { pDest[ctr] = GET_KANA(pTblPtrs->pHiragana, pSrc[ctr]); } } } else { //
// Map all Hiragana full width to Katakana full width.
// Hiragana half width does not exist.
//
if (pCase) { for (ctr = 0; ctr < cchSrc; ctr++) { pDest[ctr] = GET_KANA(pTblPtrs->pKatakana, pSrc[ctr]);
pDest[ctr] = GET_LOWER_UPPER_CASE(pCase, pDest[ctr]); } } else { for (ctr = 0; ctr < cchSrc; ctr++) { pDest[ctr] = GET_KANA(pTblPtrs->pKatakana, pSrc[ctr]); } } }
//
// Return the number of characters mapped.
//
return (cchSrc);
break; } case ( LCMAP_HALFWIDTH ) : { //
// Map all chars to half width.
//
return (MapHalfKana( pSrc, cchSrc, pDest, cchDest, NULL, pCase ));
break; } case ( LCMAP_FULLWIDTH ) : { //
// Map all chars to full width.
//
return (MapFullKana( pSrc, cchSrc, pDest, cchDest, NULL, pCase ));
break; } case ( LCMAP_HIRAGANA | LCMAP_HALFWIDTH ) : { //
// This combination of flags is strange, because
// Hiragana is only full width. So, the Hiragana flag
// is the most important. Full width Katakana will be
// mapped to full width Hiragana, not half width
// Katakana.
//
// Map to Hiragana, then Half Width.
//
return (MapHalfKana( pSrc, cchSrc, pDest, cchDest, pTblPtrs->pHiragana, pCase ));
break; } case ( LCMAP_HIRAGANA | LCMAP_FULLWIDTH ) : { //
// Since Hiragana is only FULL width, the mapping to
// width must be done first to convert all half width
// Katakana to full width Katakana before trying to
// map to Hiragana.
//
// Map to Full Width, then Hiragana.
//
return (MapFullKana( pSrc, cchSrc, pDest, cchDest, pTblPtrs->pHiragana, pCase ));
break; } case ( LCMAP_KATAKANA | LCMAP_HALFWIDTH ) : { //
// Since Hiragana is only FULL width, the mapping to
// Katakana must be done first to convert all Hiragana
// to Katakana before trying to map to half width.
//
// Map to Katakana, then Half Width.
//
return (MapHalfKana( pSrc, cchSrc, pDest, cchDest, pTblPtrs->pKatakana, pCase ));
break; } case ( LCMAP_KATAKANA | LCMAP_FULLWIDTH ) : { //
// Since Hiragana is only FULL width, it doesn't matter
// which way the mapping is done for this combination.
//
// Map to Full Width, then Katakana.
//
return (MapFullKana( pSrc, cchSrc, pDest, cchDest, pTblPtrs->pKatakana, pCase ));
break; } default : { //
// Return error.
//
return (0); } } }
////////////////////////////////////////////////////////////////////////////
//
// MapHalfKana
//
// Stores the result of the half width and Kana mapping for the given string
// in the destination buffer, and returns the number of wide characters
// written to the buffer.
//
// This first converts the precomposed characters to their composite forms,
// and then maps all characters to their half width forms. This handles the
// case where the full width precomposed form should map to TWO half width
// code points (composite form). The half width precomposed forms do not
// exist in Unicode.
//
// 11-04-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapHalfKana( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest, PKANA pKana, PCASE pCase) { int Count; // count of characters written
int ctr = 0; // loop counter
int ct; // loop counter
LPWSTR pBuf; // ptr to destination buffer
LPWSTR pEndBuf; // ptr to end of destination buffer
LPWSTR pPosDest; // ptr to position in destination buffer
LPWSTR *ppIncr; // points to ptr to increment
WCHAR pTmp[MAX_COMPOSITE]; // ptr to temporary buffer
LPWSTR pEndTmp; // ptr to end of temporary buffer
//
// Initialize the destination pointers.
//
pEndTmp = pTmp + MAX_COMPOSITE; if (cchDest == 0) { //
// Do not touch the pDest pointer. Use the pTmp buffer and
// initialize the end pointer.
//
pBuf = pTmp; pEndBuf = pEndTmp;
//
// This is a bogus pointer and will never be touched. It just
// increments this pointer into oblivion.
//
pDest = pBuf; ppIncr = &pDest; } else { //
// Initialize the pointers. Use the pDest buffer.
//
pBuf = pDest; pEndBuf = pBuf + cchDest; ppIncr = &pBuf; }
//
// Search through the source string. Convert all precomposed
// forms to their composite form before converting to half width.
//
while ((ctr < cchSrc) && (pBuf < pEndBuf)) { //
// Get the character to convert. If we need to convert to
// kana, do it.
//
if (pKana) { *pTmp = GET_KANA(pKana, pSrc[ctr]); } else { *pTmp = pSrc[ctr]; }
//
// Convert to its composite form (if exists).
//
// NOTE: Must use the tmp buffer in case the destination buffer
// isn't large enough to hold the composite form.
//
Count = InsertCompositeForm(pTmp, pEndTmp);
//
// Convert to half width (if exists) and case (if appropriate).
//
pPosDest = pTmp; if (pCase) { for (ct = Count; ct > 0; ct--) { *pPosDest = GET_HALF_WIDTH(pTblPtrs->pHalfWidth, *pPosDest);
*pPosDest = GET_LOWER_UPPER_CASE(pCase, *pPosDest);
pPosDest++; } } else { for (ct = Count; ct > 0; ct--) { *pPosDest = GET_HALF_WIDTH(pTblPtrs->pHalfWidth, *pPosDest); pPosDest++; } }
//
// Convert back to its precomposed form (if exists).
//
if (Count > 1) { //
// Get the precomposed form.
//
// ct is the number of code points used from the
// composite form.
//
ct = InsertPreComposedForm(pTmp, pPosDest, pBuf); if (ct > 1) { //
// Precomposed form was found. Need to make sure all
// of the composite chars were used.
//
if (ct == Count) { //
// All composite chars were used. Increment by 1.
//
(*ppIncr)++; } else { //
// Not all composite chars were used. Need to copy
// the rest of the composite chars from the tmp buffer
// to the destination buffer.
//
(*ppIncr)++; Count -= ct; if (pBuf + Count > pEndBuf) { break; } RtlMoveMemory(pBuf, pTmp + ct, Count * sizeof(WCHAR)); (*ppIncr) += Count; } } else { //
// Precomposed form was NOT found. Need to copy the
// composite form from the tmp buffer to the destination
// buffer.
//
if (pBuf + Count > pEndBuf) { break; } RtlMoveMemory(pBuf, pTmp, Count * sizeof(WCHAR)); (*ppIncr) += Count; } } else { //
// Only one character (no composite form), so just copy it
// from the tmp buffer to the destination buffer.
//
*pBuf = *pTmp; (*ppIncr)++; }
ctr++; }
//
// Return the appropriate number of characters.
//
if (cchDest == 0) { //
// Return the number of characters written to the buffer.
//
return ((int)((*ppIncr) - pTmp)); } else { //
// Make sure the given buffer was large enough to hold the
// mapping.
//
if (ctr < cchSrc) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
//
// Return the number of characters written to the buffer.
//
return ((int)((*ppIncr) - pDest)); } }
////////////////////////////////////////////////////////////////////////////
//
// MapFullKana
//
// Stores the result of the full width and Kana mapping for the given string
// in the destination buffer, and returns the number of wide characters
// written to the buffer.
//
// This first converts the characters to full width, and then maps all
// composite characters to their precomposed forms. This handles the case
// where the half width composite form (TWO code points) should map to a
// full width precomposed form (ONE full width code point). The half
// width precomposed forms do not exist in Unicode and we need the full
// width precomposed forms to round trip with the TWO half width code
// points.
//
// 11-04-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapFullKana( LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest, PKANA pKana, PCASE pCase) { int Count; // count of characters
LPWSTR pPosSrc; // ptr to position in source buffer
LPWSTR pEndSrc; // ptr to end of source buffer
LPWSTR pBuf; // ptr to destination buffer
LPWSTR pEndBuf; // ptr to end of destination buffer
LPWSTR *ppIncr; // points to ptr to increment
WCHAR pTmp[MAX_COMPOSITE]; // ptr to temporary buffer
//
// Initialize source string pointers.
//
pPosSrc = (LPWSTR)pSrc; pEndSrc = pPosSrc + cchSrc;
//
// Initialize the destination pointers.
//
if (cchDest == 0) { //
// Do not touch the pDest pointer. Use the pTmp buffer and
// initialize the end pointer.
//
pBuf = pTmp; pEndBuf = pTmp + MAX_COMPOSITE;
//
// This is a bogus pointer and will never be touched. It just
// increments this pointer into oblivion.
//
pDest = pBuf; ppIncr = &pDest; } else { //
// Initialize the pointers. Use the pDest buffer.
//
pBuf = pDest; pEndBuf = pBuf + cchDest; ppIncr = &pBuf; }
//
// Search through the source string. Convert all composite
// forms to their precomposed form before converting to full width.
//
while ((pPosSrc < pEndSrc) && (pBuf < pEndBuf)) { //
// Convert a composite form to its full width precomposed
// form (if exists). Also, convert to case if necessary.
//
Count = InsertFullWidthPreComposedForm( pPosSrc, pEndSrc, pBuf, pCase ); pPosSrc += Count;
//
// Convert to kana if necessary.
//
if (pKana) { *pBuf = GET_KANA(pKana, *pBuf); }
//
// Increment the destination pointer.
//
(*ppIncr)++; }
//
// Return the appropriate number of characters.
//
if (cchDest == 0) { //
// Return the number of characters written to the buffer.
//
return ((int)((*ppIncr) - pTmp)); } else { //
// Make sure the given buffer was large enough to hold the
// mapping.
//
if (pPosSrc < pEndSrc) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
//
// Return the number of characters written to the buffer.
//
return ((int)((*ppIncr) - pDest)); } }
////////////////////////////////////////////////////////////////////////////
//
// MapTraditionalSimplified
//
// Stores the appropriate Traditional or Simplified Chinese values in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 05-07-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapTraditionalSimplified( PLOC_HASH pHashN, DWORD dwFlags, LPCWSTR pSrc, int cchSrc, LPWSTR pDest, int cchDest, PCHINESE pChinese) { int ctr; // loop counter
PCASE pCase; // ptr to case table (if case flag is set)
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0) { return (cchSrc); }
//
// If cchSrc is greater than cchDest, then the destination buffer
// is too small to hold the new string. Return an error.
//
if (cchSrc > cchDest) { SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); }
//
// See if lower or upper case flags are present.
//
if (dwFlags & LCMAP_LOWERCASE) { pCase = (dwFlags & LCMAP_LINGUISTIC_CASING) ? pHashN->pLowerLinguist : pHashN->pLowerCase; } else if (dwFlags & LCMAP_UPPERCASE) { pCase = (dwFlags & LCMAP_LINGUISTIC_CASING) ? pHashN->pUpperLinguist : pHashN->pUpperCase; } else { pCase = NULL; }
//
// Map to Traditional/Simplified and store it in the destination string.
// Also map the case, if appropriate.
//
if (pCase) { for (ctr = 0; ctr < cchSrc; ctr++) { pDest[ctr] = GET_CHINESE(pChinese, pSrc[ctr]);
pDest[ctr] = GET_LOWER_UPPER_CASE(pCase, pDest[ctr]); } } else { for (ctr = 0; ctr < cchSrc; ctr++) { pDest[ctr] = GET_CHINESE(pChinese, pSrc[ctr]); } }
//
// Return the number of wide characters written.
//
return (ctr); }
|