|
|
/* deflate.c -- compress data using the deflation algorithm
* Copyright (C) 1995-2002 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */
/*
* ALGORITHM * * The "deflation" process depends on being able to identify portions * of the input text which are identical to earlier input (within a * sliding window trailing behind the input currently being processed). * * The most straightforward technique turns out to be the fastest for * most input files: try all possible matches and select the longest. * The key feature of this algorithm is that insertions into the string * dictionary are very simple and thus fast, and deletions are avoided * completely. Insertions are performed at each input character, whereas * string matches are performed only when the previous match ends. So it * is preferable to spend more time in matches to allow very fast string * insertions and avoid deletions. The matching algorithm for small * strings is inspired from that of Rabin & Karp. A brute force approach * is used to find longer strings when a small match has been found. * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze * (by Leonid Broukhis). * A previous version of this file used a more sophisticated algorithm * (by Fiala and Greene) which is guaranteed to run in linear amortized * time, but has a larger average cost, uses more memory and is patented. * However the F&G algorithm may be faster for some highly redundant * files if the parameter max_chain_length (described below) is too large. * * ACKNOWLEDGEMENTS * * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and * I found it in 'freeze' written by Leonid Broukhis. * Thanks to many people for bug reports and testing. * * REFERENCES * * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". * Available in ftp://ds.internic.net/rfc/rfc1951.txt
* * A description of the Rabin and Karp algorithm is given in the book * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * * Fiala,E.R., and Greene,D.H. * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * */
/* @(#) $Id$ */
#include "deflate.h"
const char deflate_copyright[] = " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly "; /*
If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */
/* ===========================================================================
* Function prototypes. */ typedef enum { need_more, /* block not completed, need more input or more output */ block_done, /* block flush performed */ finish_started, /* finish started, need only more output at next deflate */ finish_done /* finish done, accept no more input or output */ } block_state;
typedef block_state (*compress_func) OF((deflate_state *s, int flush)); /* Compression function. Returns the block state after the call. */
local void fill_window OF((deflate_state *s)); local block_state deflate_stored OF((deflate_state *s, int flush)); local block_state deflate_fast OF((deflate_state *s, int flush)); local block_state deflate_slow OF((deflate_state *s, int flush)); local void lm_init OF((deflate_state *s)); local void putShortMSB OF((deflate_state *s, uInt b)); local void flush_pending OF((z_streamp strm)); local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); #ifdef ASMV
void match_init OF((void)); /* asm code initialization */ uInt longest_match OF((deflate_state *s, IPos cur_match)); #else
local uInt longest_match OF((deflate_state *s, IPos cur_match)); #endif
#ifdef DEBUG
local void check_match OF((deflate_state *s, IPos start, IPos match, int length)); #endif
/* ===========================================================================
* Local data */
#define NIL 0
/* Tail of hash chains */
#ifndef TOO_FAR
# define TOO_FAR 4096
#endif
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
/* Minimum amount of lookahead, except at the end of the input file.
* See deflate.c for comments about the MIN_MATCH+1. */
/* Values for max_lazy_match, good_match and max_chain_length, depending on
* the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ typedef struct config_s { ush good_length; /* reduce lazy search above this match length */ ush max_lazy; /* do not perform lazy search above this match length */ ush nice_length; /* quit search above this match length */ ush max_chain; compress_func func; } config;
local const config configuration_table[10] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */ /* 2 */ {4, 5, 16, 8, deflate_fast}, /* 3 */ {4, 6, 32, 32, deflate_fast},
/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ /* 5 */ {8, 16, 32, 32, deflate_slow}, /* 6 */ {8, 16, 128, 128, deflate_slow}, /* 7 */ {8, 32, 128, 256, deflate_slow}, /* 8 */ {32, 128, 258, 1024, deflate_slow}, /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. */
#define EQUAL 0
/* result of memcmp for equal strings */
struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
/* ===========================================================================
* Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
/* ===========================================================================
* Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * If this file is compiled with -DFASTEST, the compression level is forced * to 1, and no hash chains are maintained. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of str are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #ifdef FASTEST
#define INSERT_STRING(s, str, match_head) \
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #else
#define INSERT_STRING(s, str, match_head) \
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #endif
/* ===========================================================================
* Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ #define CLEAR_HASH(s) \
s->head[s->hash_size-1] = NIL; \ zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
/* ========================================================================= */ int ZEXPORT deflateInit_(strm, level, version, stream_size) z_streamp strm; int level; const char *version; int stream_size; { return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); /* To do: ignore strm->next_in if we use it as window */ }
/* ========================================================================= */ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, version, stream_size) z_streamp strm; int level; int method; int windowBits; int memLevel; int strategy; const char *version; int stream_size; { deflate_state *s; int noheader = 0; static const char my_version[] = ZLIB_VERSION;
ushf *overlay; /* We overlay pending_buf and d_buf+l_buf. This works since the average
* output size for (length,distance) codes is <= 24 bits. */
if (version == Z_NULL || version[0] != my_version[0] || stream_size != sizeof(z_stream)) { return Z_VERSION_ERROR; } if (strm == Z_NULL) return Z_STREAM_ERROR;
strm->msg = Z_NULL; if (strm->zalloc == Z_NULL) { strm->zalloc = zcalloc; strm->opaque = (voidpf)0; } if (strm->zfree == Z_NULL) strm->zfree = zcfree;
if (level == Z_DEFAULT_COMPRESSION) level = 6; #ifdef FASTEST
level = 1; #endif
if (windowBits < 0) { /* undocumented feature: suppress zlib header */ noheader = 1; windowBits = -windowBits; } if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) { return Z_STREAM_ERROR; } s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); if (s == Z_NULL) return Z_MEM_ERROR; strm->state = (struct internal_state FAR *)s; s->strm = strm;
s->noheader = noheader; s->w_bits = windowBits; s->w_size = 1 << s->w_bits; s->w_mask = s->w_size - 1;
s->hash_bits = memLevel + 7; s->hash_size = 1 << s->hash_bits; s->hash_mask = s->hash_size - 1; s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); s->pending_buf = (uchf *) overlay; s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || s->pending_buf == Z_NULL) { strm->msg = (char*)ERR_MSG(Z_MEM_ERROR); deflateEnd (strm); return Z_MEM_ERROR; } s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
s->level = level; s->strategy = strategy; s->method = (Byte)method;
return deflateReset(strm); }
/* ========================================================================= */ int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { deflate_state *s; uInt length = dictLength; uInt n; IPos hash_head = 0;
if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL || strm->state->status != INIT_STATE) return Z_STREAM_ERROR;
s = strm->state; strm->adler = adler32(strm->adler, dictionary, dictLength);
if (length < MIN_MATCH) return Z_OK; if (length > MAX_DIST(s)) { length = MAX_DIST(s); #ifndef USE_DICT_HEAD
dictionary += dictLength - length; /* use the tail of the dictionary */ #endif
} zmemcpy(s->window, dictionary, length); s->strstart = length; s->block_start = (long)length;
/* Insert all strings in the hash table (except for the last two bytes).
* s->lookahead stays null, so s->ins_h will be recomputed at the next * call of fill_window. */ s->ins_h = s->window[0]; UPDATE_HASH(s, s->ins_h, s->window[1]); for (n = 0; n <= length - MIN_MATCH; n++) { INSERT_STRING(s, n, hash_head); } if (hash_head) hash_head = 0; /* to make compiler happy */ return Z_OK; }
/* ========================================================================= */ int ZEXPORT deflateReset (strm) z_streamp strm; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
strm->total_in = strm->total_out = 0; strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ strm->data_type = Z_UNKNOWN;
s = (deflate_state *)strm->state; s->pending = 0; s->pending_out = s->pending_buf;
if (s->noheader < 0) { s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ } s->status = s->noheader ? BUSY_STATE : INIT_STATE; strm->adler = 1; s->last_flush = Z_NO_FLUSH;
_tr_init(s); lm_init(s);
return Z_OK; }
/* ========================================================================= */ int ZEXPORT deflateParams(strm, level, strategy) z_streamp strm; int level; int strategy; { deflate_state *s; compress_func func; int err = Z_OK;
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state;
if (level == Z_DEFAULT_COMPRESSION) { level = 6; } if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) { return Z_STREAM_ERROR; } func = configuration_table[s->level].func;
if (func != configuration_table[level].func && strm->total_in != 0) { /* Flush the last buffer: */ err = deflate(strm, Z_PARTIAL_FLUSH); } if (s->level != level) { s->level = level; s->max_lazy_match = configuration_table[level].max_lazy; s->good_match = configuration_table[level].good_length; s->nice_match = configuration_table[level].nice_length; s->max_chain_length = configuration_table[level].max_chain; } s->strategy = strategy; return err; }
/* =========================================================================
* Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ local void putShortMSB (s, b) deflate_state *s; uInt b; { put_byte(s, (Byte)(b >> 8)); put_byte(s, (Byte)(b & 0xff)); }
/* =========================================================================
* Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->next_out buffer and copying into it. * (See also read_buf()). */ local void flush_pending(strm) z_streamp strm; { unsigned len = strm->state->pending;
if (len > strm->avail_out) len = strm->avail_out; if (len == 0) return;
zmemcpy(strm->next_out, strm->state->pending_out, len); strm->next_out += len; strm->state->pending_out += len; strm->total_out += len; strm->avail_out -= len; strm->state->pending -= len; if (strm->state->pending == 0) { strm->state->pending_out = strm->state->pending_buf; } }
/* ========================================================================= */ int ZEXPORT deflate (strm, flush) z_streamp strm; int flush; { int old_flush; /* value of flush param for previous deflate call */ deflate_state *s;
if (strm == Z_NULL || strm->state == Z_NULL || flush > Z_FINISH || flush < 0) { return Z_STREAM_ERROR; } s = strm->state;
if (strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0) || (s->status == FINISH_STATE && flush != Z_FINISH)) { ERR_RETURN(strm, Z_STREAM_ERROR); } if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
s->strm = strm; /* just in case */ old_flush = s->last_flush; s->last_flush = flush;
/* Write the zlib header */ if (s->status == INIT_STATE) {
uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; uInt level_flags = (s->level-1) >> 1;
if (level_flags > 3) level_flags = 3; header |= (level_flags << 6); if (s->strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31);
s->status = BUSY_STATE; putShortMSB(s, header);
/* Save the adler32 of the preset dictionary: */ if (s->strstart != 0) { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } strm->adler = 1L; }
/* Flush as much pending output as possible */ if (s->pending != 0) { flush_pending(strm); if (strm->avail_out == 0) { /* Since avail_out is 0, deflate will be called again with
* more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s->last_flush = -1; return Z_OK; }
/* Make sure there is something to do and avoid duplicate consecutive
* flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUFF_ERROR. */ } else if (strm->avail_in == 0 && flush <= old_flush && flush != Z_FINISH) { ERR_RETURN(strm, Z_BUF_ERROR); }
/* User must not provide more input after the first FINISH: */ if (s->status == FINISH_STATE && strm->avail_in != 0) { ERR_RETURN(strm, Z_BUF_ERROR); }
/* Start a new block or continue the current one.
*/ if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { block_state bstate;
bstate = (*(configuration_table[s->level].func))(s, flush);
if (bstate == finish_started || bstate == finish_done) { s->status = FINISH_STATE; } if (bstate == need_more || bstate == finish_started) { if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
* of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate == block_done) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(s); } else { /* FULL_FLUSH or SYNC_FLUSH */ _tr_stored_block(s, (char*)0, 0L, 0); /* For a full flush, this empty block will be recognized
* as a special marker by inflate_sync(). */ if (flush == Z_FULL_FLUSH) { CLEAR_HASH(s); /* forget history */ } } flush_pending(strm); if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } Assert(strm->avail_out > 0, "bug2");
if (flush != Z_FINISH) return Z_OK; if (s->noheader) return Z_STREAM_END;
/* Write the zlib trailer (adler32) */ putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); flush_pending(strm); /* If avail_out is zero, the application will call deflate again
* to flush the rest. */ s->noheader = -1; /* write the trailer only once! */ return s->pending != 0 ? Z_OK : Z_STREAM_END; }
/* ========================================================================= */ int ZEXPORT deflateEnd (strm) z_streamp strm; { int status;
if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
status = strm->state->status; if (status != INIT_STATE && status != BUSY_STATE && status != FINISH_STATE) { return Z_STREAM_ERROR; }
/* Deallocate in reverse order of allocations: */ TRY_FREE(strm, strm->state->pending_buf); TRY_FREE(strm, strm->state->head); TRY_FREE(strm, strm->state->prev); TRY_FREE(strm, strm->state->window);
ZFREE(strm, strm->state); strm->state = Z_NULL;
return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; }
/* =========================================================================
* Copy the source state to the destination state. * To simplify the source, this is not supported for 16-bit MSDOS (which * doesn't have enough memory anyway to duplicate compression states). */ int ZEXPORT deflateCopy (dest, source) z_streamp dest; z_streamp source; { #ifdef MAXSEG_64K
return Z_STREAM_ERROR; #else
deflate_state *ds; deflate_state *ss; ushf *overlay;
if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { return Z_STREAM_ERROR; }
ss = source->state;
*dest = *source;
ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); if (ds == Z_NULL) return Z_MEM_ERROR; dest->state = (struct internal_state FAR *) ds; *ds = *ss; ds->strm = dest;
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); ds->pending_buf = (uchf *) overlay;
if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || ds->pending_buf == Z_NULL) { deflateEnd (dest); return Z_MEM_ERROR; } /* following zmemcpy do not work for 16-bit MSDOS */ zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos)); zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos)); zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
ds->l_desc.dyn_tree = ds->dyn_ltree; ds->d_desc.dyn_tree = ds->dyn_dtree; ds->bl_desc.dyn_tree = ds->bl_tree;
return Z_OK; #endif
}
/* ===========================================================================
* Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */ local int read_buf(strm, buf, size) z_streamp strm; Bytef *buf; unsigned size; { unsigned len = strm->avail_in;
if (len > size) len = size; if (len == 0) return 0;
strm->avail_in -= len;
if (!strm->state->noheader) { strm->adler = adler32(strm->adler, strm->next_in, len); } zmemcpy(buf, strm->next_in, len); strm->next_in += len; strm->total_in += len;
return (int)len; }
/* ===========================================================================
* Initialize the "longest match" routines for a new zlib stream */ local void lm_init (s) deflate_state *s; { s->window_size = (ulg)2L*s->w_size;
CLEAR_HASH(s);
/* Set the default configuration parameters:
*/ s->max_lazy_match = configuration_table[s->level].max_lazy; s->good_match = configuration_table[s->level].good_length; s->nice_match = configuration_table[s->level].nice_length; s->max_chain_length = configuration_table[s->level].max_chain;
s->strstart = 0; s->block_start = 0L; s->lookahead = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; s->ins_h = 0; #ifdef ASMV
match_init(); /* initialize the asm code */ #endif
}
/* ===========================================================================
* Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ #ifndef ASMV
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
* match.S. The code will be functionally equivalent. */ #ifndef FASTEST
local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { unsigned chain_length = s->max_chain_length;/* max hash chain length */ register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ int best_len = s->prev_length; /* best match length so far */ int nice_match = s->nice_match; /* stop if match long enough */ IPos limit = s->strstart > (IPos)MAX_DIST(s) ? s->strstart - (IPos)MAX_DIST(s) : NIL; /* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0. */ Posf *prev = s->prev; uInt wmask = s->w_mask;
#ifdef UNALIGNED_OK
/* Compare two bytes at a time. Note: this is not always beneficial.
* Try with and without -DUNALIGNED_OK to check. */ register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; register ush scan_start = *(ushf*)scan; register ush scan_end = *(ushf*)(scan+best_len-1); #else
register Bytef *strend = s->window + s->strstart + MAX_MATCH; register Byte scan_end1 = scan[best_len-1]; register Byte scan_end = scan[best_len]; #endif
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
* It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
/* Do not waste too much time if we already have a good match: */ if (s->prev_length >= s->good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary
* to make deflate deterministic. */ if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
do { Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match;
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2: */ #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
/* This code assumes sizeof(unsigned short) == 2. Do not use
* UNALIGNED_OK if your compiler uses a different size. */ if (*(ushf*)(match+best_len-1) != scan_end || *(ushf*)match != scan_start) continue;
/* It is not necessary to compare scan[2] and match[2] since they are
* always equal when the other bytes match, given that the hash keys * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at * strstart+3, +5, ... up to strstart+257. We check for insufficient * lookahead only every 4th comparison; the 128th check will be made * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is * necessary to put more guard bytes at the end of the window, or * to check more often for insufficient lookahead. */ Assert(scan[2] == match[2], "scan[2]?"); scan++, match++; do { } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && scan < strend); /* The funny "do {}" generates better code on most compilers */
/* Here, scan <= window+strstart+257 */ Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); if (*scan == *match) scan++;
len = (MAX_MATCH - 1) - (int)(strend-scan); scan = strend - (MAX_MATCH-1);
#else /* UNALIGNED_OK */
if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue;
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; Assert(*scan == *match, "match[2]?");
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend);
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH;
#endif /* UNALIGNED_OK */
if (len > best_len) { s->match_start = cur_match; best_len = len; if (len >= nice_match) break; #ifdef UNALIGNED_OK
scan_end = *(ushf*)(scan+best_len-1); #else
scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; #endif
} } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0);
if ((uInt)best_len <= s->lookahead) return (uInt)best_len; return s->lookahead; }
#else /* FASTEST */
/* ---------------------------------------------------------------------------
* Optimized version for level == 1 only */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ register Bytef *strend = s->window + s->strstart + MAX_MATCH;
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
* It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
Assert(cur_match < s->strstart, "no future");
match = s->window + cur_match;
/* Return failure if the match length is less than 2:
*/ if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match += 2; Assert(*scan == *match, "match[2]?");
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend);
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
len = MAX_MATCH - (int)(strend - scan);
if (len < MIN_MATCH) return MIN_MATCH - 1;
s->match_start = cur_match; return len <= s->lookahead ? len : s->lookahead; } #endif /* FASTEST */
#endif /* ASMV */
#ifdef DEBUG
/* ===========================================================================
* Check that the match at match_start is indeed a match. */ local void check_match(s, start, match, length) deflate_state *s; IPos start, match; int length; { /* check that the match is indeed a match */ if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) { fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); do { fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); } while (--length != 0); z_error("invalid match"); } if (z_verbose > 1) { fprintf(stderr,"\\[%d,%d]", start-match, length); do { putc(s->window[start++], stderr); } while (--length != 0); } } #else
# define check_match(s, start, match, length)
#endif
/* ===========================================================================
* Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ local void fill_window(s) deflate_state *s; { register unsigned n, m; register Posf *p; unsigned more; /* Amount of free space at the end of the window. */ uInt wsize = s->w_size;
do { more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
/* Deal with !@#$% 64K limit: */ if (more == 0 && s->strstart == 0 && s->lookahead == 0) { more = wsize;
} else if (more == (unsigned)(-1)) { /* Very unlikely, but possible on 16 bit machine if strstart == 0
* and lookahead == 1 (input done one byte at time) */ more--;
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half. */ } else if (s->strstart >= wsize+MAX_DIST(s)) {
zmemcpy(s->window, s->window+wsize, (unsigned)wsize); s->match_start -= wsize; s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ s->block_start -= (long) wsize;
/* Slide the hash table (could be avoided with 32 bit values
at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s->hash_size; p = &s->head[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); } while (--n);
n = wsize; #ifndef FASTEST
p = &s->prev[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); /* If n is not on any hash chain, prev[n] is garbage but
* its value will never be used. */ } while (--n); #endif
more += wsize; } if (s->strm->avail_in == 0) return;
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(more >= 2, "more < 2");
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); s->lookahead += n;
/* Initialize the hash value now that we have some input: */ if (s->lookahead >= MIN_MATCH) { s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3
Call UPDATE_HASH() MIN_MATCH-3 more times #endif
} /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
* but this is not important since only literal bytes will be emitted. */
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); }
/* ===========================================================================
* Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK_ONLY(s, eof) { \
_tr_flush_block(s, (s->block_start >= 0L ? \ (charf *)&s->window[(unsigned)s->block_start] : \ (charf *)Z_NULL), \ (ulg)((long)s->strstart - s->block_start), \ (eof)); \ s->block_start = s->strstart; \ flush_pending(s->strm); \ Tracev((stderr,"[FLUSH]")); \ }
/* Same but force premature exit if necessary. */ #define FLUSH_BLOCK(s, eof) { \
FLUSH_BLOCK_ONLY(s, eof); \ if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ }
/* ===========================================================================
* Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ local block_state deflate_stored(s, flush) deflate_state *s; int flush; { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
* to pending_buf_size, and each stored block has a 5 byte header: */ ulg max_block_size = 0xffff; ulg max_start;
if (max_block_size > s->pending_buf_size - 5) { max_block_size = s->pending_buf_size - 5; }
/* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s->lookahead <= 1) {
Assert(s->strstart < s->w_size+MAX_DIST(s) || s->block_start >= (long)s->w_size, "slide too late");
fill_window(s); if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
if (s->lookahead == 0) break; /* flush the current block */ } Assert(s->block_start >= 0L, "block gone");
s->strstart += s->lookahead; s->lookahead = 0;
/* Emit a stored block if pending_buf will be full: */ max_start = s->block_start + max_block_size; if (s->strstart == 0 || (ulg)s->strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s->lookahead = (uInt)(s->strstart - max_start); s->strstart = (uInt)max_start; FLUSH_BLOCK(s, 0); } /* Flush if we may have to slide, otherwise block_start may become
* negative and the data will be gone: */ if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { FLUSH_BLOCK(s, 0); } } FLUSH_BLOCK(s, flush == Z_FINISH); return flush == Z_FINISH ? finish_done : block_done; }
/* ===========================================================================
* Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ local block_state deflate_fast(s, flush) deflate_state *s; int flush; { IPos hash_head = NIL; /* head of the hash chain */ int bflush; /* set if current block must be flushed */
for (;;) { /* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ }
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain: */ if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); }
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ if (s->strategy != Z_HUFFMAN_ONLY) { s->match_length = longest_match (s, hash_head); } /* longest_match() sets match_start */ } if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->match_start, s->match_length);
_tr_tally_dist(s, s->strstart - s->match_start, s->match_length - MIN_MATCH, bflush);
s->lookahead -= s->match_length;
/* Insert new strings in the hash table only if the match length
* is not too large. This saves time but degrades compression. */ #ifndef FASTEST
if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) { s->match_length--; /* string at strstart already in hash table */ do { s->strstart++; INSERT_STRING(s, s->strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead. */ } while (--s->match_length != 0); s->strstart++; } else #endif
{ s->strstart += s->match_length; s->match_length = 0; s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3
Call UPDATE_HASH() MIN_MATCH-3 more times #endif
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
* matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } FLUSH_BLOCK(s, flush == Z_FINISH); return flush == Z_FINISH ? finish_done : block_done; }
/* ===========================================================================
* Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ local block_state deflate_slow(s, flush) deflate_state *s; int flush; { IPos hash_head = NIL; /* head of hash chain */ int bflush; /* set if current block must be flushed */
/* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ }
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain: */ if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); }
/* Find the longest match, discarding those <= prev_length.
*/ s->prev_length = s->match_length, s->prev_match = s->match_start; s->match_length = MIN_MATCH-1;
if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ if (s->strategy != Z_HUFFMAN_ONLY) { s->match_length = longest_match (s, hash_head); } /* longest_match() sets match_start */
if (s->match_length <= 5 && (s->strategy == Z_FILTERED || (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR))) {
/* If prev_match is also MIN_MATCH, match_start is garbage
* but we will ignore the current match anyway. */ s->match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current
* match is not better, output the previous match: */ if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */
check_match(s, s->strstart-1, s->prev_match, s->prev_length);
_tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s->lookahead -= s->prev_length-1; s->prev_length -= 2; do { if (++s->strstart <= max_insert) { INSERT_STRING(s, s->strstart, hash_head); } } while (--s->prev_length != 0); s->match_available = 0; s->match_length = MIN_MATCH-1; s->strstart++;
if (bflush) FLUSH_BLOCK(s, 0);
} else if (s->match_available) { /* If there was no match at the previous position, output a
* single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); if (bflush) { FLUSH_BLOCK_ONLY(s, 0); } s->strstart++; s->lookahead--; if (s->strm->avail_out == 0) return need_more; } else { /* There is no previous match to compare with, wait for
* the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); s->match_available = 0; } FLUSH_BLOCK(s, flush == Z_FINISH); return flush == Z_FINISH ? finish_done : block_done; }
|