|
|
/////////////////////////////////////////////////////////////////////////////
// class CMapKeyToValue - a mapping from 'KEY's to 'VALUE's, passed in as
// pv/cb pairs. The keys can be variable length, although we optmizize the
// case when they are all the same.
//
/////////////////////////////////////////////////////////////////////////////
#include <le2int.h>
#pragma SEG(map_kv)
#include "map_kv.h"
#include "valid.h"
#include "plex.h"
ASSERTDATA
/////////////////////////////////////////////////////////////////////////////
#pragma SEG(CMapKeyToValue_ctor)
CMapKeyToValue::CMapKeyToValue(UINT cbValue, UINT cbKey, int nBlockSize, LPFNHASHKEY lpfnHashKey, UINT nHashSize) { VDATEHEAP();
Assert(nBlockSize > 0);
m_cbValue = cbValue; m_cbKey = cbKey; m_cbKeyInAssoc = (UINT) (cbKey == 0 ? sizeof(CKeyWrap) : cbKey);
m_pHashTable = NULL; m_nHashTableSize = nHashSize; m_lpfnHashKey = lpfnHashKey;
m_nCount = 0; m_pFreeList = NULL; m_pBlocks = NULL; m_nBlockSize = nBlockSize; }
#pragma SEG(CMapKeyToValue_dtor)
CMapKeyToValue::~CMapKeyToValue() { VDATEHEAP();
ASSERT_VALID(this); RemoveAll(); Assert(m_nCount == 0); }
#define LOCKTHIS
#define UNLOCKTHIS
#ifdef NEVER
void CMapKeyToValue::LockThis(void) { VDATEHEAP();
LOCKTHIS; }
void CMapKeyToValue::UnlockThis(void) { VDATEHEAP();
UNLOCKTHIS; }
#endif //NEVER
#pragma SEG(MKVDefaultHashKey)
// simple, default hash function
// REVIEW: need to check the value in this for GUIDs and strings
STDAPI_(UINT) MKVDefaultHashKey(LPVOID pKey, UINT cbKey) { VDATEHEAP();
UINT hash = 0; BYTE FAR* lpb = (BYTE FAR*)pKey;
while (cbKey-- != 0) hash = 257 * hash + *lpb++;
return hash; }
#pragma SEG(CMapKeyToValue_InitHashTable)
BOOL CMapKeyToValue::InitHashTable() { VDATEHEAP();
ASSERT_VALID(this); Assert(m_nHashTableSize > 0); if (m_pHashTable != NULL) return TRUE;
Assert(m_nCount == 0);
if ((m_pHashTable = (CAssoc FAR* FAR*)PrivMemAlloc(m_nHashTableSize * sizeof(CAssoc FAR*))) == NULL) return FALSE;
_xmemset(m_pHashTable, 0, sizeof(CAssoc FAR*) * m_nHashTableSize);
ASSERT_VALID(this);
return TRUE; }
#pragma SEG(CMapKeyToValue_RemoveAll)
void CMapKeyToValue::RemoveAll() { VDATEHEAP();
LOCKTHIS;
ASSERT_VALID(this);
// free all key values and then hash table
if (m_pHashTable != NULL) { // destroy assocs
for (UINT nHash = 0; nHash < m_nHashTableSize; nHash++) { register CAssoc FAR* pAssoc; for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext) // assoc itself is freed by FreeDataChain below
FreeAssocKey(pAssoc); }
// free hash table
PrivMemFree(m_pHashTable); m_pHashTable = NULL; }
m_nCount = 0; m_pFreeList = NULL; m_pBlocks->FreeDataChain(); m_pBlocks = NULL;
ASSERT_VALID(this); UNLOCKTHIS; }
/////////////////////////////////////////////////////////////////////////////
// Assoc helpers
// CAssoc's are singly linked all the time
#pragma SEG(CMapKeyToValue_NewAssoc)
CMapKeyToValue::CAssoc FAR* CMapKeyToValue::NewAssoc(UINT hash, LPVOID pKey, UINT cbKey, LPVOID pValue) { VDATEHEAP();
if (m_pFreeList == NULL) { // add another block
CPlex FAR* newBlock = CPlex::Create(m_pBlocks, m_nBlockSize, SizeAssoc());
if (newBlock == NULL) return NULL;
// chain them into free list
register BYTE FAR* pbAssoc = (BYTE FAR*) newBlock->data(); // free in reverse order to make it easier to debug
pbAssoc += (m_nBlockSize - 1) * SizeAssoc(); for (int i = m_nBlockSize-1; i >= 0; i--, pbAssoc -= SizeAssoc()) { ((CAssoc FAR*)pbAssoc)->pNext = m_pFreeList; m_pFreeList = (CAssoc FAR*)pbAssoc; } } Assert(m_pFreeList != NULL); // we must have something
CMapKeyToValue::CAssoc FAR* pAssoc = m_pFreeList;
// init all fields except pNext while still on free list
pAssoc->nHashValue = hash; if (!SetAssocKey(pAssoc, pKey, cbKey)) return NULL;
SetAssocValue(pAssoc, pValue);
// remove from free list after successfully initializing it (except pNext)
m_pFreeList = m_pFreeList->pNext; m_nCount++; Assert(m_nCount > 0); // make sure we don't overflow
return pAssoc; }
#pragma SEG(CMapKeyToValue_FreeAssoc)
// free individual assoc by freeing key and putting on free list
void CMapKeyToValue::FreeAssoc(CMapKeyToValue::CAssoc FAR* pAssoc) { VDATEHEAP();
pAssoc->pNext = m_pFreeList; m_pFreeList = pAssoc; m_nCount--; Assert(m_nCount >= 0); // make sure we don't underflow
FreeAssocKey(pAssoc); }
#pragma SEG(CMapKeyToValue_GetAssocAt)
// find association (or return NULL)
CMapKeyToValue::CAssoc FAR* CMapKeyToValue::GetAssocAt(LPVOID pKey, UINT cbKey, UINT FAR& nHash) const { VDATEHEAP();
if (m_lpfnHashKey) nHash = (*m_lpfnHashKey)(pKey, cbKey) % m_nHashTableSize; else nHash = MKVDefaultHashKey(pKey, cbKey) % m_nHashTableSize;
if (m_pHashTable == NULL) return NULL;
// see if it exists
register CAssoc FAR* pAssoc; for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext) { if (CompareAssocKey(pAssoc, pKey, cbKey)) return pAssoc; } return NULL; }
#pragma SEG(CMapKeyToValue_CompareAssocKey)
BOOL CMapKeyToValue::CompareAssocKey(CAssoc FAR* pAssoc, LPVOID pKey2, UINT cbKey2) const { VDATEHEAP();
LPVOID pKey1; UINT cbKey1;
GetAssocKeyPtr(pAssoc, &pKey1, &cbKey1); return cbKey1 == cbKey2 && _xmemcmp(pKey1, pKey2, cbKey1) == 0; }
#pragma SEG(CMapKeyToValue_SetAssocKey)
BOOL CMapKeyToValue::SetAssocKey(CAssoc FAR* pAssoc, LPVOID pKey, UINT cbKey) const { VDATEHEAP();
Assert(cbKey == m_cbKey || m_cbKey == 0);
if (m_cbKey == 0) { Assert(m_cbKeyInAssoc == sizeof(CKeyWrap));
// alloc, set size and pointer
if ((pAssoc->key.pKey = PrivMemAlloc(cbKey)) == NULL) return FALSE;
pAssoc->key.cbKey = cbKey; }
LPVOID pKeyTo;
GetAssocKeyPtr(pAssoc, &pKeyTo, &cbKey);
_xmemcpy(pKeyTo, pKey, cbKey);
return TRUE; }
#pragma SEG(CMapKeyToValue_GetAssocKeyPtr)
// gets pointer to key and its length
void CMapKeyToValue::GetAssocKeyPtr(CAssoc FAR* pAssoc, LPVOID FAR* ppKey,UINT FAR* pcbKey) const { VDATEHEAP();
if (m_cbKey == 0) { // variable length key; go indirect
*ppKey = pAssoc->key.pKey; *pcbKey = pAssoc->key.cbKey; } else { // fixed length key; key in assoc
*ppKey = (LPVOID)&pAssoc->key; *pcbKey = m_cbKey; } }
#pragma SEG(CMapKeyToValue_FreeAssocKey)
void CMapKeyToValue::FreeAssocKey(CAssoc FAR* pAssoc) const { VDATEHEAP();
if (m_cbKey == 0) PrivMemFree(pAssoc->key.pKey); }
#pragma SEG(CMapKeyToValue_GetAssocValuePtr)
void CMapKeyToValue::GetAssocValuePtr(CAssoc FAR* pAssoc, LPVOID FAR* ppValue) const { VDATEHEAP();
*ppValue = (char FAR*)&pAssoc->key + m_cbKeyInAssoc; }
#pragma SEG(CMapKeyToValue_GetAssocValue)
void CMapKeyToValue::GetAssocValue(CAssoc FAR* pAssoc, LPVOID pValue) const { VDATEHEAP();
LPVOID pValueFrom; GetAssocValuePtr(pAssoc, &pValueFrom); Assert(pValue != NULL); _xmemcpy(pValue, pValueFrom, m_cbValue); }
#pragma SEG(CMapKeyToValue_SetAssocValue)
void CMapKeyToValue::SetAssocValue(CAssoc FAR* pAssoc, LPVOID pValue) const { VDATEHEAP();
LPVOID pValueTo; GetAssocValuePtr(pAssoc, &pValueTo); if (pValue == NULL) _xmemset(pValueTo, 0, m_cbValue); else _xmemcpy(pValueTo, pValue, m_cbValue); }
/////////////////////////////////////////////////////////////////////////////
#pragma SEG(CMapKeyToValue_Lookup)
// lookup value given key; return FALSE if key not found; in that
// case, the value is set to all zeros
BOOL CMapKeyToValue::Lookup(LPVOID pKey, UINT cbKey, LPVOID pValue) const { VDATEHEAP();
UINT nHash; BOOL fFound;
LOCKTHIS; fFound = LookupHKey((HMAPKEY)GetAssocAt(pKey, cbKey, nHash), pValue); UNLOCKTHIS; return fFound; }
#pragma SEG(CMapKeyToValue_LookupHKey)
// lookup value given key; return FALSE if NULL (or bad) key; in that
// case, the value is set to all zeros
BOOL CMapKeyToValue::LookupHKey(HMAPKEY hKey, LPVOID pValue) const { VDATEHEAP();
BOOL fFound = FALSE;
LOCKTHIS;
// REVIEW: would like some way to verify that hKey is valid
register CAssoc FAR* pAssoc = (CAssoc FAR*)hKey; if (pAssoc == NULL) { _xmemset(pValue, 0, m_cbValue); goto Exit; // not in map
}
ASSERT_VALID(this);
GetAssocValue(pAssoc, pValue); fFound = TRUE; Exit: UNLOCKTHIS; return fFound; }
#pragma SEG(CMapKeyToValue_LookupAdd)
// lookup and if not found add; returns FALSE only if OOM; if added,
// value added and pointer passed are set to zeros.
BOOL CMapKeyToValue::LookupAdd(LPVOID pKey, UINT cbKey, LPVOID pValue) const { VDATEHEAP();
BOOL fFound;
LOCKTHIS;
fFound = Lookup(pKey, cbKey, pValue); if (!fFound) // value set to zeros since lookup failed
fFound = ((CMapKeyToValue FAR*)this)->SetAt(pKey, cbKey, NULL);
UNLOCKTHIS; return fFound; }
#pragma SEG(CMapKeyToValue_SetAt)
// the only place new assocs are created; return FALSE if OOM;
// never returns FALSE if keys already exists
BOOL CMapKeyToValue::SetAt(LPVOID pKey, UINT cbKey, LPVOID pValue) { VDATEHEAP();
UINT nHash; register CAssoc FAR* pAssoc; BOOL fFound = FALSE;
LOCKTHIS;
ASSERT_VALID(this);
if ((pAssoc = GetAssocAt(pKey, cbKey, nHash)) == NULL) { if (!InitHashTable()) // out of memory
goto Exit;
// it doesn't exist, add a new Association
if ((pAssoc = NewAssoc(nHash, pKey, cbKey, pValue)) == NULL) goto Exit;
// put into hash table
pAssoc->pNext = m_pHashTable[nHash]; m_pHashTable[nHash] = pAssoc;
ASSERT_VALID(this); } else SetAssocValue(pAssoc, pValue);
fFound = TRUE; Exit: UNLOCKTHIS; return fFound; }
#pragma SEG(CMapKeyToValue_SetAtHKey)
// set existing hkey to value; return FALSE if NULL or bad key
BOOL CMapKeyToValue::SetAtHKey(HMAPKEY hKey, LPVOID pValue) { VDATEHEAP();
BOOL fDone = FALSE; LOCKTHIS; // REVIEW: would like some way to verify that hKey is valid
register CAssoc FAR* pAssoc = (CAssoc FAR*)hKey; if (pAssoc == NULL) goto Exit; // not in map
ASSERT_VALID(this);
SetAssocValue(pAssoc, pValue); fDone = TRUE; Exit: UNLOCKTHIS; return fDone; }
#pragma SEG(CMapKeyToValue_RemoveKey)
// remove key - return TRUE if removed
BOOL CMapKeyToValue::RemoveKey(LPVOID pKey, UINT cbKey) { VDATEHEAP();
BOOL fFound = FALSE; UINT i;
LOCKTHIS; ASSERT_VALID(this);
if (m_pHashTable == NULL) goto Exit; // nothing in the table
register CAssoc FAR* FAR* ppAssocPrev; if (m_lpfnHashKey) i = (*m_lpfnHashKey)(pKey, cbKey) % m_nHashTableSize; else i = MKVDefaultHashKey(pKey, cbKey) % m_nHashTableSize;
ppAssocPrev = &m_pHashTable[i];
CAssoc FAR* pAssoc; for (pAssoc = *ppAssocPrev; pAssoc != NULL; pAssoc = pAssoc->pNext) { if (CompareAssocKey(pAssoc, pKey, cbKey)) { // remove it
*ppAssocPrev = pAssoc->pNext; // remove from list
FreeAssoc(pAssoc); ASSERT_VALID(this); fFound = TRUE; break; } ppAssocPrev = &pAssoc->pNext; } Exit: UNLOCKTHIS; return fFound; }
#pragma SEG(CMapKeyToValue_RemoveHKey)
// remove key based on pAssoc (HMAPKEY)
BOOL CMapKeyToValue::RemoveHKey(HMAPKEY hKey) { VDATEHEAP();
BOOL fFound = FALSE;
// REVIEW: would like some way to verify that hKey is valid
CAssoc FAR* pAssoc = (CAssoc FAR*)hKey;
LOCKTHIS; ASSERT_VALID(this);
if (m_pHashTable == NULL) goto Exit; // nothing in the table
if (pAssoc == NULL || pAssoc->nHashValue >= m_nHashTableSize) goto Exit; // null hkey or bad hash value
register CAssoc FAR* FAR* ppAssocPrev; ppAssocPrev = &m_pHashTable[pAssoc->nHashValue];
while (*ppAssocPrev != NULL) { if (*ppAssocPrev == pAssoc) { // remove it
*ppAssocPrev = pAssoc->pNext; // remove from list
FreeAssoc(pAssoc); ASSERT_VALID(this); fFound = TRUE; break; } ppAssocPrev = &(*ppAssocPrev)->pNext; }
Exit: UNLOCKTHIS; return fFound; }
#pragma SEG(CMapKeyToValue_GetHKey)
HMAPKEY CMapKeyToValue::GetHKey(LPVOID pKey, UINT cbKey) const { VDATEHEAP();
UINT nHash; HMAPKEY hKey;
LOCKTHIS; ASSERT_VALID(this);
hKey = (HMAPKEY)GetAssocAt(pKey, cbKey, nHash); UNLOCKTHIS; return hKey; }
/////////////////////////////////////////////////////////////////////////////
// Iterating
// for fixed length keys, copies key to pKey; pcbKey can be NULL;
// for variable length keys, copies pointer to key to pKey; sets pcbKey.
#pragma SEG(CMapKeyToValue_GetNextAssoc)
void CMapKeyToValue::GetNextAssoc(POSITION FAR* pNextPosition, LPVOID pKey, UINT FAR* pcbKey, LPVOID pValue) const { VDATEHEAP();
ASSERT_VALID(this);
Assert(m_pHashTable != NULL); // never call on empty map
register CAssoc FAR* pAssocRet = (CAssoc FAR*)*pNextPosition; Assert(pAssocRet != NULL);
if (pAssocRet == (CAssoc FAR*) BEFORE_START_POSITION) { // find the first association
for (UINT nBucket = 0; nBucket < m_nHashTableSize; nBucket++) if ((pAssocRet = m_pHashTable[nBucket]) != NULL) break; Assert(pAssocRet != NULL); // must find something
}
// find next association
CAssoc FAR* pAssocNext; if ((pAssocNext = pAssocRet->pNext) == NULL) { // go to next bucket
for (UINT nBucket = pAssocRet->nHashValue + 1; nBucket < m_nHashTableSize; nBucket++) if ((pAssocNext = m_pHashTable[nBucket]) != NULL) break; }
// fill in return data
*pNextPosition = (POSITION) pAssocNext;
// fill in key/pointer to key
LPVOID pKeyFrom; UINT cbKey; GetAssocKeyPtr(pAssocRet, &pKeyFrom, &cbKey); if (m_cbKey == 0) // variable length key; just return pointer to key itself
*(void FAR* FAR*)pKey = pKeyFrom; else _xmemcpy(pKey, pKeyFrom, cbKey);
if (pcbKey != NULL) *pcbKey = cbKey;
// get value
GetAssocValue(pAssocRet, pValue); }
/////////////////////////////////////////////////////////////////////////////
#pragma SEG(CMapKeyToValue_AssertValid)
void CMapKeyToValue::AssertValid() const { VDATEHEAP();
#ifdef _DEBUG
Assert(m_cbKeyInAssoc == (m_cbKey == 0 ? sizeof(CKeyWrap) : m_cbKey));
Assert(m_nHashTableSize > 0); Assert(m_nCount == 0 || m_pHashTable != NULL);
if (m_pHashTable != NULL) Assert(IsValidReadPtrIn(m_pHashTable, m_nHashTableSize * sizeof(CAssoc FAR*)));
if (m_lpfnHashKey) Assert(IsValidCodePtr((FARPROC)m_lpfnHashKey));
if (m_pFreeList != NULL) Assert(IsValidReadPtrIn(m_pFreeList, SizeAssoc()));
if (m_pBlocks != NULL) Assert(IsValidReadPtrIn(m_pBlocks, SizeAssoc() * m_nBlockSize));
#endif //_DEBUG
}
|