|
|
/****************************************************************************
* * wave.c * * Wave routines for wdmaud.sys * * Copyright (C) Microsoft Corporation, 1997 - 1999 All Rights Reserved. * * History * S.Mohanraj (MohanS) * M.McLaughlin (MikeM) * 5-19-97 - Noel Cross (NoelC) * ***************************************************************************/
#include "wdmsys.h"
//
// This is just a scratch location that is never used for anything
// but a parameter to core functions.
//
IO_STATUS_BLOCK gIoStatusBlock ;
VOID SetVolumeDpc( IN PKDPC pDpc, IN PVOID DefferedContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2 );
VOID SetVolumeWorker( IN PWAVEDEVICE pDevice, IN PVOID pNotUsed );
VOID WaitForOutStandingIo( IN PWAVEDEVICE pWaveDevice, IN PWAVE_PIN_INSTANCE pCurWavePin );
//
// Check whether the waveformat is supported by kmixer
// purpose of this is to decide whether to use WaveQueued
// OR Standard Streaming
//
BOOL PcmWaveFormat( LPWAVEFORMATEX lpFormat ) {
PWAVEFORMATEXTENSIBLE pWaveExtended; WORD wFormatTag;
PAGED_CODE(); if (lpFormat->wFormatTag == WAVE_FORMAT_PCM) { return (TRUE); }
if (lpFormat->wFormatTag == WAVE_FORMAT_IEEE_FLOAT) { return (TRUE); }
if (lpFormat->wFormatTag == WAVE_FORMAT_EXTENSIBLE) { pWaveExtended = (PWAVEFORMATEXTENSIBLE) lpFormat; if (IS_VALID_WAVEFORMATEX_GUID(&pWaveExtended->SubFormat)) { wFormatTag = EXTRACT_WAVEFORMATEX_ID(&pWaveExtended->SubFormat); if (wFormatTag == WAVE_FORMAT_PCM) { return (TRUE); } if (wFormatTag == WAVE_FORMAT_IEEE_FLOAT) { return (TRUE); } } }
return (FALSE); }
BOOL IsValidFormatTag( PKSDATARANGE_AUDIO pDataRange, LPWAVEFORMATEX lpFormat ) { PAGED_CODE(); //
// See if we have a majorformat and subformat that
// we want
//
if ( IsEqualGUID( &KSDATAFORMAT_TYPE_AUDIO, &pDataRange->DataRange.MajorFormat) ) { if (WAVE_FORMAT_EXTENSIBLE == lpFormat->wFormatTag) { PWAVEFORMATEXTENSIBLE lpFormatExtensible;
lpFormatExtensible = (PWAVEFORMATEXTENSIBLE)lpFormat; if ( IsEqualGUID( &pDataRange->DataRange.SubFormat, &lpFormatExtensible->SubFormat) ) { return TRUE; } } else { if ( (EXTRACT_WAVEFORMATEX_ID(&pDataRange->DataRange.SubFormat) == lpFormat->wFormatTag) ) { return TRUE; } } }
DPF(DL_TRACE|FA_WAVE,("Invalid Format Tag") ); return FALSE; }
BOOL IsValidSampleFrequency( PKSDATARANGE_AUDIO pDataRange, DWORD nSamplesPerSec ) { PAGED_CODE(); //
// See if this datarange support the requested frequency
//
if (pDataRange->MinimumSampleFrequency <= nSamplesPerSec && pDataRange->MaximumSampleFrequency >= nSamplesPerSec) { return TRUE; } else { DPF(DL_MAX|FA_WAVE,("Invalid Sample Frequency") ); return FALSE; } }
BOOL IsValidBitsPerSample( PKSDATARANGE_AUDIO pDataRange, LPWAVEFORMATEX lpFormat ) { PAGED_CODE(); //
// See if this datarange support the requested frequency
//
if (pDataRange->MinimumBitsPerSample <= lpFormat->wBitsPerSample && pDataRange->MaximumBitsPerSample >= lpFormat->wBitsPerSample) { if ( (lpFormat->wFormatTag == WAVE_FORMAT_PCM) && (lpFormat->wBitsPerSample > 32) ) { DPF(DL_TRACE|FA_WAVE,("Invalid BitsPerSample") ); return FALSE; } else if ( (lpFormat->wFormatTag == WAVE_FORMAT_IEEE_FLOAT) && (lpFormat->wBitsPerSample != 32) ) { DPF(DL_TRACE|FA_WAVE,("Invalid BitsPerSample") ); return FALSE; }
return TRUE; } else { DPF(DL_TRACE|FA_WAVE,("Invalid BitsPerSample") ); return FALSE; } }
BOOL IsValidChannels( PKSDATARANGE_AUDIO pDataRange, LPWAVEFORMATEX lpFormat ) { PAGED_CODE(); //
// See if this datarange support the requested frequency
//
if (pDataRange->MaximumChannels >= lpFormat->nChannels) { if ( ( (lpFormat->wFormatTag == WAVE_FORMAT_PCM) || (lpFormat->wFormatTag == WAVE_FORMAT_IEEE_FLOAT) ) && (lpFormat->nChannels > 2) ) { DPF(DL_TRACE|FA_WAVE,("Invalid Channel") ); return FALSE; }
return TRUE; } else { DPF(DL_TRACE|FA_WAVE,("Invalid Channel") ); return FALSE; } }
NTSTATUS OpenWavePin( PWDMACONTEXT pWdmaContext, ULONG DeviceNumber, LPWAVEFORMATEX lpFormat, HANDLE32 DeviceHandle, DWORD dwFlags, ULONG DataFlow // DataFlow is either in or out.
) { PWAVE_PIN_INSTANCE pNewWavePin = NULL; PWAVE_PIN_INSTANCE pCurWavePin; PKSPIN_CONNECT pConnect = NULL; PKSDATAFORMAT_WAVEFORMATEX pWaveDataFormat; ULONG RegionSize; PCONTROLS_LIST pControlList = NULL; ULONG Device; ULONG PinId; NTSTATUS Status = STATUS_INVALID_DEVICE_REQUEST;
PAGED_CODE(); //
// Let's do this quickly and get out of here
//
if (WAVE_FORMAT_QUERY & dwFlags) { PDATARANGES AudioDataRanges; PKSDATARANGE_AUDIO pDataRange; ULONG d;
//
// WaveOut call? If so, use waveout info
//
if( KSPIN_DATAFLOW_IN == DataFlow ) AudioDataRanges = pWdmaContext->WaveOutDevs[DeviceNumber].AudioDataRanges; else AudioDataRanges = pWdmaContext->WaveInDevs[DeviceNumber].AudioDataRanges;
pDataRange = (PKSDATARANGE_AUDIO)&AudioDataRanges->aDataRanges[0];
for(d = 0; d < AudioDataRanges->Count; d++) { if ( (IsValidFormatTag(pDataRange,lpFormat)) && (IsValidSampleFrequency(pDataRange,lpFormat->nSamplesPerSec)) && (IsValidBitsPerSample(pDataRange,lpFormat)) && (IsValidChannels(pDataRange,lpFormat)) ) { //
// Found a good data range, successful query
//
Status = STATUS_SUCCESS; break; }
// Get the pointer to the next data range
(PUCHAR)pDataRange += ((pDataRange->DataRange.FormatSize + FILE_QUAD_ALIGNMENT) & ~FILE_QUAD_ALIGNMENT); }
goto exit; }
//
// Need to allocate a pin instance for multiple wave
// opens on the same device
//
Status = AudioAllocateMemory_Fixed(sizeof(WAVE_PIN_INSTANCE), TAG_Audi_PIN, ZERO_FILL_MEMORY, &pNewWavePin); if(!NT_SUCCESS(Status)) { goto exit; }
//
// Copy the application supplied waveformat so we can
// use in the worker thread context. Don't need to zero
// memory because we copy into the structure below.
//
Status = AudioAllocateMemory_Fixed((lpFormat->wFormatTag == WAVE_FORMAT_PCM) ? sizeof( PCMWAVEFORMAT ) : sizeof( WAVEFORMATEX ) + lpFormat->cbSize, TAG_AudF_FORMAT, DEFAULT_MEMORY, &pNewWavePin->lpFormat); if(!NT_SUCCESS(Status)) { AudioFreeMemory(sizeof(WAVE_PIN_INSTANCE),&pNewWavePin); goto exit; }
RtlCopyMemory( pNewWavePin->lpFormat, lpFormat, (lpFormat->wFormatTag == WAVE_FORMAT_PCM) ? sizeof( PCMWAVEFORMAT ) : sizeof( WAVEFORMATEX ) + lpFormat->cbSize);
pNewWavePin->DataFlow = DataFlow; pNewWavePin->dwFlags = dwFlags; pNewWavePin->DeviceNumber = DeviceNumber; pNewWavePin->WaveHandle = DeviceHandle; pNewWavePin->Next = NULL; pNewWavePin->NumPendingIos = 0; pNewWavePin->StoppingSource = FALSE; pNewWavePin->PausingSource = FALSE; pNewWavePin->dwSig = WAVE_PIN_INSTANCE_SIGNATURE; if( KSPIN_DATAFLOW_IN == DataFlow ) pNewWavePin->pWaveDevice = &pWdmaContext->WaveOutDevs[DeviceNumber]; else pNewWavePin->pWaveDevice = &pWdmaContext->WaveInDevs[DeviceNumber];
KeInitializeEvent ( &pNewWavePin->StopEvent, SynchronizationEvent, FALSE ) ;
KeInitializeEvent ( &pNewWavePin->PauseEvent, SynchronizationEvent, FALSE ) ;
KeInitializeSpinLock(&pNewWavePin->WavePinSpinLock);
if( KSPIN_DATAFLOW_IN == DataFlow ) { if (NULL == pWdmaContext->WaveOutDevs[DeviceNumber].pWavePin) { pWdmaContext->WaveOutDevs[DeviceNumber].pWavePin = pNewWavePin;
} else {
for (pCurWavePin = pWdmaContext->WaveOutDevs[DeviceNumber].pWavePin; pCurWavePin->Next != NULL; ) { pCurWavePin = pCurWavePin->Next; }
pCurWavePin->Next = pNewWavePin;
DPF(DL_TRACE|FA_WAVE, ("Opening another waveout pin"));
} } else { if (NULL == pWdmaContext->WaveInDevs[DeviceNumber].pWavePin) { pWdmaContext->WaveInDevs[DeviceNumber].pWavePin = pNewWavePin;
} else {
for (pCurWavePin = pWdmaContext->WaveInDevs[DeviceNumber].pWavePin; pCurWavePin->Next != NULL; ) { pCurWavePin = pCurWavePin->Next; }
pCurWavePin->Next = pNewWavePin;
DPF(DL_TRACE|FA_WAVE, ("Opening another wavein pin")); } }
//
// We only support one client at a time.
//
ASSERT( !pNewWavePin->fGraphRunning );
//
// We need to allocate enough memory to handle the
// extended waveformat structure
//
if (WAVE_FORMAT_PCM == lpFormat->wFormatTag) { RegionSize = sizeof(KSPIN_CONNECT) + sizeof(KSDATAFORMAT_WAVEFORMATEX); } else { RegionSize = sizeof(KSPIN_CONNECT) + sizeof(KSDATAFORMAT_WAVEFORMATEX) + lpFormat->cbSize; }
Status = AudioAllocateMemory_Fixed(RegionSize, TAG_Audt_CONNECT, ZERO_FILL_MEMORY, &pConnect); if(!NT_SUCCESS(Status)) { DPF(DL_WARNING|FA_WAVE, ("pConnect not valid")); goto exit; }
pWaveDataFormat = (PKSDATAFORMAT_WAVEFORMATEX)(pConnect + 1);
//
// Use WAVE_QUEUED for PCM waveOut and Standard Streaming for WaveIn
// and non-PCM waveOut
//
if ( pNewWavePin->DataFlow == KSPIN_DATAFLOW_IN ) { if (PcmWaveFormat(lpFormat)) { // if it is KMIXER supported waveformat
pConnect->Interface.Set = KSINTERFACESETID_Media; pConnect->Interface.Id = KSINTERFACE_MEDIA_WAVE_QUEUED; pNewWavePin->fWaveQueued = TRUE;
} else {
pConnect->Interface.Set = KSINTERFACESETID_Standard; pConnect->Interface.Id = KSINTERFACE_STANDARD_STREAMING; pNewWavePin->fWaveQueued = FALSE; } pConnect->Interface.Flags = 0; PinId = pNewWavePin->pWaveDevice->PinId; Device = pNewWavePin->pWaveDevice->Device;
} else {
pConnect->Interface.Set = KSINTERFACESETID_Standard; pConnect->Interface.Id = KSINTERFACE_STANDARD_STREAMING; pConnect->Interface.Flags = 0; PinId = pNewWavePin->pWaveDevice->PinId; Device = pNewWavePin->pWaveDevice->Device; } pConnect->Medium.Set = KSMEDIUMSETID_Standard; pConnect->Medium.Id = KSMEDIUM_STANDARD_DEVIO; pConnect->Medium.Flags = 0 ; pConnect->Priority.PriorityClass = KSPRIORITY_NORMAL; pConnect->Priority.PrioritySubClass = 1;
pWaveDataFormat->DataFormat.MajorFormat = KSDATAFORMAT_TYPE_AUDIO; if (WAVE_FORMAT_EXTENSIBLE == lpFormat->wFormatTag) { PWAVEFORMATEXTENSIBLE lpFormatExtensible;
lpFormatExtensible = (PWAVEFORMATEXTENSIBLE)lpFormat; pWaveDataFormat->DataFormat.SubFormat = lpFormatExtensible->SubFormat; } else { INIT_WAVEFORMATEX_GUID( &pWaveDataFormat->DataFormat.SubFormat, lpFormat->wFormatTag ); } pWaveDataFormat->DataFormat.Specifier = KSDATAFORMAT_SPECIFIER_WAVEFORMATEX; pWaveDataFormat->DataFormat.Flags = 0 ; pWaveDataFormat->DataFormat.FormatSize = RegionSize - sizeof(KSPIN_CONNECT); pWaveDataFormat->DataFormat.SampleSize = lpFormat->nBlockAlign ; pWaveDataFormat->DataFormat.Reserved = 0 ;
//
// Copy over the whole waveformat structure
//
RtlCopyMemory( &pWaveDataFormat->WaveFormatEx, lpFormat, (lpFormat->wFormatTag == WAVE_FORMAT_PCM) ? sizeof( PCMWAVEFORMAT ) : sizeof( WAVEFORMATEX ) + lpFormat->cbSize);
Status = AudioAllocateMemory_Fixed(( sizeof(CONTROLS_LIST)+ ((MAX_WAVE_CONTROLS-1)*sizeof(CONTROL_NODE)) ), TAG_AudC_CONTROL, ZERO_FILL_MEMORY, &pControlList) ; if(!NT_SUCCESS(Status)) { AudioFreeMemory_Unknown( &pConnect ); DPF(DL_WARNING|FA_WAVE, ("Could not allocate ControlList")); goto exit; }
pControlList->Count = MAX_WAVE_CONTROLS ;
pControlList->Controls[WAVE_CONTROL_VOLUME].Control = KSNODETYPE_VOLUME ; pControlList->Controls[WAVE_CONTROL_RATE].Control = KSNODETYPE_SRC ; pControlList->Controls[WAVE_CONTROL_QUALITY].Control = KSNODETYPE_SRC ; pNewWavePin->pControlList = pControlList ;
//
// Open a pin
//
Status = OpenSysAudioPin(Device, PinId, pNewWavePin->DataFlow, pConnect, &pNewWavePin->pFileObject, &pNewWavePin->pDeviceObject, pNewWavePin->pControlList);
AudioFreeMemory_Unknown( &pConnect );
if(!NT_SUCCESS(Status)) { CloseTheWavePin(pNewWavePin->pWaveDevice, pNewWavePin->WaveHandle); goto exit; }
if ( pNewWavePin->DataFlow == KSPIN_DATAFLOW_IN ) {
Status = AttachVirtualSource(pNewWavePin->pFileObject, pNewWavePin->pWaveDevice->pWdmaContext->VirtualWavePinId);
if (!NT_SUCCESS(Status)) { CloseTheWavePin(pNewWavePin->pWaveDevice, pNewWavePin->WaveHandle); goto exit; } }
//
// Now we've gotten through everything so we can mark this one as running.
// We do it here because of the close path. In that path fGraphRunning gets
// decremented and the assert fires in the checked build.
//
pNewWavePin->fGraphRunning=TRUE;
//
// Why do we set this to KSSTATE_STOP and then change it to KSSTATE_PAUSE? If
// StatePin is able to successfully change the state to KSSTATE_PAUSE, the
// PinState will get updated to KSSTATE_PAUSE.
//
pNewWavePin->PinState = KSSTATE_STOP; StatePin(pNewWavePin->pFileObject, KSSTATE_PAUSE, &pNewWavePin->PinState);
exit: RETURN( Status ); }
void CloseTheWavePin( PWAVEDEVICE pWaveDevice, HANDLE32 DeviceHandle ) { PWAVE_PIN_INSTANCE *ppCur; PWAVE_PIN_INSTANCE pCurFree;
PAGED_CODE();
//
// Remove from device chain. Notice that ppCur gets the address of the
// location of pWaveDevice->pWavePin. Thus, the *ppCur = (*ppCur)->Next
// assignment below updates the pWaveDevice->pWavePin location if we
// close the first pin.
//
for (ppCur = &pWaveDevice->pWavePin; *ppCur != NULL; ppCur = &(*ppCur)->Next) { if ( NULL == DeviceHandle || (*ppCur)->WaveHandle == DeviceHandle ) { //
// Note that if there is outstanding Io we can not close the pin
// until it's all come back. Thus, we'll need to tell the device
// to stop and then wait for the Io here.
//
if( (*ppCur)->pFileObject ) { //
// We will never have outstanding Io if we don't have a file object
// to send it too.
//
WaitForOutStandingIo(pWaveDevice,*ppCur); }
CloseWavePin ( *ppCur );
pCurFree = *ppCur; *ppCur = (*ppCur)->Next;
AudioFreeMemory( sizeof(WAVE_PIN_INSTANCE), &pCurFree ); break; } } }
//
// This routine can not fail!
//
VOID CloseWavePin( PWAVE_PIN_INSTANCE pWavePin ) { ASSERT(pWavePin->NumPendingIos==0);
PAGED_CODE();
//
// This routine can get called on the error path thus fGraphRunning may be FALSE.
// In either case, we will need to close sysaudio and free memory.
//
pWavePin->fGraphRunning = FALSE;
// Close the file object (pFileObject, if it exists)
if(pWavePin->pFileObject) { CloseSysAudio(pWavePin->pWaveDevice->pWdmaContext, pWavePin->pFileObject); pWavePin->pFileObject = NULL; }
//
// AudioFreeMemory_Unknown NULLs out this location after freeing the memory.
//
AudioFreeMemory_Unknown ( &pWavePin->lpFormat ); AudioFreeMemory_Unknown ( &pWavePin->pControlList ) ; //
// Caller needs to free pWavePin if it wants to.
//
}
#pragma LOCKED_CODE
#pragma LOCKED_DATA
//
// This routine is used rather then an InterlockedIncrement and InterlockedDecrement
// because the routine that needs to determine what to do based on this information
// needs to perform multiple checks on different variables to determine exactly what
// to do. Thus, we need a "critical section" for NumPendingIos. Also, SpinLocks
// must be called from locked code. :)
//
void LockedWaveIoCount( PWAVE_PIN_INSTANCE pCurWavePin, BOOL bIncrease ) { KIRQL OldIrql;
KeAcquireSpinLock(&pCurWavePin->WavePinSpinLock,&OldIrql);
if( bIncrease ) pCurWavePin->NumPendingIos++; else pCurWavePin->NumPendingIos--; KeReleaseSpinLock(&pCurWavePin->WavePinSpinLock, OldIrql); }
void CompleteNumPendingIos( PWAVE_PIN_INSTANCE pCurWavePin ) { KIRQL OldIrql;
if( pCurWavePin ) { KeAcquireSpinLock(&pCurWavePin->WavePinSpinLock,&OldIrql); //
// We always decrement NumPendingIos and then perform the comparisons.
// If the count goes to zero, we're the last IRP so we need to check
// to see if we need to signal any waiting thread.
//
if( ( --pCurWavePin->NumPendingIos == 0 ) && pCurWavePin->StoppingSource ) { //
// If this Io is the last one to come through, and we're currently
// sitting waiting for the reset to finish, then we signal it here.
//
KeSetEvent ( &pCurWavePin->StopEvent, 0, FALSE ) ; }
//
// Upon leaving this spinlock, pCurWavePin can be freed by the close
// routine if NumPendingIos went to zero!
//
KeReleaseSpinLock(&pCurWavePin->WavePinSpinLock, OldIrql); } //
// Must not touch pCurWavePin after this!
//
}
void UnmapWriteContext( PWRITE_CONTEXT pWriteContext ) { wdmaudUnmapBuffer(pWriteContext->pBufferMdl); AudioFreeMemory_Unknown(&pWriteContext->pCapturedWaveHdr); AudioFreeMemory(sizeof(WRITE_CONTEXT),&pWriteContext); }
void FreeWriteContext( PWRITE_CONTEXT pWriteContext, NTSTATUS IrpStatus ) { PIRP UserIrp; PWDMAPENDINGIRP_CONTEXT pPendingIrpContext;
//
// grab the parent IRP from the reserved field
//
UserIrp = (PIRP)pWriteContext->whInstance.wh.reserved; pPendingIrpContext = pWriteContext->pPendingIrpContext;
UnmapWriteContext( pWriteContext );
if( UserIrp ) wdmaudUnprepareIrp( UserIrp,IrpStatus,0,pPendingIrpContext); }
//
// This is the Irp completion routine.
//
NTSTATUS wqWriteWaveCallBack( PDEVICE_OBJECT pDeviceObject, PIRP pIrp, IN PWAVEHDR pWriteData ) { PWAVE_PIN_INSTANCE pCurWavePin; PMDL Mdl; PMDL nextMdl; PIRP UserIrp; PWDMAPENDINGIRP_CONTEXT pPendingIrpContext; PWRITE_CONTEXT pWriteContext = (PWRITE_CONTEXT)pWriteData;
ASSERT(pWriteData);
pCurWavePin = pWriteContext->whInstance.pWaveInstance;
DPF(DL_TRACE|FA_WAVE, ("R%d: 0x%08x", pCurWavePin->NumPendingIos,pIrp));
//
// After we get our pCurWavePin, we don't need the write context any longer.
//
FreeWriteContext(pWriteContext, pIrp->IoStatus.Status);
//
// Consider putting this in a routine.
//
if (pIrp->MdlAddress != NULL) { //
// Unlock any pages that may be described by MDLs.
//
Mdl = pIrp->MdlAddress; while (Mdl != NULL) { MmUnlockPages( Mdl ); Mdl = Mdl->Next; } }
if (pIrp->MdlAddress != NULL) { for (Mdl = pIrp->MdlAddress; Mdl != (PMDL) NULL; Mdl = nextMdl) { nextMdl = Mdl->Next; if (Mdl->MdlFlags & MDL_PARTIAL_HAS_BEEN_MAPPED) { ASSERT( Mdl->MdlFlags & MDL_PARTIAL ); MmUnmapLockedPages( Mdl->MappedSystemVa, Mdl ); } else if (!(Mdl->MdlFlags & MDL_PARTIAL)) { ASSERT(!(Mdl->MdlFlags & MDL_MAPPED_TO_SYSTEM_VA )); } AudioFreeMemory_Unknown( &Mdl ); } }
IoFreeIrp( pIrp );
CompleteNumPendingIos( pCurWavePin );
return ( STATUS_MORE_PROCESSING_REQUIRED ); }
//
// Consider combining ssWriteWaveCallback and wqWriteWaveCallBack. They look
// like the same routine!
//
NTSTATUS ssWriteWaveCallBack( PDEVICE_OBJECT pDeviceObject, PIRP pIrp, IN PSTREAM_HEADER_EX pStreamHeader ) { PWAVE_PIN_INSTANCE pCurWavePin; PIRP UserIrp; PWDMAPENDINGIRP_CONTEXT pPendingIrpContext; PWRITE_CONTEXT pWriteContext = (PWRITE_CONTEXT)pStreamHeader->pWaveHdr;
ASSERT(pWriteContext);
pCurWavePin = pWriteContext->whInstance.pWaveInstance;
DPF(DL_TRACE|FA_WAVE, ("R%d: 0x%08x", pCurWavePin->NumPendingIos,pIrp));
FreeWriteContext( pWriteContext, pIrp->IoStatus.Status );
CompleteNumPendingIos( pCurWavePin );
return STATUS_SUCCESS; }
#pragma PAGEABLE_CODE
#pragma PAGEABLE_DATA
//
// Walk the list and if we find a matching pin, write it back for the caller.
//
NTSTATUS FindRunningPin( IN PWAVEDEVICE pWaveDevice, IN HANDLE32 DeviceHandle, OUT PWAVE_PIN_INSTANCE* ppCurWavePin ) { PWAVE_PIN_INSTANCE pCurWavePin; NTSTATUS Status = STATUS_INVALID_DEVICE_REQUEST;
//
// Prepare for the error condition.
//
*ppCurWavePin = NULL; //
// find the right pin based off of the wave handle
//
for (pCurWavePin = pWaveDevice->pWavePin; pCurWavePin != NULL; pCurWavePin = pCurWavePin->Next) { if (pCurWavePin->WaveHandle == DeviceHandle) { if (pCurWavePin->fGraphRunning) { //
// Write back the pointer and return success
//
*ppCurWavePin = pCurWavePin; Status = STATUS_SUCCESS; } else { DPF(DL_WARNING|FA_WAVE,("Invalid fGraphRunning") ); Status = STATUS_DEVICE_NOT_READY; } return Status; } } return Status; }
//
// WriteWaveOutPin walks the device list like the other routines.
//
// pUserIrp is the Irp on which this call from user mode was made. It's
// always going to be valid. We don't need to check it.
//
// This routine needs to set pCompletedIrp to either TRUE or FALSE. If
// TRUE, the Irp was successfully marked STATUS_PENDING and it will get
// completed later. If FALSE, there was some type of error that prevented
// us from submitting the Irp. The caller to this routine will need to
// handle freeing the Irp.
//
//
// This routine should be the one storing the user's irp in the reserved field.
// Not the caller.
// pWriteContext->whInstance.wh.reserved = (DWORD_PTR)pIrp; // store to complete later
//
NTSTATUS WriteWaveOutPin( PWAVEDEVICE pWaveOutDevice, HANDLE32 DeviceHandle, LPWAVEHDR pWriteData, PSTREAM_HEADER_EX pStreamHeader, PIRP pUserIrp, PWDMACONTEXT pContext, BOOL *pCompletedIrp ) { PWAVE_PIN_INSTANCE pCurWavePin; PWRITE_CONTEXT pWriteContext = (PWRITE_CONTEXT)pWriteData; PWDMAPENDINGIRP_CONTEXT pPendingIrpContext; NTSTATUS Status;
PAGED_CODE();
//
// We assumee that pCompletedIrp is FALSE on entry.
//
ASSERT( *pCompletedIrp == FALSE );
Status = FindRunningPin(pWaveOutDevice,DeviceHandle,&pCurWavePin); if( NT_SUCCESS(Status) ) { if (pCurWavePin->fWaveQueued) { PIO_STACK_LOCATION pIrpStack; LARGE_INTEGER StartingOffset; PIRP pIrp = NULL;
//
// Can't use KsStreamIo because these are not
// true stream headers. Sending down headers
// using the WAVE_QUEUED interface
//
StartingOffset.QuadPart = 0; pIrp = IoBuildAsynchronousFsdRequest(IRP_MJ_WRITE, pCurWavePin->pDeviceObject, (PVOID)pWriteContext, sizeof(WAVEHDR), &StartingOffset, &gIoStatusBlock); if( pIrp ) { Status = wdmaudPrepareIrp( pUserIrp, WaveOutDevice, pContext, &pPendingIrpContext ); if( NT_SUCCESS(Status) ) { //
// The Irp was successfully marked STATUS_PENDING and put in
// our queue. Now let's send it.
//
pWriteContext->whInstance.pWaveInstance = pCurWavePin; pWriteContext->pPendingIrpContext = pPendingIrpContext;
pIrp->RequestorMode = KernelMode; pIrp->Tail.Overlay.OriginalFileObject = pCurWavePin->pFileObject;
pIrpStack = IoGetNextIrpStackLocation(pIrp); pIrpStack->FileObject = pCurWavePin->pFileObject;
IoSetCompletionRoutine(pIrp, wqWriteWaveCallBack, pWriteData, TRUE,TRUE,TRUE);
//
// one more IRP pending
//
LockedWaveIoCount(pCurWavePin,INCREASE); DPF(DL_TRACE|FA_WAVE, ("A%d", pCurWavePin->NumPendingIos));
//
// We don't need to check the return code because the
// completion routine will ALWAYS be called. See
// IoSetCompletionRoutine(...TRUE,TRUE,TRUE).
//
IofCallDriver( pCurWavePin->pDeviceObject, pIrp );
//
// At this point, the Irp may have been completed and our
// callback routine will have been called. We can not touch
// the irp after this call. The Callback routine Completes
// the Irp and unprepares the user's Irp.
//
*pCompletedIrp = TRUE;
//
// In wdmaudPrepareIrp we call IoCsqInsertIrp which calls
// IoMarkIrpPending, thus we must always return STATUS_PENDING.
//
return STATUS_PENDING;
} else { //
// We where not successful at putting the Irp in the queue.
// cleanup and indicated that we did not complete the Irp.
// The status will have been set by wdmaudPrepareIrp.
DPF(DL_WARNING|FA_WAVE,("wdmaudPrepareIrp failed Status=%X",Status) ); } } else { //
// Could not create a Irp to send down - error out!
//
DPF(DL_WARNING|FA_WAVE,("IoBuildAsynchronousFsdRequest failed") ); Status = STATUS_UNSUCCESSFUL;
//
// We can't get an Irp to schedule. Cleanup memory
// and return. The caller will complete the Irp.
//
}
} else {
//
// If it's not wave queued we need to make sure that it's a PCM
// looped call.
//
if ( (pWriteData->dwFlags & (WHDR_BEGINLOOP|WHDR_ENDLOOP)) ) { //
// Error out non-PCM looped calls
//
Status = STATUS_NOT_IMPLEMENTED;
} else {
//
// The graph is running so we can use it. Proceed.
//
Status = wdmaudPrepareIrp( pUserIrp, WaveOutDevice, pContext, &pPendingIrpContext ); if( NT_SUCCESS(Status) ) { //
// The Irp was successfully marked STATUS_PENDING and put in
// our queue. Now let's send it.
//
pWriteContext->whInstance.pWaveInstance = pCurWavePin; pWriteContext->pPendingIrpContext = pPendingIrpContext;
//
// one more IRP pending
//
LockedWaveIoCount(pCurWavePin,INCREASE); DPF(DL_TRACE|FA_WAVE, ("A%d", pCurWavePin->NumPendingIos));
pStreamHeader->pWavePin = pCurWavePin; pStreamHeader->Header.FrameExtent = pWriteData->dwBufferLength ; pStreamHeader->Header.DataUsed = pWriteData->dwBufferLength; pStreamHeader->Header.OptionsFlags = 0 ; pStreamHeader->Header.Size = sizeof( KSSTREAM_HEADER ); pStreamHeader->Header.TypeSpecificFlags = 0; pStreamHeader->pWaveHdr = pWriteData; // store so we can use later
Status = KsStreamIo(pCurWavePin->pFileObject, NULL, // Event
NULL, // PortContext
ssWriteWaveCallBack, pStreamHeader, // CompletionContext
KsInvokeOnSuccess | KsInvokeOnCancel | KsInvokeOnError, &gIoStatusBlock, &pStreamHeader->Header, sizeof( KSSTREAM_HEADER ), KSSTREAM_WRITE, KernelMode );
//
// At this point, the Irp may have been completed and our
// callback routine will have been called. We can not touch
// the irp after this call. The Callback routine Completes
// the Irp and unprepares the user's Irp.
//
*pCompletedIrp = TRUE;
//
// In wdmaudPrepareIrp we call IoCsqInsertIrp which calls
// IoMarkIrpPending, thus we must always return STATUS_PENDING.
// also, we don't want to clean up anything.... just return.
//
return STATUS_PENDING;
//
// Warning: If, for any reason, the completion routine is not called
// for this Irp, wdmaud.sys will hang. It's been discovered that
// KsStreamIo may error out in low memory conditions. There is an
// outstanding bug to address this.
//
} else { //
// We where not successful at putting the Irp in the queue.
// cleanup and indicated that we did not complete the Irp.
// The Status was set by wdmaudPrepareIrp.
DPF(DL_WARNING|FA_WAVE,("wdmaudPrepareIrp failed Status=%X",Status) ); } } } } //
// All error paths end up here. All error paths should cleanup the
// memory so we don't leak.
//
UnmapWriteContext( pWriteContext );
RETURN( Status ); }
//
// These next three routines all perform the same type of walk and checks.
// They should be combined into one walk routine and a callback.
//
NTSTATUS PosWavePin( PWAVEDEVICE pWaveDevice, HANDLE32 DeviceHandle, PWAVEPOSITION pWavePos ) { PWAVE_PIN_INSTANCE pCurWavePin; KSAUDIO_POSITION AudioPosition; NTSTATUS Status;
PAGED_CODE();
Status = FindRunningPin(pWaveDevice,DeviceHandle,&pCurWavePin); if( NT_SUCCESS(Status) ) { if ( pWavePos->Operation == KSPROPERTY_TYPE_SET ) { AudioPosition.WriteOffset = pWavePos->BytePos; }
Status = PinProperty(pCurWavePin->pFileObject, &KSPROPSETID_Audio, KSPROPERTY_AUDIO_POSITION, pWavePos->Operation, sizeof(AudioPosition), &AudioPosition);
if (NT_SUCCESS(Status)) { pWavePos->BytePos = (DWORD)AudioPosition.PlayOffset; } } RETURN( Status ); }
NTSTATUS BreakLoopWaveOutPin( PWAVEDEVICE pWaveOutDevice, HANDLE32 DeviceHandle ) { PWAVE_PIN_INSTANCE pCurWavePin; NTSTATUS Status;
PAGED_CODE();
Status = FindRunningPin(pWaveOutDevice,DeviceHandle,&pCurWavePin); if( NT_SUCCESS(Status) ) { if (pCurWavePin->fWaveQueued) { Status = PinMethod ( pCurWavePin->pFileObject, &KSMETHODSETID_Wave_Queued, KSMETHOD_WAVE_QUEUED_BREAKLOOP, KSMETHOD_TYPE_WRITE, // TODO :: change to TYPE_NONE
0, NULL ) ; } else { //
// Error out non-pcm loop related commands
//
Status = STATUS_NOT_IMPLEMENTED; } }
RETURN( Status ); }
NTSTATUS ResetWaveOutPin( PWAVEDEVICE pWaveOutDevice, HANDLE32 DeviceHandle ) { PWAVE_PIN_INSTANCE pCurWavePin; NTSTATUS Status; KSRESET ResetValue ;
PAGED_CODE();
Status = FindRunningPin(pWaveOutDevice,DeviceHandle,&pCurWavePin); if( NT_SUCCESS(Status)) { pCurWavePin->StoppingSource = TRUE ;
ResetValue = KSRESET_BEGIN ; Status = ResetWavePin(pCurWavePin, &ResetValue) ;
//
// If the driver fails to reset will will not wait for the
// Irps to complete. But, that would be bad in the
// CleanupWavePins case because we're going to free
// the memory when we return from this call. Thus,
// will choose a hang over a bugcheck and wait for
// the Irps to complete.
//
if ( pCurWavePin->NumPendingIos ) { DPF(DL_TRACE|FA_WAVE, ("Start waiting for stop to complete")); KeWaitForSingleObject ( &pCurWavePin->StopEvent, Executive, KernelMode, FALSE, NULL ) ; } DPF(DL_TRACE|FA_WAVE, ("Done waiting for stop to complete")); ResetValue = KSRESET_END ; ResetWavePin(pCurWavePin, &ResetValue) ;
//
// Why do we have this KeClearEvent ???
//
KeClearEvent ( &pCurWavePin->StopEvent );
pCurWavePin->StoppingSource = FALSE ; }
RETURN( Status ); }
//
// The only difference between this and StatePin is KSPROPERTY_CONNECTION_STATE
// and IOCTL_KS_RESET_STATE. Consider using StatePin if possible.
//
NTSTATUS ResetWavePin( PWAVE_PIN_INSTANCE pWavePin, KSRESET *pResetValue ) { NTSTATUS Status = STATUS_SUCCESS; ULONG BytesReturned ;
PAGED_CODE(); if (!pWavePin->fGraphRunning) { DPF(DL_WARNING|FA_WAVE,("Invalid fGraphRunning") ); RETURN( STATUS_INVALID_DEVICE_REQUEST ); }
DPF(DL_TRACE|FA_SYSAUDIO,("IOCTL_KS_RESET_STATE pResetValue=%X",pResetValue) );
Status = KsSynchronousIoControlDevice(pWavePin->pFileObject, KernelMode, IOCTL_KS_RESET_STATE, pResetValue, sizeof(KSRESET), NULL, 0, &BytesReturned);
DPF(DL_TRACE|FA_SYSAUDIO,("IOCTL_KS_RESET_STATE result=%X",Status) );
RETURN( Status ); }
//
// Looks the same, different flavor.
//
NTSTATUS StateWavePin( PWAVEDEVICE pWaveInDevice, HANDLE32 DeviceHandle, KSSTATE State ) { PWAVE_PIN_INSTANCE pCurWavePin; NTSTATUS Status;
PAGED_CODE();
Status = FindRunningPin(pWaveInDevice,DeviceHandle,&pCurWavePin); if( NT_SUCCESS(Status) ) { if( pCurWavePin->DataFlow == KSPIN_DATAFLOW_OUT ) { //
// We have an In pin.
//
//
// On a waveInStop, one more buffer needs to make
// it up to the application before the device can
// stop. The caveat is that if the buffer is
// large it might take awhile for the stop to happen.
//
// Don't return let this extra buffer complete if the
// device is already in a paused state.
//
if( (KSSTATE_PAUSE == State) && (KSSTATE_PAUSE != pCurWavePin->PinState) ) { pCurWavePin->PausingSource = TRUE ;
if ( pCurWavePin->NumPendingIos ) { DPF(DL_TRACE|FA_WAVE, ("Waiting for PauseEvent...")); KeWaitForSingleObject ( &pCurWavePin->PauseEvent, Executive, KernelMode, FALSE, NULL ) ; DPF(DL_TRACE|FA_WAVE, ("...Done waiting for PauseEvent")); }
KeClearEvent ( &pCurWavePin->PauseEvent );
pCurWavePin->PausingSource = FALSE ; }
Status = StatePin ( pCurWavePin->pFileObject, State, &pCurWavePin->PinState ) ;
if ( NT_SUCCESS(Status) ) { ASSERT(pCurWavePin->PinState == State);
if ( KSSTATE_STOP == State ) { Status = StatePin( pCurWavePin->pFileObject,KSSTATE_PAUSE,&pCurWavePin->PinState); } } } else { //
// We have an out pin.
//
Status = StatePin ( pCurWavePin->pFileObject, State, &pCurWavePin->PinState ) ; } }
RETURN( Status ); }
#pragma LOCKED_CODE
#pragma LOCKED_DATA
void UnmapStreamHeader( PSTREAM_HEADER_EX pStreamHeader ) { wdmaudUnmapBuffer(pStreamHeader->pBufferMdl); wdmaudUnmapBuffer(pStreamHeader->pHeaderMdl); AudioFreeMemory_Unknown(&pStreamHeader->pWaveHdrAligned); AudioFreeMemory(sizeof(STREAM_HEADER_EX),&pStreamHeader); }
void FreeStreamHeader( PSTREAM_HEADER_EX pStreamHeader, NTSTATUS IrpStatus ) { PIRP UserIrp; PWDMAPENDINGIRP_CONTEXT pPendingIrpContext;
UserIrp = pStreamHeader->pIrp;
ASSERT(UserIrp);
pPendingIrpContext = pStreamHeader->pPendingIrpContext;
UnmapStreamHeader( pStreamHeader );
wdmaudUnprepareIrp( UserIrp,IrpStatus,sizeof(DEVICEINFO),pPendingIrpContext ); }
//
// This is the read Irp completion routine.
//
NTSTATUS ReadWaveCallBack( PDEVICE_OBJECT pDeviceObject, PIRP pIrp, IN PSTREAM_HEADER_EX pStreamHeader ) { // cast the reserved field to the parent IRP that we stored in here
PWAVE_PIN_INSTANCE pCurWavePin; NTSTATUS Status; KIRQL OldIrql;
//
// Must get the current pin before we free the stream header structure.
//
pCurWavePin = pStreamHeader->pWavePin;
//
// Get the dataused and fill the bytes recorded field
//
if (pIrp->IoStatus.Status == STATUS_CANCELLED) pStreamHeader->pWaveHdrAligned->dwBytesRecorded = 0L; else pStreamHeader->pWaveHdrAligned->dwBytesRecorded = pStreamHeader->Header.DataUsed;
//
// Copy back the contents of the captured buffer
//
try { RtlCopyMemory( pStreamHeader->pdwBytesRecorded, &pStreamHeader->pWaveHdrAligned->dwBytesRecorded, sizeof(DWORD)); } except (EXCEPTION_EXECUTE_HANDLER) { DPF(DL_WARNING|FA_WAVE, ("Couldn't copy waveheader (0x%08x)", GetExceptionCode()) ); }
FreeStreamHeader( pStreamHeader, pIrp->IoStatus.Status );
if ( pCurWavePin ) { //
// Need to lock this code so we can decrement and check and set an event
// with no preemption windows.
//
KeAcquireSpinLock(&pCurWavePin->WavePinSpinLock, &OldIrql);
//
// We always decrement NumPendingIos before doing any comparisons. This
// is so that we're consistant.
//
pCurWavePin->NumPendingIos--;
if( pCurWavePin->PausingSource ) { //
// Let this I/O squeeze out of the queue on a waveInStop
//
KeSetEvent ( &pCurWavePin->PauseEvent, 0, FALSE ) ; }
//
// If the count went to zero, we're the last IRP so we need to check
// to see if we need to signal any waiting thread.
//
if( (pCurWavePin->NumPendingIos == 0) && pCurWavePin->StoppingSource ) { //
// Because we do not block (FALSE), we can call KeSetEvent in this
// Lock.
//
KeSetEvent ( &pCurWavePin->StopEvent, 0, FALSE ) ; }
//
// Upon leaving this spinlock, pCurWavePin can be freed by the close
// routine if NumPendingIos went to zero!
//
KeReleaseSpinLock(&pCurWavePin->WavePinSpinLock, OldIrql); }
return STATUS_SUCCESS; }
#pragma PAGEABLE_CODE
#pragma PAGEABLE_DATA
//
// pUserIrp will always be valid when this call is made. It is the Irp
// that we got for the user mode request.
//
// pStreamHeader is alway going to be valid.
//
NTSTATUS ReadWaveInPin( PWAVEDEVICE pWaveInDevice, HANDLE32 DeviceHandle, PSTREAM_HEADER_EX pStreamHeader, PIRP pUserIrp, PWDMACONTEXT pContext, BOOL *pCompletedIrp ) { PWAVE_PIN_INSTANCE pCurWavePin; PWDMAPENDINGIRP_CONTEXT pPendingIrpContext; NTSTATUS Status;
PAGED_CODE();
//
// We assumee that pCompletedIrp is FALSE on entry.
//
ASSERT( *pCompletedIrp == FALSE );
Status = FindRunningPin(pWaveInDevice,DeviceHandle,&pCurWavePin); if( NT_SUCCESS(Status) ) { Status = wdmaudPrepareIrp( pUserIrp, WaveInDevice, pContext, &pPendingIrpContext ); if( NT_SUCCESS(Status) ) { pStreamHeader->pWavePin = pCurWavePin; pStreamHeader->pPendingIrpContext = pPendingIrpContext; ASSERT(pPendingIrpContext);
pStreamHeader->Header.OptionsFlags = 0 ; pStreamHeader->Header.Size = sizeof( KSSTREAM_HEADER ); pStreamHeader->Header.TypeSpecificFlags = 0;
LockedWaveIoCount(pCurWavePin,INCREASE);
DPF(DL_TRACE|FA_WAVE, ("A%d: 0x%08x", pCurWavePin->NumPendingIos, pStreamHeader));
Status = KsStreamIo(pCurWavePin->pFileObject, NULL, // Event
NULL, // PortContext
ReadWaveCallBack, pStreamHeader, // CompletionContext
KsInvokeOnSuccess | KsInvokeOnCancel | KsInvokeOnError, &gIoStatusBlock, &pStreamHeader->Header, sizeof( KSSTREAM_HEADER ), KSSTREAM_READ, KernelMode );
//
// In wdmaudPrepareIrp we call IoCsqInsertIrp which calls
// IoMarkIrpPending, thus we must always return STATUS_PENDING.
// And we completed the Irp.
//
*pCompletedIrp = TRUE;
return STATUS_PENDING;
//
// Warning: If, for any reason, the completion routine is not called
// for this Irp, wdmaud.sys will hang. It's been discovered that
// KsStreamIo may error out in low memory conditions. There is an
// outstanding bug to address this.
//
} else { //
// wdmaudPrepareIrp would have set Status for this error path
//
DPF(DL_WARNING|FA_WAVE,("wdmaudPrepareIrp failed Status=%X",Status) ); } }
//
// All error paths lead here.
//
UnmapStreamHeader( pStreamHeader );
RETURN( Status ); }
NTSTATUS FindVolumeControl( IN PWDMACONTEXT pWdmaContext, IN PCWSTR DeviceInterface, IN DWORD DeviceType ) { PCOMMONDEVICE *papCommonDevice; PWAVEDEVICE paWaveOutDevs; PMIDIDEVICE paMidiOutDevs; PAUXDEVICE paAuxDevs; ULONG DeviceNumber; ULONG MixerIndex; NTSTATUS Status;
PAGED_CODE(); papCommonDevice = &pWdmaContext->apCommonDevice[DeviceType][0]; paWaveOutDevs = pWdmaContext->WaveOutDevs; paMidiOutDevs = pWdmaContext->MidiOutDevs; paAuxDevs = pWdmaContext->AuxDevs;
for( DeviceNumber = 0; DeviceNumber < MAXNUMDEVS; DeviceNumber++ ) {
if(papCommonDevice[DeviceNumber]->Device == UNUSED_DEVICE) { continue; }
if(MyWcsicmp(papCommonDevice[DeviceNumber]->DeviceInterface, DeviceInterface)) { continue; }
MixerIndex = FindMixerForDevNode(pWdmaContext->MixerDevs, DeviceInterface); if ( (MixerIndex == UNUSED_DEVICE) || (pWdmaContext->MixerDevs[MixerIndex].pwstrName == NULL) ) { continue; }
switch(DeviceType) {
case WaveOutDevice: Status = IsVolumeControl( pWdmaContext, DeviceInterface, MIXERLINE_COMPONENTTYPE_SRC_WAVEOUT, &paWaveOutDevs[ DeviceNumber ].dwVolumeID, &paWaveOutDevs[ DeviceNumber ].cChannels);
if(!NT_SUCCESS(Status)) { break; }
if( paWaveOutDevs[ DeviceNumber ].pTimer == NULL ) { Status = AudioAllocateMemory_Fixed(sizeof(KTIMER), TAG_AudT_TIMER, ZERO_FILL_MEMORY, &paWaveOutDevs[ DeviceNumber ].pTimer);
if(!NT_SUCCESS(Status)) { return Status; }
KeInitializeTimerEx( paWaveOutDevs[ DeviceNumber ].pTimer, NotificationTimer ); }
if( paWaveOutDevs[ DeviceNumber ].pDpc == NULL ) { Status = AudioAllocateMemory_Fixed(sizeof(KDPC), TAG_AudE_EVENT, ZERO_FILL_MEMORY, &paWaveOutDevs[ DeviceNumber ].pDpc);
if(!NT_SUCCESS(Status)) { return Status; }
KeInitializeDpc( paWaveOutDevs[ DeviceNumber ].pDpc, SetVolumeDpc, &paWaveOutDevs[ DeviceNumber ] );
// Initialize the left and right channels to goofy values.
// This signifies that the cache is invalid
paWaveOutDevs[ DeviceNumber ].LeftVolume = 0x4321; paWaveOutDevs[ DeviceNumber ].RightVolume = 0x6789; paWaveOutDevs[ DeviceNumber ].fNeedToSetVol = FALSE; } break;
case MidiOutDevice: Status = IsVolumeControl( pWdmaContext, DeviceInterface, MIXERLINE_COMPONENTTYPE_SRC_SYNTHESIZER, &paMidiOutDevs[ DeviceNumber ].dwVolumeID, &paMidiOutDevs[ DeviceNumber ].cChannels); break;
case AuxDevice: Status = IsVolumeControl( pWdmaContext, DeviceInterface, MIXERLINE_COMPONENTTYPE_SRC_COMPACTDISC, &paAuxDevs[ DeviceNumber ].dwVolumeID, &paAuxDevs[ DeviceNumber ].cChannels); break; }
} // while
return( STATUS_SUCCESS ); }
NTSTATUS IsVolumeControl( IN PWDMACONTEXT pWdmaContext, IN PCWSTR DeviceInterface, IN DWORD dwComponentType, IN PDWORD pdwControlID, IN PDWORD pcChannels ) { MIXERLINE ml; MIXERLINECONTROLS mlc; MIXERCONTROL mc; MMRESULT mmr;
PAGED_CODE(); ml.dwComponentType = dwComponentType; ml.cbStruct = sizeof( MIXERLINE );
mmr = kmxlGetLineInfo( pWdmaContext, DeviceInterface, &ml, MIXER_GETLINEINFOF_COMPONENTTYPE ); if( mmr != MMSYSERR_NOERROR ) { DPF(DL_WARNING|FA_WAVE,("kmxlGetLineInfo failed mmr=%X",mmr) ); RETURN( STATUS_UNSUCCESSFUL ); }
mlc.cbStruct = sizeof( MIXERLINECONTROLS ); mlc.dwLineID = ml.dwLineID; mlc.dwControlType = MIXERCONTROL_CONTROLTYPE_VOLUME; mlc.cControls = 1; mlc.cbmxctrl = sizeof( MIXERCONTROL ); mlc.pamxctrl = &mc;
mmr = kmxlGetLineControls( pWdmaContext, DeviceInterface, &mlc, MIXER_GETLINECONTROLSF_ONEBYTYPE ); if( mmr != MMSYSERR_NOERROR ) { DPF(DL_WARNING|FA_WAVE,( "kmxlGetLineControls failed mmr=%x!", mmr ) ); return( STATUS_UNSUCCESSFUL ); } *pdwControlID = mc.dwControlID; *pcChannels = ml.cChannels; return( STATUS_SUCCESS ); }
#pragma LOCKED_CODE
NTSTATUS MapMmSysError( IN MMRESULT mmr ) { if ( (mmr == MMSYSERR_INVALPARAM) || (mmr == MIXERR_INVALCONTROL) ) { return (STATUS_INVALID_PARAMETER); }
if (mmr == MMSYSERR_NOTSUPPORTED) { return (STATUS_NOT_SUPPORTED); }
if (mmr == MMSYSERR_NOMEM) { return(STATUS_INSUFFICIENT_RESOURCES); }
if (mmr == MMSYSERR_NOERROR) { return(STATUS_SUCCESS); }
return(STATUS_UNSUCCESSFUL); }
NTSTATUS SetVolume( PWDMACONTEXT pWdmaContext, IN DWORD DeviceNumber, IN DWORD DeviceType, IN DWORD LeftChannel, IN DWORD RightChannel ) { MIXERCONTROLDETAILS mcd; MIXERCONTROLDETAILS_UNSIGNED mcd_u[ 2 ]; LARGE_INTEGER li;
if( DeviceNumber == (ULONG) -1 ) { RETURN( STATUS_INVALID_PARAMETER ); }
if( DeviceType == WaveOutDevice ) { PWAVEDEVICE paWaveOutDevs = pWdmaContext->WaveOutDevs;
mcd_u[ 0 ].dwValue = LeftChannel; mcd_u[ 1 ].dwValue = RightChannel;
mcd.cbStruct = sizeof( MIXERCONTROLDETAILS ); mcd.dwControlID = paWaveOutDevs[ DeviceNumber ].dwVolumeID; mcd.cChannels = paWaveOutDevs[ DeviceNumber ].cChannels; mcd.cMultipleItems = 0; mcd.cbDetails = mcd.cChannels * sizeof( MIXERCONTROLDETAILS_UNSIGNED ); mcd.paDetails = &mcd_u[0];
return( MapMmSysError(kmxlSetControlDetails( pWdmaContext, paWaveOutDevs[ DeviceNumber ].DeviceInterface, &mcd, 0 )) ); }
if( DeviceType == MidiOutDevice ) { PMIDIDEVICE paMidiOutDevs = pWdmaContext->MidiOutDevs;
//
// We don't support volume changes on a MIDIPORT
//
if ( paMidiOutDevs[ DeviceNumber ].MusicDataRanges ) { WORD wTechnology;
wTechnology = GetMidiTechnology( (PKSDATARANGE_MUSIC) &paMidiOutDevs[ DeviceNumber ].MusicDataRanges->aDataRanges[0] );
if (wTechnology == MOD_MIDIPORT) { RETURN( STATUS_INVALID_DEVICE_REQUEST ); } }
mcd_u[ 0 ].dwValue = LeftChannel; mcd_u[ 1 ].dwValue = RightChannel;
mcd.cbStruct = sizeof( MIXERCONTROLDETAILS ); mcd.dwControlID = paMidiOutDevs[ DeviceNumber ].dwVolumeID; mcd.cChannels = paMidiOutDevs[ DeviceNumber ].cChannels; mcd.cMultipleItems = 0; mcd.cbDetails = mcd.cChannels * sizeof( MIXERCONTROLDETAILS_UNSIGNED ); mcd.paDetails = &mcd_u[0];
return( MapMmSysError(kmxlSetControlDetails( pWdmaContext, paMidiOutDevs[ DeviceNumber ].DeviceInterface, &mcd, 0 )) ); }
if( DeviceType == AuxDevice ) { PAUXDEVICE paAuxDevs = pWdmaContext->AuxDevs;
mcd_u[ 0 ].dwValue = LeftChannel; mcd_u[ 1 ].dwValue = RightChannel;
mcd.cbStruct = sizeof( MIXERCONTROLDETAILS ); mcd.dwControlID = paAuxDevs[ DeviceNumber ].dwVolumeID; mcd.cChannels = paAuxDevs[ DeviceNumber ].cChannels; mcd.cMultipleItems = 0; mcd.cbDetails = mcd.cChannels * sizeof( MIXERCONTROLDETAILS_UNSIGNED ); mcd.paDetails = &mcd_u[0];
return( MapMmSysError(kmxlSetControlDetails( pWdmaContext, paAuxDevs[ DeviceNumber ].DeviceInterface, &mcd, 0 )) ); }
return( STATUS_SUCCESS ); }
VOID SetVolumeDpc( IN PKDPC pDpc, IN PWAVEDEVICE pWaveDevice, IN PVOID SystemArgument1, IN PVOID SystemArgument2 ) { QueueWorkList(pWaveDevice->pWdmaContext, SetVolumeWorker, pWaveDevice, NULL ) ; }
VOID SetVolumeWorker( IN PWAVEDEVICE pDevice, IN PVOID pNotUsed ) { MIXERCONTROLDETAILS mcd; MIXERCONTROLDETAILS_UNSIGNED mcd_u[ 2 ];
DPF(DL_TRACE|FA_WAVE,( "Left %X Right %X", pDevice->LeftVolume, pDevice->RightVolume ) );
pDevice->fNeedToSetVol = FALSE;
mcd_u[ 0 ].dwValue = pDevice->LeftVolume; mcd_u[ 1 ].dwValue = pDevice->RightVolume;
mcd.cbStruct = sizeof( MIXERCONTROLDETAILS ); mcd.dwControlID = pDevice->dwVolumeID; mcd.cChannels = pDevice->cChannels; mcd.cMultipleItems = 0; mcd.cbDetails = mcd.cChannels * sizeof( MIXERCONTROLDETAILS_UNSIGNED ); mcd.paDetails = &mcd_u[0];
kmxlSetControlDetails( pDevice->pWdmaContext, pDevice->DeviceInterface, &mcd, 0 ); }
#pragma PAGEABLE_CODE
NTSTATUS GetVolume( IN PWDMACONTEXT pWdmaContext, IN DWORD DeviceNumber, IN DWORD DeviceType, OUT PDWORD LeftChannel, OUT PDWORD RightChannel ) { MIXERCONTROLDETAILS mcd; MIXERCONTROLDETAILS_UNSIGNED mcd_u[ 2 ]; MMRESULT mmr;
PAGED_CODE(); if( DeviceType == WaveOutDevice ) { PWAVEDEVICE pWaveOutDevice = &pWdmaContext->WaveOutDevs[DeviceNumber];
if( ( pWaveOutDevice->LeftVolume != 0x4321 ) && ( pWaveOutDevice->RightVolume != 0x6789 ) ) {
*LeftChannel = pWaveOutDevice->LeftVolume; *RightChannel = pWaveOutDevice->RightVolume; return( STATUS_SUCCESS );
} else {
mcd.cbStruct = sizeof( MIXERCONTROLDETAILS ); mcd.dwControlID = pWaveOutDevice->dwVolumeID; mcd.cChannels = pWaveOutDevice->cChannels; mcd.cMultipleItems = 0; mcd.cbDetails = mcd.cChannels * sizeof( MIXERCONTROLDETAILS_UNSIGNED ); mcd.paDetails = &mcd_u[0];
mmr = kmxlGetControlDetails( pWdmaContext, pWaveOutDevice->DeviceInterface, &mcd, 0 );
if( mmr == MMSYSERR_NOERROR ) { *LeftChannel = mcd_u[ 0 ].dwValue; *RightChannel = mcd_u[ 1 ].dwValue; }
return( MapMmSysError(mmr) ); }
}
if( DeviceType == MidiOutDevice ) { PMIDIDEVICE pMidiOutDevice = &pWdmaContext->MidiOutDevs[DeviceNumber];
//
// We don't support volume changes on a MIDIPORT
//
if ( pMidiOutDevice->MusicDataRanges ) { WORD wTechnology;
wTechnology = GetMidiTechnology( (PKSDATARANGE_MUSIC) &pMidiOutDevice->MusicDataRanges->aDataRanges[0] );
if (wTechnology == MOD_MIDIPORT) { RETURN( STATUS_INVALID_DEVICE_REQUEST ); } }
mcd.cbStruct = sizeof( MIXERCONTROLDETAILS ); mcd.dwControlID = pMidiOutDevice->dwVolumeID; mcd.cChannels = pMidiOutDevice->cChannels; mcd.cMultipleItems = 0; mcd.cbDetails = mcd.cChannels * sizeof( MIXERCONTROLDETAILS_UNSIGNED ); mcd.paDetails = &mcd_u[0];
mmr = kmxlGetControlDetails( pWdmaContext, pMidiOutDevice->DeviceInterface, &mcd, 0 );
if( mmr == MMSYSERR_NOERROR ) { *LeftChannel = mcd_u[ 0 ].dwValue; *RightChannel = mcd_u[ 1 ].dwValue; }
return( MapMmSysError(mmr) ); }
if( DeviceType == AuxDevice ) { PAUXDEVICE pAuxDevice = &pWdmaContext->AuxDevs[DeviceNumber];
mcd.cbStruct = sizeof( MIXERCONTROLDETAILS ); mcd.dwControlID = pAuxDevice->dwVolumeID; mcd.cChannels = pAuxDevice->cChannels; mcd.cMultipleItems = 0; mcd.cbDetails = mcd.cChannels * sizeof( MIXERCONTROLDETAILS_UNSIGNED ); mcd.paDetails = &mcd_u[0];
mmr = kmxlGetControlDetails( pWdmaContext, pAuxDevice->DeviceInterface, &mcd, 0 );
if( mmr == MMSYSERR_NOERROR ) { *LeftChannel = mcd_u[ 0 ].dwValue; *RightChannel = mcd_u[ 1 ].dwValue; }
return( MapMmSysError(mmr) ); } RETURN( STATUS_INVALID_PARAMETER ); }
//
// This routine waits for the Io to complete on the device after telling
// the device to stop.
//
VOID WaitForOutStandingIo( IN PWAVEDEVICE pWaveDevice, IN PWAVE_PIN_INSTANCE pCurWavePin ) { if( pCurWavePin->DataFlow == KSPIN_DATAFLOW_IN) { //
// We have a wave out pin to close. Force pending data
// to come back on running pins. Non-running pins are
// ignored on this call.
//
ResetWaveOutPin( pWaveDevice, pCurWavePin->WaveHandle);
} else { //
// We have a wave in pin to close
//
pCurWavePin->StoppingSource = TRUE ;
//
// We can not fail on this path. Doesn't look like we need to make sure
// that we're running here.
//
StatePin ( pCurWavePin->pFileObject, KSSTATE_STOP, &pCurWavePin->PinState ) ;
//
// Regardless of the return code we're going to wait for all the
// irps to complete. If the driver do not successfuly complete
// the irps, we will hang waiting for them here.
//
if( pCurWavePin->NumPendingIos ) { KeWaitForSingleObject ( &pCurWavePin->StopEvent, Executive, KernelMode, FALSE, NULL ) ; }
//
// Why do we have this KeClearEvent???
//
KeClearEvent ( &pCurWavePin->StopEvent );
pCurWavePin->StoppingSource = FALSE ; } }
//
// Replaces CleanupWaveOutPins and CleanupWaveInPins.
//
VOID CleanupWavePins( IN PWAVEDEVICE pWaveDevice ) { PWAVE_PIN_INSTANCE pCurWavePin; PWAVE_PIN_INSTANCE pFreeWavePin;
PAGED_CODE();
while (pCurWavePin = pWaveDevice->pWavePin) { DPF(DL_TRACE|FA_WAVE, ("0x%08x", pCurWavePin));
WaitForOutStandingIo(pWaveDevice,pCurWavePin);
CloseWavePin( pCurWavePin );
pFreeWavePin = pCurWavePin; pWaveDevice->pWavePin = pCurWavePin->Next;
AudioFreeMemory( sizeof(WAVE_PIN_INSTANCE),&pFreeWavePin ); }
}
VOID CleanupWaveDevices( IN PWDMACONTEXT pWdmaContext ) { DWORD DeviceNumber;
PAGED_CODE(); for (DeviceNumber = 0; DeviceNumber < MAXNUMDEVS; DeviceNumber++) { //
// Handle waveout devices first...
//
if (pWdmaContext->apCommonDevice[WaveOutDevice][DeviceNumber]->Device != UNUSED_DEVICE) { if ( pWdmaContext->WaveOutDevs[DeviceNumber].pTimer != NULL) KeCancelTimer(pWdmaContext->WaveOutDevs[DeviceNumber].pTimer);
CleanupWavePins(&pWdmaContext->WaveOutDevs[DeviceNumber]);
//
// Sense we have removed it from the list, the other routine that would do
// the same thing (RemoveDevNode) will also attempt to remove it from the
// the list because the value it non-null. Thus, the only safe thing that
// we can do here is free the memory.
//
// Note: This routine will only get called when the handle to the driver is
// closed.
//
AudioFreeMemory_Unknown(&pWdmaContext->WaveOutDevs[DeviceNumber].pTimer); }
//
// ...then handle wavein devices
//
if (pWdmaContext->apCommonDevice[WaveInDevice][DeviceNumber]->Device != UNUSED_DEVICE) { CleanupWavePins(&pWdmaContext->WaveInDevs[DeviceNumber]); } } }
#pragma LOCKED_CODE
#pragma LOCKED_DATA
//
// --------------------------------------------------------------------------------
//
// The following routines are used by more then just wave.c
//
// --------------------------------------------------------------------------------
//
NTSTATUS wdmaudPrepareIrp( PIRP pIrp, ULONG IrpDeviceType, PWDMACONTEXT pContext, PWDMAPENDINGIRP_CONTEXT *ppPendingIrpContext ) { return AddIrpToPendingList( pIrp, IrpDeviceType, pContext, ppPendingIrpContext ); }
NTSTATUS wdmaudUnprepareIrp( PIRP pIrp, NTSTATUS IrpStatus, ULONG_PTR Information, PWDMAPENDINGIRP_CONTEXT pPendingIrpContext ) { NTSTATUS Status;
// Note that the IrpContext may have been zero'ed out already because the cancel
// routine has already been called. The cancel safe queue API zeroes out the Irp
// field in the context when it performs a cancel.
Status = RemoveIrpFromPendingList( pPendingIrpContext ); if (NT_SUCCESS(Status)) {
pIrp->IoStatus.Status = IrpStatus;
if (Information) { pIrp->IoStatus.Information = Information; }
IoCompleteRequest( pIrp, IO_NO_INCREMENT ); }
RETURN( Status ); }
#pragma PAGEABLE_CODE
#pragma PAGEABLE_DATA
//
// StatePin - This is used by both Midi and Wave functionality.
//
// On success State will get updated to the new state. Must make sure that
// fGraphRunning is TRUE before calling this routine.
//
// call like:
// if( pWavePin->fGraphRunning )
// StatePin(pWavePin->pFileObject, KSSTATE_PAUSE, &pWavePin->State);
//
NTSTATUS StatePin( IN PFILE_OBJECT pFileObject, IN KSSTATE State, OUT PKSSTATE pResultingState ) { NTSTATUS Status;
PAGED_CODE();
Status = PinProperty(pFileObject, &KSPROPSETID_Connection, KSPROPERTY_CONNECTION_STATE, KSPROPERTY_TYPE_SET, sizeof(State), &State); if(NT_SUCCESS(Status)) { *pResultingState = State; } RETURN( Status ); }
|