|
|
//-----------------------------------------------------------------------------
// File: collections.h
//
// Desc: Contains all container templates used by the UI.
//
// Copyright (C) 1999-2000 Microsoft Corporation. All Rights Reserved.
//-----------------------------------------------------------------------------
#ifndef __COLLECTIONS_H__
#define __COLLECTIONS_H__
// fake out afx
#define BEFORE_START_POSITION ((POSITION)-1L)
BOOL AfxIsValidAddress( const void* lp, UINT nBytes, BOOL bReadWrite = TRUE );
#define ASSERT assert
#define AFX_INLINE inline
#define AFXAPI
#define ASSERT_VALID(p) assert(p != NULL)
typedef void *POSITION;
#pragma warning( disable : 4291 )
inline void *__cdecl operator new(size_t, void *_P) { return (_P); }
// afx template stuff without mfc dependencies! :D
template<class ARG_KEY> AFX_INLINE UINT AFXAPI HashKey(ARG_KEY key) { // default identity hash - works for most primitive values
return ((UINT)(DWORD)key) >> 4; }
template<class TYPE> AFX_INLINE void AFXAPI ConstructElements(TYPE* pElements, int nCount) { ASSERT(nCount == 0 || AfxIsValidAddress(pElements, nCount * sizeof(TYPE)));
// first do bit-wise zero initialization
memset((void*)pElements, 0, nCount * sizeof(TYPE));
// then call the constructor(s)
for (; nCount--; pElements++) ::new((void*)pElements) TYPE; }
template<class TYPE> AFX_INLINE void AFXAPI DestructElements(TYPE* pElements, int nCount) { ASSERT(nCount == 0 || AfxIsValidAddress(pElements, nCount * sizeof(TYPE)));
// call the destructor(s)
for (; nCount--; pElements++) pElements->~TYPE(); }
template<class TYPE> AFX_INLINE void AFXAPI CopyElements(TYPE* pDest, const TYPE* pSrc, int nCount) { ASSERT(nCount == 0 || AfxIsValidAddress(pDest, nCount * sizeof(TYPE))); ASSERT(nCount == 0 || AfxIsValidAddress(pSrc, nCount * sizeof(TYPE)));
// default is element-copy using assignment
while (nCount--) *pDest++ = *pSrc++; }
template<class TYPE, class ARG_TYPE> BOOL AFXAPI CompareElements(const TYPE* pElement1, const ARG_TYPE* pElement2) { ASSERT(AfxIsValidAddress(pElement1, sizeof(TYPE), FALSE)); ASSERT(AfxIsValidAddress(pElement2, sizeof(ARG_TYPE), FALSE));
return *pElement1 == *pElement2; }
/////////////////////////////////////////////////////////////////////////////
// CArray<TYPE, ARG_TYPE>
template<class TYPE, class ARG_TYPE> class CArray { public: // Construction
CArray();
// Attributes
int GetSize() const; int GetUpperBound() const; void SetSize(int nNewSize, int nGrowBy = -1);
// Operations
// Clean up
void FreeExtra(); void RemoveAll();
// Accessing elements
TYPE GetAt(int nIndex) const; void SetAt(int nIndex, ARG_TYPE newElement); TYPE& ElementAt(int nIndex);
// Direct Access to the element data (may return NULL)
const TYPE* GetData() const; TYPE* GetData();
// Potentially growing the array
void SetAtGrow(int nIndex, ARG_TYPE newElement); int Add(ARG_TYPE newElement); int Append(const CArray& src); void Copy(const CArray& src);
// overloaded operator helpers
TYPE operator[](int nIndex) const; TYPE& operator[](int nIndex);
// Operations that move elements around
void InsertAt(int nIndex, ARG_TYPE newElement, int nCount = 1); void RemoveAt(int nIndex, int nCount = 1); void InsertAt(int nStartIndex, CArray* pNewArray);
// Implementation
protected: TYPE* m_pData; // the actual array of data
int m_nSize; // # of elements (upperBound - 1)
int m_nMaxSize; // max allocated
int m_nGrowBy; // grow amount
public: ~CArray(); };
/////////////////////////////////////////////////////////////////////////////
// CArray<TYPE, ARG_TYPE> inline functions
template<class TYPE, class ARG_TYPE> AFX_INLINE int CArray<TYPE, ARG_TYPE>::GetSize() const { return m_nSize; } template<class TYPE, class ARG_TYPE> AFX_INLINE int CArray<TYPE, ARG_TYPE>::GetUpperBound() const { return m_nSize-1; } template<class TYPE, class ARG_TYPE> AFX_INLINE void CArray<TYPE, ARG_TYPE>::RemoveAll() { SetSize(0, -1); } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE CArray<TYPE, ARG_TYPE>::GetAt(int nIndex) const { ASSERT(nIndex >= 0 && nIndex < m_nSize); return m_pData[nIndex]; } template<class TYPE, class ARG_TYPE> AFX_INLINE void CArray<TYPE, ARG_TYPE>::SetAt(int nIndex, ARG_TYPE newElement) { ASSERT(nIndex >= 0 && nIndex < m_nSize); m_pData[nIndex] = newElement; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE& CArray<TYPE, ARG_TYPE>::ElementAt(int nIndex) { ASSERT(nIndex >= 0 && nIndex < m_nSize); return m_pData[nIndex]; } template<class TYPE, class ARG_TYPE> AFX_INLINE const TYPE* CArray<TYPE, ARG_TYPE>::GetData() const { return (const TYPE*)m_pData; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE* CArray<TYPE, ARG_TYPE>::GetData() { return (TYPE*)m_pData; } template<class TYPE, class ARG_TYPE> AFX_INLINE int CArray<TYPE, ARG_TYPE>::Add(ARG_TYPE newElement) { int nIndex = m_nSize; SetAtGrow(nIndex, newElement); return nIndex; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE CArray<TYPE, ARG_TYPE>::operator[](int nIndex) const { return GetAt(nIndex); } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE& CArray<TYPE, ARG_TYPE>::operator[](int nIndex) { return ElementAt(nIndex); }
/////////////////////////////////////////////////////////////////////////////
// CArray<TYPE, ARG_TYPE> out-of-line functions
template<class TYPE, class ARG_TYPE> CArray<TYPE, ARG_TYPE>::CArray() { m_pData = NULL; m_nSize = m_nMaxSize = m_nGrowBy = 0; }
template<class TYPE, class ARG_TYPE> CArray<TYPE, ARG_TYPE>::~CArray() { ASSERT_VALID(this);
if (m_pData != NULL) { DestructElements<TYPE>(m_pData, m_nSize); delete[] (BYTE*)m_pData; } }
template<class TYPE, class ARG_TYPE> void CArray<TYPE, ARG_TYPE>::SetSize(int nNewSize, int nGrowBy) { ASSERT_VALID(this); ASSERT(nNewSize >= 0);
if (nGrowBy != -1) m_nGrowBy = nGrowBy; // set new size
if (nNewSize == 0) { // shrink to nothing
if (m_pData != NULL) { DestructElements<TYPE>(m_pData, m_nSize); delete[] (BYTE*)m_pData; m_pData = NULL; } m_nSize = m_nMaxSize = 0; } else if (m_pData == NULL) { // create one with exact size
#ifdef SIZE_T_MAX
ASSERT(nNewSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
m_pData = (TYPE*) new BYTE[nNewSize * sizeof(TYPE)]; ConstructElements<TYPE>(m_pData, nNewSize); m_nSize = m_nMaxSize = nNewSize; } else if (nNewSize <= m_nMaxSize) { // it fits
if (nNewSize > m_nSize) { // initialize the new elements
ConstructElements<TYPE>(&m_pData[m_nSize], nNewSize-m_nSize); } else if (m_nSize > nNewSize) { // destroy the old elements
DestructElements<TYPE>(&m_pData[nNewSize], m_nSize-nNewSize); } m_nSize = nNewSize; } else { // otherwise, grow array
int nGrowBy = m_nGrowBy; if (nGrowBy == 0) { // heuristically determine growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = m_nSize / 8; nGrowBy = (nGrowBy < 4) ? 4 : ((nGrowBy > 1024) ? 1024 : nGrowBy); } int nNewMax; if (nNewSize < m_nMaxSize + nGrowBy) nNewMax = m_nMaxSize + nGrowBy; // granularity
else nNewMax = nNewSize; // no slush
ASSERT(nNewMax >= m_nMaxSize); // no wrap around
#ifdef SIZE_T_MAX
ASSERT(nNewMax <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
TYPE* pNewData = (TYPE*) new BYTE[nNewMax * sizeof(TYPE)];
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
// construct remaining elements
ASSERT(nNewSize > m_nSize); ConstructElements<TYPE>(&pNewData[m_nSize], nNewSize-m_nSize);
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData; m_pData = pNewData; m_nSize = nNewSize; m_nMaxSize = nNewMax; } }
template<class TYPE, class ARG_TYPE> int CArray<TYPE, ARG_TYPE>::Append(const CArray& src) { ASSERT_VALID(this); ASSERT(this != &src); // cannot append to itself
int nOldSize = m_nSize; SetSize(m_nSize + src.m_nSize); CopyElements<TYPE>(m_pData + nOldSize, src.m_pData, src.m_nSize); return nOldSize; }
template<class TYPE, class ARG_TYPE> void CArray<TYPE, ARG_TYPE>::Copy(const CArray& src) { ASSERT_VALID(this); ASSERT(this != &src); // cannot append to itself
SetSize(src.m_nSize); CopyElements<TYPE>(m_pData, src.m_pData, src.m_nSize); }
template<class TYPE, class ARG_TYPE> void CArray<TYPE, ARG_TYPE>::FreeExtra() { ASSERT_VALID(this);
if (m_nSize != m_nMaxSize) { // shrink to desired size
#ifdef SIZE_T_MAX
ASSERT(m_nSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
TYPE* pNewData = NULL; if (m_nSize != 0) { pNewData = (TYPE*) new BYTE[m_nSize * sizeof(TYPE)]; // copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE)); }
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData; m_pData = pNewData; m_nMaxSize = m_nSize; } }
template<class TYPE, class ARG_TYPE> void CArray<TYPE, ARG_TYPE>::SetAtGrow(int nIndex, ARG_TYPE newElement) { ASSERT_VALID(this); ASSERT(nIndex >= 0);
if (nIndex >= m_nSize) SetSize(nIndex+1, -1); m_pData[nIndex] = newElement; }
template<class TYPE, class ARG_TYPE> void CArray<TYPE, ARG_TYPE>::InsertAt(int nIndex, ARG_TYPE newElement, int nCount /*=1*/) { ASSERT_VALID(this); ASSERT(nIndex >= 0); // will expand to meet need
ASSERT(nCount > 0); // zero or negative size not allowed
if (nIndex >= m_nSize) { // adding after the end of the array
SetSize(nIndex + nCount, -1); // grow so nIndex is valid
} else { // inserting in the middle of the array
int nOldSize = m_nSize; SetSize(m_nSize + nCount, -1); // grow it to new size
// destroy intial data before copying over it
DestructElements<TYPE>(&m_pData[nOldSize], nCount); // shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex], (nOldSize-nIndex) * sizeof(TYPE));
// re-init slots we copied from
ConstructElements<TYPE>(&m_pData[nIndex], nCount); }
// insert new value in the gap
ASSERT(nIndex + nCount <= m_nSize); while (nCount--) m_pData[nIndex++] = newElement; }
template<class TYPE, class ARG_TYPE> void CArray<TYPE, ARG_TYPE>::RemoveAt(int nIndex, int nCount) { ASSERT_VALID(this); ASSERT(nIndex >= 0); ASSERT(nCount >= 0); ASSERT(nIndex + nCount <= m_nSize);
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount); DestructElements<TYPE>(&m_pData[nIndex], nCount); if (nMoveCount) memmove(&m_pData[nIndex], &m_pData[nIndex + nCount], nMoveCount * sizeof(TYPE)); m_nSize -= nCount; }
template<class TYPE, class ARG_TYPE> void CArray<TYPE, ARG_TYPE>::InsertAt(int nStartIndex, CArray* pNewArray) { ASSERT_VALID(this); ASSERT(pNewArray != NULL); ASSERT_VALID(pNewArray); ASSERT(nStartIndex >= 0);
if (pNewArray->GetSize() > 0) { InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize()); for (int i = 0; i < pNewArray->GetSize(); i++) SetAt(nStartIndex + i, pNewArray->GetAt(i)); } }
/////////////////////////////////////////////////////////////////////////////
// CPlex
struct CPlex // warning variable length structure
{ CPlex* pNext; DWORD dwReserved[1]; // align on 8 byte boundary
// BYTE data[maxNum*elementSize];
void* data() { return this+1; }
static CPlex* PASCAL Create(CPlex*& head, UINT nMax, UINT cbElement); // like 'calloc' but no zero fill
// may throw memory exceptions
void FreeDataChain(); // free this one and links
};
/////////////////////////////////////////////////////////////////////////////
// CList<TYPE, ARG_TYPE>
template<class TYPE, class ARG_TYPE> class CList { protected: struct CNode { CNode* pNext; CNode* pPrev; TYPE data; }; public: // Construction
CList(int nBlockSize = 10);
// Attributes (head and tail)
// count of elements
int GetCount() const; BOOL IsEmpty() const;
// peek at head or tail
TYPE& GetHead(); TYPE GetHead() const; TYPE& GetTail(); TYPE GetTail() const;
// Operations
// get head or tail (and remove it) - don't call on empty list !
TYPE RemoveHead(); TYPE RemoveTail();
// add before head or after tail
POSITION AddHead(ARG_TYPE newElement); POSITION AddTail(ARG_TYPE newElement);
// add another list of elements before head or after tail
void AddHead(CList* pNewList); void AddTail(CList* pNewList);
// remove all elements
void RemoveAll();
// iteration
POSITION GetHeadPosition() const; POSITION GetTailPosition() const; TYPE& GetNext(POSITION& rPosition); // return *Position++
TYPE GetNext(POSITION& rPosition) const; // return *Position++
TYPE& GetPrev(POSITION& rPosition); // return *Position--
TYPE GetPrev(POSITION& rPosition) const; // return *Position--
// getting/modifying an element at a given position
TYPE& GetAt(POSITION position); TYPE GetAt(POSITION position) const; void SetAt(POSITION pos, ARG_TYPE newElement); void RemoveAt(POSITION position);
// inserting before or after a given position
POSITION InsertBefore(POSITION position, ARG_TYPE newElement); POSITION InsertAfter(POSITION position, ARG_TYPE newElement);
// helper functions (note: O(n) speed)
POSITION Find(ARG_TYPE searchValue, POSITION startAfter = NULL) const; // defaults to starting at the HEAD, return NULL if not found
POSITION FindIndex(int nIndex) const; // get the 'nIndex'th element (may return NULL)
// Implementation
protected: CNode* m_pNodeHead; CNode* m_pNodeTail; int m_nCount; CNode* m_pNodeFree; struct CPlex* m_pBlocks; int m_nBlockSize;
CNode* NewNode(CNode*, CNode*); void FreeNode(CNode*);
public: ~CList(); };
/////////////////////////////////////////////////////////////////////////////
// CList<TYPE, ARG_TYPE> inline functions
template<class TYPE, class ARG_TYPE> AFX_INLINE int CList<TYPE, ARG_TYPE>::GetCount() const { return m_nCount; } template<class TYPE, class ARG_TYPE> AFX_INLINE BOOL CList<TYPE, ARG_TYPE>::IsEmpty() const { return m_nCount == 0; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE& CList<TYPE, ARG_TYPE>::GetHead() { ASSERT(m_pNodeHead != NULL); return m_pNodeHead->data; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE CList<TYPE, ARG_TYPE>::GetHead() const { ASSERT(m_pNodeHead != NULL); return m_pNodeHead->data; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE& CList<TYPE, ARG_TYPE>::GetTail() { ASSERT(m_pNodeTail != NULL); return m_pNodeTail->data; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE CList<TYPE, ARG_TYPE>::GetTail() const { ASSERT(m_pNodeTail != NULL); return m_pNodeTail->data; } template<class TYPE, class ARG_TYPE> AFX_INLINE POSITION CList<TYPE, ARG_TYPE>::GetHeadPosition() const { return (POSITION) m_pNodeHead; } template<class TYPE, class ARG_TYPE> AFX_INLINE POSITION CList<TYPE, ARG_TYPE>::GetTailPosition() const { return (POSITION) m_pNodeTail; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE& CList<TYPE, ARG_TYPE>::GetNext(POSITION& rPosition) // return *Position++
{ CNode* pNode = (CNode*) rPosition; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); rPosition = (POSITION) pNode->pNext; return pNode->data; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE CList<TYPE, ARG_TYPE>::GetNext(POSITION& rPosition) const // return *Position++
{ CNode* pNode = (CNode*) rPosition; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); rPosition = (POSITION) pNode->pNext; return pNode->data; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE& CList<TYPE, ARG_TYPE>::GetPrev(POSITION& rPosition) // return *Position--
{ CNode* pNode = (CNode*) rPosition; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); rPosition = (POSITION) pNode->pPrev; return pNode->data; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE CList<TYPE, ARG_TYPE>::GetPrev(POSITION& rPosition) const // return *Position--
{ CNode* pNode = (CNode*) rPosition; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); rPosition = (POSITION) pNode->pPrev; return pNode->data; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE& CList<TYPE, ARG_TYPE>::GetAt(POSITION position) { CNode* pNode = (CNode*) position; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); return pNode->data; } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE CList<TYPE, ARG_TYPE>::GetAt(POSITION position) const { CNode* pNode = (CNode*) position; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); return pNode->data; } template<class TYPE, class ARG_TYPE> AFX_INLINE void CList<TYPE, ARG_TYPE>::SetAt(POSITION pos, ARG_TYPE newElement) { CNode* pNode = (CNode*) pos; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); pNode->data = newElement; }
template<class TYPE, class ARG_TYPE> CList<TYPE, ARG_TYPE>::CList(int nBlockSize) { ASSERT(nBlockSize > 0);
m_nCount = 0; m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL; m_pBlocks = NULL; m_nBlockSize = nBlockSize; }
template<class TYPE, class ARG_TYPE> void CList<TYPE, ARG_TYPE>::RemoveAll() { ASSERT_VALID(this);
// destroy elements
CNode* pNode; for (pNode = m_pNodeHead; pNode != NULL; pNode = pNode->pNext) DestructElements<TYPE>(&pNode->data, 1);
m_nCount = 0; m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL; m_pBlocks->FreeDataChain(); m_pBlocks = NULL; }
template<class TYPE, class ARG_TYPE> CList<TYPE, ARG_TYPE>::~CList() { RemoveAll(); ASSERT(m_nCount == 0); }
/////////////////////////////////////////////////////////////////////////////
// Node helpers
//
// Implementation note: CNode's are stored in CPlex blocks and
// chained together. Free blocks are maintained in a singly linked list
// using the 'pNext' member of CNode with 'm_pNodeFree' as the head.
// Used blocks are maintained in a doubly linked list using both 'pNext'
// and 'pPrev' as links and 'm_pNodeHead' and 'm_pNodeTail'
// as the head/tail.
//
// We never free a CPlex block unless the List is destroyed or RemoveAll()
// is used - so the total number of CPlex blocks may grow large depending
// on the maximum past size of the list.
//
template<class TYPE, class ARG_TYPE> typename CList<TYPE, ARG_TYPE>::CNode* CList<TYPE, ARG_TYPE>::NewNode(CNode* pPrev, CNode* pNext) { if (m_pNodeFree == NULL) { // add another block
CPlex* pNewBlock = CPlex::Create(m_pBlocks, m_nBlockSize, sizeof(CNode));
// chain them into free list
CNode* pNode = (CNode*) pNewBlock->data(); // free in reverse order to make it easier to debug
pNode += m_nBlockSize - 1; for (int i = m_nBlockSize-1; i >= 0; i--, pNode--) { pNode->pNext = m_pNodeFree; m_pNodeFree = pNode; } } ASSERT(m_pNodeFree != NULL); // we must have something
CList::CNode* pNode = m_pNodeFree; m_pNodeFree = m_pNodeFree->pNext; pNode->pPrev = pPrev; pNode->pNext = pNext; m_nCount++; ASSERT(m_nCount > 0); // make sure we don't overflow
ConstructElements<TYPE>(&pNode->data, 1); return pNode; }
template<class TYPE, class ARG_TYPE> void CList<TYPE, ARG_TYPE>::FreeNode(CNode* pNode) { DestructElements<TYPE>(&pNode->data, 1); pNode->pNext = m_pNodeFree; m_pNodeFree = pNode; m_nCount--; ASSERT(m_nCount >= 0); // make sure we don't underflow
// if no more elements, cleanup completely
if (m_nCount == 0) RemoveAll(); }
template<class TYPE, class ARG_TYPE> POSITION CList<TYPE, ARG_TYPE>::AddHead(ARG_TYPE newElement) { ASSERT_VALID(this);
CNode* pNewNode = NewNode(NULL, m_pNodeHead); pNewNode->data = newElement; if (m_pNodeHead != NULL) m_pNodeHead->pPrev = pNewNode; else m_pNodeTail = pNewNode; m_pNodeHead = pNewNode; return (POSITION) pNewNode; }
template<class TYPE, class ARG_TYPE> POSITION CList<TYPE, ARG_TYPE>::AddTail(ARG_TYPE newElement) { ASSERT_VALID(this);
CNode* pNewNode = NewNode(m_pNodeTail, NULL); pNewNode->data = newElement; if (m_pNodeTail != NULL) m_pNodeTail->pNext = pNewNode; else m_pNodeHead = pNewNode; m_pNodeTail = pNewNode; return (POSITION) pNewNode; }
template<class TYPE, class ARG_TYPE> void CList<TYPE, ARG_TYPE>::AddHead(CList* pNewList) { ASSERT_VALID(this);
ASSERT(pNewList != NULL); ASSERT_VALID(pNewList);
// add a list of same elements to head (maintain order)
POSITION pos = pNewList->GetTailPosition(); while (pos != NULL) AddHead(pNewList->GetPrev(pos)); }
template<class TYPE, class ARG_TYPE> void CList<TYPE, ARG_TYPE>::AddTail(CList* pNewList) { ASSERT_VALID(this); ASSERT(pNewList != NULL); ASSERT_VALID(pNewList);
// add a list of same elements
POSITION pos = pNewList->GetHeadPosition(); while (pos != NULL) AddTail(pNewList->GetNext(pos)); }
template<class TYPE, class ARG_TYPE> TYPE CList<TYPE, ARG_TYPE>::RemoveHead() { ASSERT_VALID(this); ASSERT(m_pNodeHead != NULL); // don't call on empty list !!!
ASSERT(AfxIsValidAddress(m_pNodeHead, sizeof(CNode)));
CNode* pOldNode = m_pNodeHead; TYPE returnValue = pOldNode->data;
m_pNodeHead = pOldNode->pNext; if (m_pNodeHead != NULL) m_pNodeHead->pPrev = NULL; else m_pNodeTail = NULL; FreeNode(pOldNode); return returnValue; }
template<class TYPE, class ARG_TYPE> TYPE CList<TYPE, ARG_TYPE>::RemoveTail() { ASSERT_VALID(this); ASSERT(m_pNodeTail != NULL); // don't call on empty list !!!
ASSERT(AfxIsValidAddress(m_pNodeTail, sizeof(CNode)));
CNode* pOldNode = m_pNodeTail; TYPE returnValue = pOldNode->data;
m_pNodeTail = pOldNode->pPrev; if (m_pNodeTail != NULL) m_pNodeTail->pNext = NULL; else m_pNodeHead = NULL; FreeNode(pOldNode); return returnValue; }
template<class TYPE, class ARG_TYPE> POSITION CList<TYPE, ARG_TYPE>::InsertBefore(POSITION position, ARG_TYPE newElement) { ASSERT_VALID(this);
if (position == NULL) return AddHead(newElement); // insert before nothing -> head of the list
// Insert it before position
CNode* pOldNode = (CNode*) position; CNode* pNewNode = NewNode(pOldNode->pPrev, pOldNode); pNewNode->data = newElement;
if (pOldNode->pPrev != NULL) { ASSERT(AfxIsValidAddress(pOldNode->pPrev, sizeof(CNode))); pOldNode->pPrev->pNext = pNewNode; } else { ASSERT(pOldNode == m_pNodeHead); m_pNodeHead = pNewNode; } pOldNode->pPrev = pNewNode; return (POSITION) pNewNode; }
template<class TYPE, class ARG_TYPE> POSITION CList<TYPE, ARG_TYPE>::InsertAfter(POSITION position, ARG_TYPE newElement) { ASSERT_VALID(this);
if (position == NULL) return AddTail(newElement); // insert after nothing -> tail of the list
// Insert it before position
CNode* pOldNode = (CNode*) position; ASSERT(AfxIsValidAddress(pOldNode, sizeof(CNode))); CNode* pNewNode = NewNode(pOldNode, pOldNode->pNext); pNewNode->data = newElement;
if (pOldNode->pNext != NULL) { ASSERT(AfxIsValidAddress(pOldNode->pNext, sizeof(CNode))); pOldNode->pNext->pPrev = pNewNode; } else { ASSERT(pOldNode == m_pNodeTail); m_pNodeTail = pNewNode; } pOldNode->pNext = pNewNode; return (POSITION) pNewNode; }
template<class TYPE, class ARG_TYPE> void CList<TYPE, ARG_TYPE>::RemoveAt(POSITION position) { ASSERT_VALID(this);
CNode* pOldNode = (CNode*) position; ASSERT(AfxIsValidAddress(pOldNode, sizeof(CNode)));
// remove pOldNode from list
if (pOldNode == m_pNodeHead) { m_pNodeHead = pOldNode->pNext; } else { ASSERT(AfxIsValidAddress(pOldNode->pPrev, sizeof(CNode))); pOldNode->pPrev->pNext = pOldNode->pNext; } if (pOldNode == m_pNodeTail) { m_pNodeTail = pOldNode->pPrev; } else { ASSERT(AfxIsValidAddress(pOldNode->pNext, sizeof(CNode))); pOldNode->pNext->pPrev = pOldNode->pPrev; } FreeNode(pOldNode); }
template<class TYPE, class ARG_TYPE> POSITION CList<TYPE, ARG_TYPE>::FindIndex(int nIndex) const { ASSERT_VALID(this);
if (nIndex >= m_nCount || nIndex < 0) return NULL; // went too far
CNode* pNode = m_pNodeHead; while (nIndex--) { ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); pNode = pNode->pNext; } return (POSITION) pNode; }
template<class TYPE, class ARG_TYPE> POSITION CList<TYPE, ARG_TYPE>::Find(ARG_TYPE searchValue, POSITION startAfter) const { ASSERT_VALID(this);
CNode* pNode = (CNode*) startAfter; if (pNode == NULL) { pNode = m_pNodeHead; // start at head
} else { ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); pNode = pNode->pNext; // start after the one specified
}
for (; pNode != NULL; pNode = pNode->pNext) if (CompareElements<TYPE>(&pNode->data, &searchValue)) return (POSITION)pNode; return NULL; }
/////////////////////////////////////////////////////////////////////////////
// CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> class CMap { protected: // Association
struct CAssoc { CAssoc* pNext; UINT nHashValue; // needed for efficient iteration
KEY key; VALUE value; }; public: // Construction
CMap(int nBlockSize = 10);
// Attributes
// number of elements
int GetCount() const; BOOL IsEmpty() const;
// Lookup
BOOL Lookup(ARG_KEY key, VALUE& rValue) const;
// Operations
// Lookup and add if not there
VALUE& operator[](ARG_KEY key);
// add a new (key, value) pair
void SetAt(ARG_KEY key, ARG_VALUE newValue);
// removing existing (key, ?) pair
BOOL RemoveKey(ARG_KEY key); void RemoveAll();
// iterating all (key, value) pairs
POSITION GetStartPosition() const; void GetNextAssoc(POSITION& rNextPosition, KEY& rKey, VALUE& rValue) const;
// advanced features for derived classes
UINT GetHashTableSize() const; void InitHashTable(UINT hashSize, BOOL bAllocNow = TRUE);
// Implementation
protected: CAssoc** m_pHashTable; UINT m_nHashTableSize; int m_nCount; CAssoc* m_pFreeList; struct CPlex* m_pBlocks; int m_nBlockSize;
CAssoc* NewAssoc(); void FreeAssoc(CAssoc*); CAssoc* GetAssocAt(ARG_KEY, UINT&) const;
public: ~CMap(); };
/////////////////////////////////////////////////////////////////////////////
// CMap<KEY, ARG_KEY, VALUE, ARG_VALUE> inline functions
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> AFX_INLINE int CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetCount() const { return m_nCount; } template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> AFX_INLINE BOOL CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::IsEmpty() const { return m_nCount == 0; } template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> AFX_INLINE void CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::SetAt(ARG_KEY key, ARG_VALUE newValue) { (*this)[key] = newValue; } template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> AFX_INLINE POSITION CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetStartPosition() const { return (m_nCount == 0) ? NULL : BEFORE_START_POSITION; } template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> AFX_INLINE UINT CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetHashTableSize() const { return m_nHashTableSize; }
/////////////////////////////////////////////////////////////////////////////
// CMap<KEY, ARG_KEY, VALUE, ARG_VALUE> out-of-line functions
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::CMap(int nBlockSize) { ASSERT(nBlockSize > 0);
m_pHashTable = NULL; m_nHashTableSize = 17; // default size
m_nCount = 0; m_pFreeList = NULL; m_pBlocks = NULL; m_nBlockSize = nBlockSize; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> void CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::InitHashTable( UINT nHashSize, BOOL bAllocNow) //
// Used to force allocation of a hash table or to override the default
// hash table size of (which is fairly small)
{ ASSERT_VALID(this); ASSERT(m_nCount == 0); ASSERT(nHashSize > 0);
if (m_pHashTable != NULL) { // free hash table
delete[] m_pHashTable; m_pHashTable = NULL; }
if (bAllocNow) { m_pHashTable = new CAssoc* [nHashSize]; memset(m_pHashTable, 0, sizeof(CAssoc*) * nHashSize); } m_nHashTableSize = nHashSize; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> void CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::RemoveAll() { ASSERT_VALID(this);
if (m_pHashTable != NULL) { // destroy elements (values and keys)
for (UINT nHash = 0; nHash < m_nHashTableSize; nHash++) { CAssoc* pAssoc; for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext) { DestructElements<VALUE>(&pAssoc->value, 1); DestructElements<KEY>(&pAssoc->key, 1); } } }
// free hash table
delete[] m_pHashTable; m_pHashTable = NULL;
m_nCount = 0; m_pFreeList = NULL; m_pBlocks->FreeDataChain(); m_pBlocks = NULL; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::~CMap() { RemoveAll(); ASSERT(m_nCount == 0); }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> typename CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::CAssoc* CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::NewAssoc() { if (m_pFreeList == NULL) { // add another block
CPlex* newBlock = CPlex::Create(m_pBlocks, m_nBlockSize, sizeof(CMap::CAssoc)); // chain them into free list
CMap::CAssoc* pAssoc = (CMap::CAssoc*) newBlock->data(); // free in reverse order to make it easier to debug
pAssoc += m_nBlockSize - 1; for (int i = m_nBlockSize-1; i >= 0; i--, pAssoc--) { pAssoc->pNext = m_pFreeList; m_pFreeList = pAssoc; } } ASSERT(m_pFreeList != NULL); // we must have something
CMap::CAssoc* pAssoc = m_pFreeList; m_pFreeList = m_pFreeList->pNext; m_nCount++; ASSERT(m_nCount > 0); // make sure we don't overflow
ConstructElements<KEY>(&pAssoc->key, 1); ConstructElements<VALUE>(&pAssoc->value, 1); // special construct values
return pAssoc; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> void CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::FreeAssoc(CAssoc* pAssoc) { DestructElements<VALUE>(&pAssoc->value, 1); DestructElements<KEY>(&pAssoc->key, 1); pAssoc->pNext = m_pFreeList; m_pFreeList = pAssoc; m_nCount--; ASSERT(m_nCount >= 0); // make sure we don't underflow
// if no more elements, cleanup completely
if (m_nCount == 0) RemoveAll(); }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> typename CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::CAssoc* CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetAssocAt(ARG_KEY key, UINT& nHash) const // find association (or return NULL)
{ nHash = HashKey<ARG_KEY>(key) % m_nHashTableSize;
if (m_pHashTable == NULL) return NULL;
// see if it exists
CAssoc* pAssoc; for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext) { if (CompareElements(&pAssoc->key, &key)) return pAssoc; } return NULL; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> BOOL CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::Lookup(ARG_KEY key, VALUE& rValue) const { ASSERT_VALID(this);
UINT nHash; CAssoc* pAssoc = GetAssocAt(key, nHash); if (pAssoc == NULL) return FALSE; // not in map
rValue = pAssoc->value; return TRUE; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> VALUE& CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::operator[](ARG_KEY key) { ASSERT_VALID(this);
UINT nHash; CAssoc* pAssoc; if ((pAssoc = GetAssocAt(key, nHash)) == NULL) { if (m_pHashTable == NULL) InitHashTable(m_nHashTableSize);
// it doesn't exist, add a new Association
pAssoc = NewAssoc(); pAssoc->nHashValue = nHash; pAssoc->key = key; // 'pAssoc->value' is a constructed object, nothing more
// put into hash table
pAssoc->pNext = m_pHashTable[nHash]; m_pHashTable[nHash] = pAssoc; } return pAssoc->value; // return new reference
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> BOOL CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::RemoveKey(ARG_KEY key) // remove key - return TRUE if removed
{ ASSERT_VALID(this);
if (m_pHashTable == NULL) return FALSE; // nothing in the table
CAssoc** ppAssocPrev; ppAssocPrev = &m_pHashTable[HashKey<ARG_KEY>(key) % m_nHashTableSize];
CAssoc* pAssoc; for (pAssoc = *ppAssocPrev; pAssoc != NULL; pAssoc = pAssoc->pNext) { if (CompareElements(&pAssoc->key, &key)) { // remove it
*ppAssocPrev = pAssoc->pNext; // remove from list
FreeAssoc(pAssoc); return TRUE; } ppAssocPrev = &pAssoc->pNext; } return FALSE; // not found
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> void CMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetNextAssoc(POSITION& rNextPosition, KEY& rKey, VALUE& rValue) const { ASSERT_VALID(this); ASSERT(m_pHashTable != NULL); // never call on empty map
CAssoc* pAssocRet = (CAssoc*)rNextPosition; ASSERT(pAssocRet != NULL);
if (pAssocRet == (CAssoc*) BEFORE_START_POSITION) { // find the first association
for (UINT nBucket = 0; nBucket < m_nHashTableSize; nBucket++) if ((pAssocRet = m_pHashTable[nBucket]) != NULL) break; ASSERT(pAssocRet != NULL); // must find something
}
// find next association
ASSERT(AfxIsValidAddress(pAssocRet, sizeof(CAssoc))); CAssoc* pAssocNext; if ((pAssocNext = pAssocRet->pNext) == NULL) { // go to next bucket
for (UINT nBucket = pAssocRet->nHashValue + 1; nBucket < m_nHashTableSize; nBucket++) if ((pAssocNext = m_pHashTable[nBucket]) != NULL) break; }
rNextPosition = (POSITION) pAssocNext;
// fill in return data
rKey = pAssocRet->key; rValue = pAssocRet->value; }
#undef ASSERT
#undef AFX_INLINE
#undef AFXAPI
#undef ASSERT_VALID
#endif //__COLLECTIONS_H__
|