|
|
//----------------------------------------------------------------------------
//
// d3dutil.cpp
//
// Miscellanous utility functions.
//
// Copyright (C) Microsoft Corporation, 1997.
//
//----------------------------------------------------------------------------
#include "pch.cpp"
#pragma hdrstop
#include <span.h>
#include "cppdbg.hpp"
DBG_DECLARE_FILE();
// Declare TextureDiff as an out-of-line function.
FLOAT FASTCALL TextureDiff(FLOAT fTb, FLOAT fTa, INT iMode) #include <texdiff.h>
//----------------------------------------------------------------------------
//
// DebugBreakFn
//
// Stub function that should never be called. Prints a warning and
// DebugBreaks. Can be inserted in any function table, although it
// will destroy the stack frame with callconv or argument mismatch.
// That's OK since if it's called something has gone wrong.
//
//----------------------------------------------------------------------------
void FASTCALL DebugBreakFn(void) { GDPF(("!! DebugBreakFn called. Leaving this function may destroy\n")); GDPF((" the stack frame. !!\n")); #if DBG
DebugBreak(); #endif
}
//----------------------------------------------------------------------------
//
// OctagonNorm
//
// Returns a good approximation to sqrt(fX*fX + fY*fY)
//
//----------------------------------------------------------------------------
FLOAT FASTCALL OctagonNorm(FLOAT fX, FLOAT fY) { fX = ABSF(fX); fY = ABSF(fY); return ((11.0f/32.0f)*(fX + fY) + (21.0f/32.0f)*max(fX, fY)); }
//----------------------------------------------------------------------------
//
// ComputeLOD
//
// Computes mipmap level for the given W by deriving U and V and
// then computing LOD from the dU and dV gradients.
//
//----------------------------------------------------------------------------
INT FASTCALL ComputeLOD(PCD3DI_RASTCTX pCtx, FLOAT fU, FLOAT fV, FLOAT fW, FLOAT fDUoWDX, FLOAT fDVoWDX, FLOAT fDOoWDX, FLOAT fDUoWDY, FLOAT fDVoWDY, FLOAT fDOoWDY) { // Compute coverage gradients.
FLOAT fDUDX = ABSF(fW * (fDUoWDX - fU * fDOoWDX)); FLOAT fDUDY = ABSF(fW * (fDUoWDY - fU * fDOoWDY)); FLOAT fDVDX = ABSF(fW * (fDVoWDX - fV * fDOoWDX)); FLOAT fDVDY = ABSF(fW * (fDVoWDY - fV * fDOoWDY));
// Scale gradients to texture LOD 0 size.
fDUDX *= (FLOAT)pCtx->pTexture[0]->iSizeU; fDUDY *= (FLOAT)pCtx->pTexture[0]->iSizeU; fDVDX *= (FLOAT)pCtx->pTexture[0]->iSizeV; fDVDY *= (FLOAT)pCtx->pTexture[0]->iSizeV;
// Determine pixel coverage value to use.
FLOAT fCoverage;
// too fuzzy
#ifdef COVERAGE_MAXGRAD
fCoverage = max(fDUDX, fDUDY); fCoverage = max(fCoverage, fDVDX); fCoverage = max(fCoverage, fDVDY); #endif
// too sharp, in particular, for aligned cases, fCoverage is always 0
// which leads to iLOD of LOD_MIN regardless of orientation
#ifdef COVERAGE_MINGRAD
fCoverage = min(fDUDX, fDUDY); fCoverage = min(fCoverage, fDVDX); fCoverage = min(fCoverage, fDVDY); #endif
#ifdef COVERAGE_AVERAGE
// use OctagonNorm to approximate each length of parallelogram
// approximating texture coverage, and arithmetically average those to
// get the coverage.
fCoverage = (OctagonNorm(fDUDX, fDVDX) + OctagonNorm(fDUDY, fDVDY))/2.0f; #endif
#define MAX_LEN 1
#ifdef MAX_LEN
// use OctagonNorm to approximate each length of parallelogram
// approximating texture coverage, and take the max of each length
// like classic OpenGL and the current RefRast implementation
fCoverage = max(OctagonNorm(fDUDX, fDVDX), OctagonNorm(fDUDY, fDVDY)); #endif
// Compute approximate log2 of coverage.
FLOAT fLOD = APPXLG2F(fCoverage);
// Apply LOD bias.
fLOD += pCtx->pTexture[0]->fLODBias;
INT iLOD = FTOI(fLOD * LOD_SCALE);
// Clamp to available levels. Not clamped to zero so that the span
// code can check for magnification cases with a sign check.
iLOD = min(iLOD, pCtx->pTexture[0]->iMaxScaledLOD); return max(LOD_MIN, iLOD); }
//----------------------------------------------------------------------------
//
// ComputeTableFog
//
// Computes table fog values based on render state and the given Z.
// ATTENTION - Brute force for non-linear modes. Should be optimized
// to use a table-based approximation.
//
//----------------------------------------------------------------------------
UINT FASTCALL ComputeTableFog(PDWORD pdwRenderState, FLOAT fZ) { double dPow;
switch(pdwRenderState[D3DRENDERSTATE_FOGTABLEMODE]) { case D3DFOG_LINEAR: { FLOAT fFogStart = ASFLOAT(pdwRenderState[D3DRENDERSTATE_FOGSTART]); FLOAT fFogEnd = ASFLOAT(pdwRenderState[D3DRENDERSTATE_FOGEND]); if (fZ >= fFogEnd) { return 0; } if (fZ <= fFogStart) { return FTOI(FOG_ONE_SCALE-1.0F); } return FTOI(((fFogEnd - fZ) / (fFogEnd - fFogStart)) * (FOG_ONE_SCALE-1.0F)); }
case D3DFOG_EXP: dPow = (double) (ASFLOAT(pdwRenderState[D3DRENDERSTATE_FOGDENSITY]) * fZ); // note that exp(-x) returns a result in the range (0.0, 1.0]
// for x >= 0
dPow = exp(-dPow); return FTOI((FLOAT)dPow * (FOG_ONE_SCALE-1.0F));
case D3DFOG_EXP2: dPow = (double) (ASFLOAT(pdwRenderState[D3DRENDERSTATE_FOGDENSITY]) * fZ); dPow = exp(-dPow * dPow); return FTOI((FLOAT)dPow * (FOG_ONE_SCALE-1.0F)); }
GASSERTMSG(FALSE, ("ComputeTableFog unreachable\n")); return 0; }
//----------------------------------------------------------------------------
//
// pVecNormalize2
//
// Normalizes the given D3DVECTOR. Supports in-place operation.
//
//----------------------------------------------------------------------------
void FASTCALL pVecNormalize2(LPD3DVECTOR pVec, LPD3DVECTOR pRes) { FLOAT fLen;
fLen = pVecLenSq(pVec); if (FLOAT_CMP_POS(fLen, <=, g_fNearZero)) { pVecSet(pRes, 0.0f, 0.0f, 0.0f); return; } fLen = ISQRTF(fLen); pVecScale(pVec, fLen, pRes); }
//-----------------------------------------------------------------------------
//
// IntLog2
//
// Do a quick, integer log2 for exact powers of 2.
//
//-----------------------------------------------------------------------------
UINT32 FASTCALL IntLog2(UINT32 x) { UINT32 y = 0;
x >>= 1; while(x != 0) { x >>= 1; y++; }
return y; } //---------------------------------------------------------------------
// Builds normalized plane equations going through 3 points
//
// Returns:
// 0 - if success
// -1 - if can not build plane
//
int MakePlane(D3DVECTOR *v1, D3DVECTOR *v2, D3DVECTOR *v3, D3DVECTORH *plane) { D3DVECTOR a; D3DVECTOR b;
pVecSub(v2, v1, &a); pVecSub(v3, v1, &b);
plane->x = a.y*b.z - a.z*b.y; plane->y = a.z*b.x - a.x*b.z; plane->z = a.x*b.y - a.y*b.x; plane->w = - pVecDot(v1, plane);
double tmp = pVecDot(plane, plane); if (tmp <= 0) return -1; tmp = 1.0/sqrt(tmp);
plane->x = (D3DVALUE)(plane->x * tmp); plane->y = (D3DVALUE)(plane->y * tmp); plane->z = (D3DVALUE)(plane->z * tmp); plane->w = (D3DVALUE)(plane->w * tmp); return 0; } //---------------------------------------------------------------------
// This function uses Cramer's Rule to calculate the matrix inverse.
// See nt\private\windows\opengl\serever\soft\so_math.c
//
// Returns:
// 0 - if success
// -1 - if input matrix is singular
//
int Inverse4x4(D3DMATRIX *src, D3DMATRIX *inverse) { double x00, x01, x02; double x10, x11, x12; double x20, x21, x22; double rcp; double x30, x31, x32; double y01, y02, y03, y12, y13, y23; double z02, z03, z12, z13, z22, z23, z32, z33;
#define x03 x01
#define x13 x11
#define x23 x21
#define x33 x31
#define z00 x02
#define z10 x12
#define z20 x22
#define z30 x32
#define z01 x03
#define z11 x13
#define z21 x23
#define z31 x33
/* read 1st two columns of matrix into registers */ x00 = src->_11; x01 = src->_12; x10 = src->_21; x11 = src->_22; x20 = src->_31; x21 = src->_32; x30 = src->_41; x31 = src->_42;
/* compute all six 2x2 determinants of 1st two columns */ y01 = x00*x11 - x10*x01; y02 = x00*x21 - x20*x01; y03 = x00*x31 - x30*x01; y12 = x10*x21 - x20*x11; y13 = x10*x31 - x30*x11; y23 = x20*x31 - x30*x21;
/* read 2nd two columns of matrix into registers */ x02 = src->_13; x03 = src->_14; x12 = src->_23; x13 = src->_24; x22 = src->_33; x23 = src->_34; x32 = src->_43; x33 = src->_44;
/* compute all 3x3 cofactors for 2nd two columns */ z33 = x02*y12 - x12*y02 + x22*y01; z23 = x12*y03 - x32*y01 - x02*y13; z13 = x02*y23 - x22*y03 + x32*y02; z03 = x22*y13 - x32*y12 - x12*y23; z32 = x13*y02 - x23*y01 - x03*y12; z22 = x03*y13 - x13*y03 + x33*y01; z12 = x23*y03 - x33*y02 - x03*y23; z02 = x13*y23 - x23*y13 + x33*y12;
/* compute all six 2x2 determinants of 2nd two columns */ y01 = x02*x13 - x12*x03; y02 = x02*x23 - x22*x03; y03 = x02*x33 - x32*x03; y12 = x12*x23 - x22*x13; y13 = x12*x33 - x32*x13; y23 = x22*x33 - x32*x23;
/* read 1st two columns of matrix into registers */ x00 = src->_11; x01 = src->_12; x10 = src->_21; x11 = src->_22; x20 = src->_31; x21 = src->_32; x30 = src->_41; x31 = src->_42;
/* compute all 3x3 cofactors for 1st column */ z30 = x11*y02 - x21*y01 - x01*y12; z20 = x01*y13 - x11*y03 + x31*y01; z10 = x21*y03 - x31*y02 - x01*y23; z00 = x11*y23 - x21*y13 + x31*y12;
/* compute 4x4 determinant & its reciprocal */ rcp = x30*z30 + x20*z20 + x10*z10 + x00*z00; if (rcp == (float)0) return -1; rcp = (float)1/rcp;
/* compute all 3x3 cofactors for 2nd column */ z31 = x00*y12 - x10*y02 + x20*y01; z21 = x10*y03 - x30*y01 - x00*y13; z11 = x00*y23 - x20*y03 + x30*y02; z01 = x20*y13 - x30*y12 - x10*y23;
/* multiply all 3x3 cofactors by reciprocal */ inverse->_11 = (float)(z00*rcp); inverse->_21 = (float)(z01*rcp); inverse->_12 = (float)(z10*rcp); inverse->_31 = (float)(z02*rcp); inverse->_13 = (float)(z20*rcp); inverse->_41 = (float)(z03*rcp); inverse->_14 = (float)(z30*rcp); inverse->_22 = (float)(z11*rcp); inverse->_32 = (float)(z12*rcp); inverse->_23 = (float)(z21*rcp); inverse->_42 = (float)(z13*rcp); inverse->_24 = (float)(z31*rcp); inverse->_33 = (float)(z22*rcp); inverse->_43 = (float)(z23*rcp); inverse->_34 = (float)(z32*rcp); inverse->_44 = (float)(z33*rcp); return 0; }
//---------------------------------------------------------------------
// Checks the FVF flags for errors and returns the stride in bytes between
// vertices.
//
// Returns:
// HRESULT and stride in bytes between vertices
//
//---------------------------------------------------------------------
HRESULT FASTCALL FVFCheckAndStride(DWORD dwFVF, DWORD* pdwStride) { if (NULL == pdwStride) { return DDERR_INVALIDPARAMS; } if ( (dwFVF & (D3DFVF_RESERVED0 | D3DFVF_RESERVED1 | D3DFVF_RESERVED2 | D3DFVF_NORMAL)) || ((dwFVF & (D3DFVF_XYZ | D3DFVF_XYZRHW)) == 0) ) { // can't set reserved bits, shouldn't have normals in
// output to rasterizers, and must have coordinates
return DDERR_INVALIDPARAMS; }
DWORD dwStride; if (dwFVF != D3DFVF_TLVERTEX) { // New (non TL)FVF vertex
// XYZ
dwStride = sizeof(D3DVALUE) * 3;
if (dwFVF & D3DFVF_XYZRHW) { dwStride += sizeof(D3DVALUE); } if (dwFVF & D3DFVF_DIFFUSE) { dwStride += sizeof(D3DCOLOR); } if (dwFVF & D3DFVF_SPECULAR) { dwStride += sizeof(D3DCOLOR); } INT iTexCount = (dwFVF & D3DFVF_TEXCOUNT_MASK) >> D3DFVF_TEXCOUNT_SHIFT; for (INT i = 0; i < iTexCount; i++) { switch (D3DFVF_GETTEXCOORDSIZE(dwFVF, i)) { case D3DFVF_TEXTUREFORMAT2: dwStride += sizeof(D3DVALUE) * 2; break; case D3DFVF_TEXTUREFORMAT1: dwStride += sizeof(D3DVALUE) * 1; break; case D3DFVF_TEXTUREFORMAT3: dwStride += sizeof(D3DVALUE) * 3; break; case D3DFVF_TEXTUREFORMAT4: dwStride += sizeof(D3DVALUE) * 4; break; } } } else { // (Legacy) TL vertex
dwStride = sizeof(D3DTLVERTEX); }
*pdwStride = dwStride; return D3D_OK; }
//---------------------------------------------------------------------
// Gets the value from DIRECT3D registry key
// Returns TRUE if success
// If fails value is not changed
//
BOOL GetD3DRegValue(DWORD type, char *valueName, LPVOID value, DWORD dwSize) {
HKEY hKey = (HKEY) NULL; if (ERROR_SUCCESS == RegOpenKey(HKEY_LOCAL_MACHINE, RESPATH_D3D, &hKey)) { DWORD dwType; LONG result; result = RegQueryValueEx(hKey, valueName, NULL, &dwType, (LPBYTE)value, &dwSize); RegCloseKey(hKey);
return result == ERROR_SUCCESS && dwType == type; } else return FALSE; }
|