|
|
//////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1998 Microsoft Corporation. All Rights Reserved.
//
// File: d3dxmath.h
// Content: D3DX math types and functions
//
//////////////////////////////////////////////////////////////////////////////
#ifndef __D3DXMATHVB_H__
#define __D3DXMATHVB_H__
//#include <d3d.h>
#include <math.h>
#include <limits.h>
//#include "d3dxerr.h"
#ifndef D3DXINLINE
#ifdef __cplusplus
#define D3DXINLINE inline
#else
#define D3DXINLINE _inline
#endif
#endif
#pragma warning(disable:4201) // anonymous unions warning
//===========================================================================
//
// General purpose utilities
//
//===========================================================================
//#define D3DX_PI ((float) 3.141592654f)
//#define D3DX_1BYPI ((float) 0.318309886f)
#define D3DXToRadian( degree ) ((degree) * (D3DX_PI / 180.0f))
#define D3DXToDegree( radian ) ((radian) * (180.0f / D3DX_PI))
//===========================================================================
//
// D3DX math functions:
//
// NOTE:
// * All these functions can take the same object as in and out parameters.
//
// * Out parameters are typically also returned as return values, so that
// the output of one function may be used as a parameter to another.
//
//===========================================================================
//--------------------------
// 2D Vector
//--------------------------
// inline
float D3DVBCALL VB_D3DXVec2Length ( const D3DXVECTOR2 *pV );
float D3DVBCALL VB_D3DXVec2LengthSq ( const D3DXVECTOR2 *pV );
float D3DVBCALL VB_D3DXVec2Dot ( const D3DXVECTOR2 *pV1, const D3DXVECTOR2 *pV2 );
// Z component of ((x1,y1,0) cross (x2,y2,0))
float D3DVBCALL VB_D3DXVec2CCW ( const D3DXVECTOR2 *pV1, const D3DXVECTOR2 *pV2 );
D3DXVECTOR2* D3DVBCALL VB_D3DXVec2Add ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV1, const D3DXVECTOR2 *pV2 );
D3DXVECTOR2* D3DVBCALL VB_D3DXVec2Subtract ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV1, const D3DXVECTOR2 *pV2 );
// Minimize each component. x = min(x1, x2), y = min(y1, y2)
D3DXVECTOR2* D3DVBCALL VB_D3DXVec2Minimize ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV1, const D3DXVECTOR2 *pV2 );
// Maximize each component. x = max(x1, x2), y = max(y1, y2)
D3DXVECTOR2* D3DVBCALL VB_D3DXVec2Maximize ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV1, const D3DXVECTOR2 *pV2 );
D3DXVECTOR2* D3DVBCALL VB_D3DXVec2Scale ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV, float s );
// Linear interpolation. V1 + s(V2-V1)
D3DXVECTOR2* D3DVBCALL VB_D3DXVec2Lerp ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV1, const D3DXVECTOR2 *pV2, float s );
// non-inline
#ifdef __cplusplus
extern "C" { #endif
D3DXVECTOR2* WINAPI VB_D3DXVec2Normalize ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV );
// Hermite interpolation between position V1, tangent T1 (when s == 0)
// and position V2, tangent T2 (when s == 1).
D3DXVECTOR2* WINAPI VB_D3DXVec2Hermite ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV1, const D3DXVECTOR2 *pT1, const D3DXVECTOR2 *pV2, const D3DXVECTOR2 *pT2, float s );
// CatmullRom interpolation between V1 (when s == 0) and V2 (when s == 1)
D3DXVECTOR2* WINAPI VB_D3DXVec2CatmullRom ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV0, const D3DXVECTOR2 *pV1, const D3DXVECTOR2 *pV2, const D3DXVECTOR2 *pV3, float s );
// Barycentric coordinates. V1 + f(V2-V1) + g(V3-V1)
D3DXVECTOR2* WINAPI VB_D3DXVec2BaryCentric ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV1, const D3DXVECTOR2 *pV2, D3DXVECTOR2 *pV3, float f, float g);
// Transform (x, y, 0, 1) by matrix.
D3DXVECTOR4* WINAPI VB_D3DXVec2Transform ( D3DXVECTOR4 *pOut, const D3DXVECTOR2 *pV, const D3DXMATRIX *pM );
// Transform (x, y, 0, 1) by matrix, project result back into w=1.
D3DXVECTOR2* WINAPI VB_D3DXVec2TransformCoord ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV, const D3DXMATRIX *pM );
// Transform (x, y, 0, 0) by matrix.
D3DXVECTOR2* WINAPI VB_D3DXVec2TransformNormal ( D3DXVECTOR2 *pOut, const D3DXVECTOR2 *pV, const D3DXMATRIX *pM );
#ifdef __cplusplus
} #endif
//--------------------------
// 3D Vector
//--------------------------
// inline
float D3DVBCALL VB_D3DXVec3Length ( const D3DXVECTOR3 *pV );
float D3DVBCALL VB_D3DXVec3LengthSq ( const D3DXVECTOR3 *pV );
float D3DVBCALL VB_D3DXVec3Dot ( const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2 );
D3DXVECTOR3* D3DVBCALL VB_D3DXVec3Cross ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2 );
D3DXVECTOR3* D3DVBCALL VB_D3DXVec3Add ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2 );
D3DXVECTOR3* D3DVBCALL VB_D3DXVec3Subtract ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2 );
// Minimize each component. x = min(x1, x2), y = min(y1, y2), ...
D3DXVECTOR3* D3DVBCALL VB_D3DXVec3Minimize ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2 );
// Maximize each component. x = max(x1, x2), y = max(y1, y2), ...
D3DXVECTOR3* D3DVBCALL VB_D3DXVec3Maximize ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2 );
D3DXVECTOR3* D3DVBCALL VB_D3DXVec3Scale ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV, float s);
// Linear interpolation. V1 + s(V2-V1)
D3DXVECTOR3* D3DVBCALL VB_D3DXVec3Lerp ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2, float s );
// non-inline
#ifdef __cplusplus
extern "C" { #endif
D3DXVECTOR3* WINAPI VB_D3DXVec3Normalize ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV );
// Hermite interpolation between position V1, tangent T1 (when s == 0)
// and position V2, tangent T2 (when s == 1).
D3DXVECTOR3* WINAPI VB_D3DXVec3Hermite ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pT1, const D3DXVECTOR3 *pV2, const D3DXVECTOR3 *pT2, float s );
// CatmullRom interpolation between V1 (when s == 0) and V2 (when s == 1)
D3DXVECTOR3* WINAPI VB_D3DXVec3CatmullRom ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV0, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2, const D3DXVECTOR3 *pV3, float s );
// Barycentric coordinates. V1 + f(V2-V1) + g(V3-V1)
D3DXVECTOR3* WINAPI VB_D3DXVec3BaryCentric ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2, const D3DXVECTOR3 *pV3, float f, float g);
// Transform (x, y, z, 1) by matrix.
D3DXVECTOR4* WINAPI VB_D3DXVec3Transform ( D3DXVECTOR4 *pOut, const D3DXVECTOR3 *pV, const D3DXMATRIX *pM );
// Transform (x, y, z, 1) by matrix, project result back into w=1.
D3DXVECTOR3* WINAPI VB_D3DXVec3TransformCoord ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV, const D3DXMATRIX *pM );
// Transform (x, y, z, 0) by matrix.
D3DXVECTOR3* WINAPI VB_D3DXVec3TransformNormal ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV, const D3DXMATRIX *pM );
// Project vector from object space into screen space
D3DXVECTOR3* WINAPI VB_D3DXVec3Project ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV, const D3DVIEWPORT8 *pViewport, const D3DXMATRIX *pProjection, const D3DXMATRIX *pView, const D3DXMATRIX *pWorld);
// Project vector from screen space into object space
D3DXVECTOR3* WINAPI VB_D3DXVec3Unproject ( D3DXVECTOR3 *pOut, const D3DXVECTOR3 *pV, const D3DVIEWPORT8 *pViewport, const D3DXMATRIX *pProjection, const D3DXMATRIX *pView, const D3DXMATRIX *pWorld);
#ifdef __cplusplus
} #endif
//--------------------------
// 4D Vector
//--------------------------
// inline
float D3DVBCALL VB_D3DXVec4Length ( const D3DXVECTOR4 *pV );
float D3DVBCALL VB_D3DXVec4LengthSq ( const D3DXVECTOR4 *pV );
float D3DVBCALL VB_D3DXVec4Dot ( const D3DXVECTOR4 *pV1, const D3DXVECTOR4 *pV2 );
D3DXVECTOR4* D3DVBCALL VB_D3DXVec4Add ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV1, const D3DXVECTOR4 *pV2);
D3DXVECTOR4* D3DVBCALL VB_D3DXVec4Subtract ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV1, const D3DXVECTOR4 *pV2);
// Minimize each component. x = min(x1, x2), y = min(y1, y2), ...
D3DXVECTOR4* D3DVBCALL VB_D3DXVec4Minimize ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV1, const D3DXVECTOR4 *pV2);
// Maximize each component. x = max(x1, x2), y = max(y1, y2), ...
D3DXVECTOR4* D3DVBCALL VB_D3DXVec4Maximize ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV1, const D3DXVECTOR4 *pV2);
D3DXVECTOR4* D3DVBCALL VB_D3DXVec4Scale ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV, float s);
// Linear interpolation. V1 + s(V2-V1)
D3DXVECTOR4* D3DVBCALL VB_D3DXVec4Lerp ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV1, const D3DXVECTOR4 *pV2, float s );
// non-inline
#ifdef __cplusplus
extern "C" { #endif
// Cross-product in 4 dimensions.
D3DXVECTOR4* WINAPI VB_D3DXVec4Cross ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV1, const D3DXVECTOR4 *pV2, const D3DXVECTOR4 *pV3);
D3DXVECTOR4* WINAPI VB_D3DXVec4Normalize ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV );
// Hermite interpolation between position V1, tangent T1 (when s == 0)
// and position V2, tangent T2 (when s == 1).
D3DXVECTOR4* WINAPI VB_D3DXVec4Hermite ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV1, const D3DXVECTOR4 *pT1, const D3DXVECTOR4 *pV2, const D3DXVECTOR4 *pT2, float s );
// CatmullRom interpolation between V1 (when s == 0) and V2 (when s == 1)
D3DXVECTOR4* WINAPI VB_D3DXVec4CatmullRom ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV0, const D3DXVECTOR4 *pV1, const D3DXVECTOR4 *pV2, const D3DXVECTOR4 *pV3, float s );
// Barycentric coordinates. V1 + f(V2-V1) + g(V3-V1)
D3DXVECTOR4* WINAPI VB_D3DXVec4BaryCentric ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV1, const D3DXVECTOR4 *pV2, const D3DXVECTOR4 *pV3, float f, float g);
// Transform vector by matrix.
D3DXVECTOR4* WINAPI VB_D3DXVec4Transform ( D3DXVECTOR4 *pOut, const D3DXVECTOR4 *pV, const D3DXMATRIX *pM );
#ifdef __cplusplus
} #endif
//--------------------------
// 4D Matrix
//--------------------------
// inline
D3DXMATRIX* D3DVBCALL VB_D3DXMatrixIdentity ( D3DXMATRIX *pOut );
BOOL D3DVBCALL VB_D3DXMatrixIsIdentity ( const D3DXMATRIX *pM );
// non-inline
#ifdef __cplusplus
extern "C" { #endif
float WINAPI D3DXMatrixfDeterminant ( const D3DXMATRIX *pM );
// Matrix multiplication. The result represents the transformation M2
// followed by the transformation M1. (Out = M1 * M2)
D3DXMATRIX* WINAPI VB_D3DXMatrixMultiply ( D3DXMATRIX *pOut, const D3DXMATRIX *pM1, const D3DXMATRIX *pM2 );
D3DXMATRIX* WINAPI VB_D3DXMatrixTranspose ( D3DXMATRIX *pOut, const D3DXMATRIX *pM );
// Calculate inverse of matrix. Inversion my fail, in which case NULL will
// be returned. The determinant of pM is also returned it pfDeterminant
// is non-NULL.
D3DXMATRIX* WINAPI VB_D3DXMatrixInverse ( D3DXMATRIX *pOut, float *pfDeterminant, const D3DXMATRIX *pM );
// Build a matrix which scales by (sx, sy, sz)
D3DXMATRIX* WINAPI VB_D3DXMatrixScaling ( D3DXMATRIX *pOut, float sx, float sy, float sz );
// Build a matrix which translates by (x, y, z)
D3DXMATRIX* WINAPI VB_D3DXMatrixTranslation ( D3DXMATRIX *pOut, float x, float y, float z );
// Build a matrix which rotates around the X axis
D3DXMATRIX* WINAPI VB_D3DXMatrixRotationX ( D3DXMATRIX *pOut, float angle );
// Build a matrix which rotates around the Y axis
D3DXMATRIX* WINAPI VB_D3DXMatrixRotationY ( D3DXMATRIX *pOut, float angle );
// Build a matrix which rotates around the Z axis
D3DXMATRIX* WINAPI VB_D3DXMatrixRotationZ ( D3DXMATRIX *pOut, float angle );
// Build a matrix which rotates around an arbitrary axis
D3DXMATRIX* WINAPI VB_D3DXMatrixRotationAxis ( D3DXMATRIX *pOut, const D3DXVECTOR3 *pV, float angle );
// Build a matrix from a quaternion
D3DXMATRIX* WINAPI VB_D3DXMatrixRotationQuaternion ( D3DXMATRIX *pOut, const D3DXQUATERNION *pQ);
// Yaw around the Y axis, a pitch around the X axis,
// and a roll around the Z axis.
D3DXMATRIX* WINAPI VB_D3DXMatrixRotationYawPitchRoll ( D3DXMATRIX *pOut, float yaw, float pitch, float roll );
// Build transformation matrix. NULL arguments are treated as identity.
// Mout = Msc-1 * Msr-1 * Ms * Msr * Msc * Mrc-1 * Mr * Mrc * Mt
D3DXMATRIX* WINAPI VB_D3DXMatrixTransformation ( D3DXMATRIX *pOut, const D3DXVECTOR3 *pScalingCenter, const D3DXQUATERNION *pScalingRotation, const D3DXVECTOR3 *pScaling, const D3DXVECTOR3 *pRotationCenter, const D3DXQUATERNION *pRotation, const D3DXVECTOR3 *pTranslation);
// Build affine transformation matrix. NULL arguments are treated as identity.
// Mout = Ms * Mrc-1 * Mr * Mrc * Mt
D3DXMATRIX* WINAPI VB_D3DXMatrixAffineTransformation ( D3DXMATRIX *pOut, float Scaling, const D3DXVECTOR3 *pRotationCenter, const D3DXQUATERNION *pRotation, const D3DXVECTOR3 *pTranslation);
// Build a lookat matrix. (right-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixLookAtRH ( D3DXMATRIX *pOut, const D3DXVECTOR3 *pEye, const D3DXVECTOR3 *pAt, const D3DXVECTOR3 *pUp );
// Build a lookat matrix. (left-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixLookAtLH ( D3DXMATRIX *pOut, const D3DXVECTOR3 *pEye, const D3DXVECTOR3 *pAt, const D3DXVECTOR3 *pUp );
// Build a perspective projection matrix. (right-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixPerspectiveRH ( D3DXMATRIX *pOut, float w, float h, float zn, float zf );
// Build a perspective projection matrix. (left-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixPerspectiveLH ( D3DXMATRIX *pOut, float w, float h, float zn, float zf );
// Build a perspective projection matrix. (right-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixPerspectiveFovRH ( D3DXMATRIX *pOut, float fovy, float aspect, float zn, float zf );
// Build a perspective projection matrix. (left-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixPerspectiveFovLH ( D3DXMATRIX *pOut, float fovy, float aspect, float zn, float zf );
// Build a perspective projection matrix. (right-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixPerspectiveOffCenterRH ( D3DXMATRIX *pOut, float l, float r, float b, float t, float zn, float zf );
// Build a perspective projection matrix. (left-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixPerspectiveOffCenterLH ( D3DXMATRIX *pOut, float l, float r, float b, float t, float zn, float zf );
// Build an ortho projection matrix. (right-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixOrthoRH ( D3DXMATRIX *pOut, float w, float h, float zn, float zf );
// Build an ortho projection matrix. (left-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixOrthoLH ( D3DXMATRIX *pOut, float w, float h, float zn, float zf );
// Build an ortho projection matrix. (right-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixOrthoOffCenterRH ( D3DXMATRIX *pOut, float l, float r, float b, float t, float zn, float zf );
// Build an ortho projection matrix. (left-handed)
D3DXMATRIX* WINAPI VB_D3DXMatrixOrthoOffCenterLH ( D3DXMATRIX *pOut, float l, float r, float b, float t, float zn, float zf );
// Build a matrix which flattens geometry into a plane, as if casting
// a shadow from a light.
D3DXMATRIX* WINAPI VB_D3DXMatrixShadow ( D3DXMATRIX *pOut, const D3DXVECTOR4 *pLight, const D3DXPLANE *pPlane );
// Build a matrix which reflects the coordinate system about a plane
D3DXMATRIX* WINAPI VB_D3DXMatrixReflect ( D3DXMATRIX *pOut, const D3DXPLANE *pPlane );
#ifdef __cplusplus
} #endif
//--------------------------
// Quaternion
//--------------------------
// inline
float D3DVBCALL VB_D3DXQuaternionLength ( const D3DXQUATERNION *pQ );
// Length squared, or "norm"
float D3DVBCALL VB_D3DXQuaternionLengthSq ( const D3DXQUATERNION *pQ );
float D3DVBCALL VB_D3DXQuaternionDot ( const D3DXQUATERNION *pQ1, const D3DXQUATERNION *pQ2 );
// (0, 0, 0, 1)
D3DXQUATERNION* D3DVBCALL VB_D3DXQuaternionIdentity ( D3DXQUATERNION *pOut );
BOOL D3DVBCALL VB_D3DXQuaternionIsIdentity ( const D3DXQUATERNION *pQ );
// (-x, -y, -z, w)
D3DXQUATERNION* D3DVBCALL VB_D3DXQuaternionConjugate ( D3DXQUATERNION *pOut, const D3DXQUATERNION *pQ );
// non-inline
#ifdef __cplusplus
extern "C" { #endif
// Compute a quaternin's axis and angle of rotation. Expects unit quaternions.
void WINAPI VB_D3DXQuaternionToAxisAngle ( const D3DXQUATERNION *pQ, D3DXVECTOR3 *pAxis, float *pAngle );
// Build a quaternion from a rotation matrix.
D3DXQUATERNION* WINAPI VB_D3DXQuaternionRotationMatrix ( D3DXQUATERNION *pOut, const D3DXMATRIX *pM);
// Rotation about arbitrary axis.
D3DXQUATERNION* WINAPI VB_D3DXQuaternionRotationAxis ( D3DXQUATERNION *pOut, const D3DXVECTOR3 *pV, float angle );
// Yaw around the Y axis, a pitch around the X axis,
// and a roll around the Z axis.
D3DXQUATERNION* WINAPI VB_D3DXQuaternionRotationYawPitchRoll ( D3DXQUATERNION *pOut, float yaw, float pitch, float roll );
// Quaternion multiplication. The result represents the rotation Q2
// followed by the rotation Q1. (Out = Q2 * Q1)
D3DXQUATERNION* WINAPI VB_D3DXQuaternionMultiply ( D3DXQUATERNION *pOut, const D3DXQUATERNION *pQ1, const D3DXQUATERNION *pQ2 );
D3DXQUATERNION* WINAPI VB_D3DXQuaternionNormalize ( D3DXQUATERNION *pOut, const D3DXQUATERNION *pQ );
// Conjugate and re-norm
D3DXQUATERNION* WINAPI VB_D3DXQuaternionInverse ( D3DXQUATERNION *pOut, const D3DXQUATERNION *pQ );
// Expects unit quaternions.
// if q = (cos(theta), sin(theta) * v); ln(q) = (0, theta * v)
D3DXQUATERNION* WINAPI VB_D3DXQuaternionLn ( D3DXQUATERNION *pOut, const D3DXQUATERNION *pQ );
// Expects pure quaternions. (w == 0) w is ignored in calculation.
// if q = (0, theta * v); exp(q) = (cos(theta), sin(theta) * v)
D3DXQUATERNION* WINAPI VB_D3DXQuaternionExp ( D3DXQUATERNION *pOut, const D3DXQUATERNION *pQ );
// Spherical linear interpolation between Q1 (s == 0) and Q2 (s == 1).
// Expects unit quaternions.
D3DXQUATERNION* WINAPI VB_D3DXQuaternionSlerp ( D3DXQUATERNION *pOut, const D3DXQUATERNION *pQ1, const D3DXQUATERNION *pQ2, float t );
// Spherical quadrangle interpolation.
// Slerp(Slerp(Q1, Q4, t), Slerp(Q2, Q3, t), 2t(1-t))
D3DXQUATERNION* WINAPI VB_D3DXQuaternionSquad ( D3DXQUATERNION *pOut, const D3DXQUATERNION *pQ1, const D3DXQUATERNION *pQ2, const D3DXQUATERNION *pQ3, const D3DXQUATERNION *pQ4, float t );
// Slerp(Slerp(Q1, Q2, f+g), Slerp(Q1, Q3, f+g), g/(f+g))
D3DXQUATERNION* WINAPI VB_D3DXQuaternionBaryCentric ( D3DXQUATERNION *pOut, const D3DXQUATERNION *pQ1, const D3DXQUATERNION *pQ2, const D3DXQUATERNION *pQ3, float f, float g );
#ifdef __cplusplus
} #endif
//--------------------------
// Plane
//--------------------------
// inline
// ax + by + cz + dw
float D3DVBCALL VB_D3DXPlaneDot ( const D3DXPLANE *pP, const D3DXVECTOR4 *pV);
// ax + by + cz + d
float D3DVBCALL VB_D3DXPlaneDotCoord ( const D3DXPLANE *pP, const D3DXVECTOR3 *pV);
// ax + by + cz
float D3DVBCALL VB_D3DXPlaneDotNormal ( const D3DXPLANE *pP, const D3DXVECTOR3 *pV);
// non-inline
#ifdef __cplusplus
extern "C" { #endif
// Normalize plane (so that |a,b,c| == 1)
D3DXPLANE* WINAPI VB_D3DXPlaneNormalize ( D3DXPLANE *pOut, const D3DXPLANE *pP);
// Find the intersection between a plane and a line. If the line is
// parallel to the plane, NULL is returned.
D3DXVECTOR3* WINAPI VB_D3DXPlaneIntersectLine ( D3DXVECTOR3 *pOut, const D3DXPLANE *pP, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2);
// Construct a plane from a point and a normal
D3DXPLANE* WINAPI VB_D3DXPlaneFromPointNormal ( D3DXPLANE *pOut, const D3DXVECTOR3 *pPoint, const D3DXVECTOR3 *pNormal);
// Construct a plane from 3 points
D3DXPLANE* WINAPI VB_D3DXPlaneFromPoints ( D3DXPLANE *pOut, const D3DXVECTOR3 *pV1, const D3DXVECTOR3 *pV2, const D3DXVECTOR3 *pV3);
// Transform a plane by a matrix. The vector (a,b,c) must be normal.
// M must be an affine transform.
D3DXPLANE* WINAPI VB_D3DXPlaneTransform ( D3DXPLANE *pOut, const D3DXPLANE *pP, const D3DXMATRIX *pM );
#ifdef __cplusplus
} #endif
//--------------------------
// Color
//--------------------------
// inline
// (1-r, 1-g, 1-b, a)
D3DXCOLOR* D3DVBCALL VB_D3DXColorNegative (D3DXCOLOR *pOut, const D3DXCOLOR *pC);
D3DXCOLOR* D3DVBCALL VB_D3DXColorAdd (D3DXCOLOR *pOut, const D3DXCOLOR *pC1, const D3DXCOLOR *pC2);
D3DXCOLOR* D3DVBCALL VB_D3DXColorSubtract (D3DXCOLOR *pOut, const D3DXCOLOR *pC1, const D3DXCOLOR *pC2);
D3DXCOLOR* D3DVBCALL VB_D3DXColorScale (D3DXCOLOR *pOut, const D3DXCOLOR *pC, float s);
// (r1*r2, g1*g2, b1*b2, a1*a2)
D3DXCOLOR* D3DVBCALL VB_D3DXColorModulate (D3DXCOLOR *pOut, const D3DXCOLOR *pC1, const D3DXCOLOR *pC2);
// Linear interpolation of r,g,b, and a. C1 + s(C2-C1)
D3DXCOLOR* D3DVBCALL VB_D3DXColorLerp (D3DXCOLOR *pOut, const D3DXCOLOR *pC1, const D3DXCOLOR *pC2, float s);
// non-inline
#ifdef __cplusplus
extern "C" { #endif
// Interpolate r,g,b between desaturated color and color.
// DesaturatedColor + s(Color - DesaturatedColor)
D3DXCOLOR* WINAPI VB_D3DXColorAdjustSaturation (D3DXCOLOR *pOut, const D3DXCOLOR *pC, float s);
// Interpolate r,g,b between 50% grey and color. Grey + s(Color - Grey)
D3DXCOLOR* WINAPI VB_D3DXColorAdjustContrast (D3DXCOLOR *pOut, const D3DXCOLOR *pC, float c);
#ifdef __cplusplus
} #endif
#pragma warning(default:4201)
#endif // __D3DXMATHVB_H__
|