|
|
/*++
Copyright (c) 1993 Microsoft Corporation
Module Name:
pppframe.c
Abstract:
Author:
Thomas J. Dimitri (TommyD)
Environment:
Revision History:
--*/
#include "asyncall.h"
VOID AssemblePPPFrame( PNDIS_WAN_PACKET WanPacket)
{ PUCHAR pOldFrame; PUCHAR pNewFrame; USHORT crcData; UINT dataSize; PASYNC_INFO pInfo;
//
// Initialize locals
//
pOldFrame = WanPacket->CurrentBuffer;
pNewFrame = WanPacket->StartBuffer;
//
// for quicker access, get a copy of data length field
//
dataSize = WanPacket->CurrentLength;
pInfo = WanPacket->MacReserved1;
//
// Now we run through the entire frame and pad it FORWARDS...
//
// <------------- new frame -----------> (could be twice as large)
// +-----------------------------------+
// | |x|
// +-----------------------------------+
// ^
// <---- old frame --> |
// +-----------------+ |
// | |x| |
// +-----------------+ |
// | |
// \-----------------/
//
// so that we don't overrun ourselves
//
//-----------------------------------------------------------------------
//
// +----------+----------+----------+----------+------------
// | Flag | Address | Control | Protocol | Information
// | 01111110 | 11111111 | 00000011 | 16 bits | *
// +----------+----------+----------+----------+------------
// ---+----------+----------+-----------------
// | FCS | Flag | Inter-frame Fill
// | 16 bits | 01111110 | or next Address
// ---+----------+----------+-----------------
//
//
// Frame Check Sequence (FCS) Field
//
// The Frame Check Sequence field is normally 16 bits (two octets). The
// use of other FCS lengths may be defined at a later time, or by prior
// agreement.
//
// The FCS field is calculated over all bits of the Address, Control,
// Protocol and Information fields not including any start and stop bits
// (asynchronous) and any bits (synchronous) or octets (asynchronous)
// inserted for transparency. This does not include the Flag Sequences
// or the FCS field itself. The FCS is transmitted with the coefficient
// of the highest term first.
//
// Note: When octets are received which are flagged in the Async-
// Control-Character-Map, they are discarded before calculating the
// FCS. See the description in Appendix A.
//
//
// RFC 1331 Point-to-Point Protocol May 1992
// Transparency
//
// On asynchronous links, a character stuffing procedure is used.
// The Control Escape octet is defined as binary 01111101
// (hexadecimal 0x7d) where the bit positions are numbered 87654321
// (not 76543210, BEWARE).
//
// After FCS computation, the transmitter examines the entire frame
// between the two Flag Sequences. Each Flag Sequence, Control
// Escape octet and octet with value less than hexadecimal 0x20 which
// is flagged in the Remote Async-Control-Character-Map is replaced
// by a two octet sequence consisting of the Control Escape octet and
// the original octet with bit 6 complemented (i.e., exclusive-or'd
// with hexadecimal 0x20).
//
// Prior to FCS computation, the receiver examines the entire frame
// between the two Flag Sequences. Each octet with value less than
// hexadecimal 0x20 is checked. If it is flagged in the Local
// Async-Control-Character-Map, it is simply removed (it may have
// been inserted by intervening data communications equipment). For
// each Control Escape octet, that octet is also removed, but bit 6
// of the following octet is complemented. A Control Escape octet
// immediately preceding the closing Flag Sequence indicates an
// invalid frame.
//
// Note: The inclusion of all octets less than hexadecimal 0x20
// allows all ASCII control characters [10] excluding DEL (Delete)
// to be transparently communicated through almost all known data
// communications equipment.
//
//
// The transmitter may also send octets with value in the range 0x40
// through 0xff (except 0x5e) in Control Escape format. Since these
// octet values are not negotiable, this does not solve the problem
// of receivers which cannot handle all non-control characters.
// Also, since the technique does not affect the 8th bit, this does
// not solve problems for communications links that can send only 7-
// bit characters.
//
// A few examples may make this more clear. Packet data is
// transmitted on the link as follows:
//
// 0x7e is encoded as 0x7d, 0x5e.
// 0x7d is encoded as 0x7d, 0x5d.
//
// 0x01 is encoded as 0x7d, 0x21.
//
// Some modems with software flow control may intercept outgoing DC1
// and DC3 ignoring the 8th (parity) bit. This data would be
// transmitted on the link as follows:
//
// 0x11 is encoded as 0x7d, 0x31.
// 0x13 is encoded as 0x7d, 0x33.
// 0x91 is encoded as 0x7d, 0xb1.
// 0x93 is encoded as 0x7d, 0xb3.
//
//
// put CRC from FLAG byte to FLAG byte
//
crcData=CalcCRCPPP(pOldFrame, // Skip FLAG
dataSize); // All the way to end
crcData ^= 0xFFFF;
//
// Do it the hard way to avoid little endian problems.
//
pOldFrame[dataSize]=(UCHAR)(crcData); pOldFrame[dataSize+1]=(UCHAR)(crcData >> 8);
dataSize += 2; // include two CRC bytes we just added
*pNewFrame++ = PPP_FLAG_BYTE; // 0x7e - mark beginning of frame
//
// If we do not have a bitMask (common case), we use a faster loop
//
if (pInfo->ExtendedACCM[0] != 0) { //
// loop to remove all control, ESC, and FLAG chars
//
while (dataSize--) { UCHAR c;
c=*pOldFrame++; // get current byte in frame
//
// Check if we have to escape out this byte or not
//
if ( (0x01 << (c & 0x1F)) & pInfo->ExtendedACCM[c >> 5]) { *pNewFrame++ = PPP_ESC_BYTE; *pNewFrame++ = c ^ 0x20;
} else { *pNewFrame++ = c; } }
} else {
//
// loop to remove all ESC and FLAG chars
//
while (dataSize--) { UCHAR c;
c=*pOldFrame++; // get current byte in frame
//
// Check if we have to escape out this byte or not
//
if (c == PPP_ESC_BYTE || c == PPP_FLAG_BYTE) { *pNewFrame++ = PPP_ESC_BYTE; *pNewFrame++ = c ^ 0x20;
} else { *pNewFrame++ = c; } }
}
//
// Mark end of frame
//
*pNewFrame++= PPP_FLAG_BYTE;
//
// Calc how many bytes we expanded to including CRC
//
WanPacket->CurrentLength = (ULONG)(pNewFrame - WanPacket->StartBuffer);
//
// Put in the adjusted length -- actual num of bytes to send
//
WanPacket->CurrentBuffer = WanPacket->StartBuffer;
}
|