// deque standard header #pragma once #ifndef _DEQUE_ #define _DEQUE_ #include #include #pragma pack(push,8) #pragma warning(push,3) _STD_BEGIN // TEMPLATE CLASS _Deque_map template class _Deque_map { // ultimate base class for deque to hold allocator _Almap protected: _Deque_map(_Alloc _Al) : _Almap(_Al) { // construct allocator from _Al } typedef typename _Alloc::_TEMPLATE_MEMBER rebind<_Ty>::other::pointer _Tptr; typename _Alloc::_TEMPLATE_MEMBER rebind<_Tptr>::other _Almap; // allocator object for maps }; // TEMPLATE CLASS _Deque_val template class _Deque_val : public _Deque_map<_Ty, _Alloc> { // base class for deque to hold allocator _Alval protected: _Deque_val(_Alloc _Al = _Alloc()) : _Deque_map<_Ty, _Alloc>(_Al), _Alval(_Al) { // construct allocator and base from _Al } typedef typename _Alloc::_TEMPLATE_MEMBER rebind<_Ty>::other _Alty; _Alty _Alval; // allocator object for stored elements }; // TEMPLATE CLASS deque template > class deque : public _Deque_val<_Ty, _Ax> { // circular queue of pointers to blocks public: enum { // deque parameters _DEQUEMAPSIZ = 8, /* minimum map size, at least 1 */ _DEQUESIZ = sizeof (_Ty) <= 1 ? 16 : sizeof (_Ty) <= 2 ? 8 : sizeof (_Ty) <= 4 ? 4 : sizeof (_Ty) <= 8 ? 2 : 1}; // elements per block typedef deque<_Ty, _Ax> _Myt; typedef _Deque_val<_Ty, _Ax> _Mybase; typedef typename _Mybase::_Alty _Alloc; typedef _Alloc allocator_type; typedef typename _Alloc::size_type size_type; typedef typename _Alloc::difference_type _Dift; typedef _Dift difference_type; typedef typename _Alloc::pointer _Tptr; typedef typename _Alloc::const_pointer _Ctptr; typedef _Tptr pointer; typedef _Ctptr const_pointer; typedef _POINTER_X(_Tptr, _Alloc) _Mapptr; typedef typename _Alloc::reference _Reft; typedef _Reft reference; typedef typename _Alloc::const_reference const_reference; typedef typename _Alloc::value_type value_type; // CLASS const_iterator class const_iterator; friend class const_iterator; class const_iterator : public _Ranit<_Ty, _Dift, _Ctptr, const_reference> { // iterator for nonmutable deque public: typedef random_access_iterator_tag iterator_category; typedef _Ty value_type; typedef _Dift difference_type; typedef _Ctptr pointer; typedef const_reference reference; const_iterator() : _Myoff(0), _Mydeque(0) { // construct with null deque pointer } const_iterator(difference_type _Off, const deque<_Ty, _Alloc> *_Pdeque) : _Myoff(_Off), _Mydeque(_Pdeque) { // construct with offset _Off in *_Pdeque } const_reference operator*() const { // return designated object size_type _Block = _Myoff / _DEQUESIZ; size_type _Off = _Myoff - _Block * _DEQUESIZ; if (_Mydeque->_Mapsize <= _Block) _Block -= _Mydeque->_Mapsize; return ((_Mydeque->_Map)[_Block][_Off]); } _Ctptr operator->() const { // return pointer to class object return (&**this); } const_iterator& operator++() { // preincrement ++_Myoff; return (*this); } const_iterator operator++(int) { // postincrement const_iterator _Tmp = *this; ++*this; return (_Tmp); } const_iterator& operator--() { // predecrement --_Myoff; return (*this); } const_iterator operator--(int) { // postdecrement const_iterator _Tmp = *this; --*this; return (_Tmp); } const_iterator& operator+=(difference_type _Off) { // increment by integer _Myoff += _Off; return (*this); } const_iterator operator+(difference_type _Off) const { // return this + integer const_iterator _Tmp = *this; return (_Tmp += _Off); } const_iterator& operator-=(difference_type _Off) { // decrement by integer return (*this += -_Off); } const_iterator operator-(difference_type _Off) const { // return this - integer const_iterator _Tmp = *this; return (_Tmp -= _Off); } difference_type operator-(const const_iterator& _Right) const { // return difference of iterators return (_Myoff - _Right._Myoff); } const_reference operator[](difference_type _Off) const { // subscript return (*(*this + _Off)); } bool operator==(const const_iterator& _Right) const { // test for iterator equality return (_Mydeque == _Right._Mydeque && _Myoff == _Right._Myoff); } bool operator!=(const const_iterator& _Right) const { // test for iterator inequality return (!(*this == _Right)); } bool operator<(const const_iterator& _Right) const { // test if this < _Right return (_Myoff < _Right._Myoff); } bool operator>(const const_iterator& _Right) const { // test if this > _Right return (_Right < *this); } bool operator<=(const const_iterator& _Right) const { // test if this <= _Right return (!(_Right < *this)); } bool operator>=(const const_iterator& _Right) const { // test if this >= _Right return (!(*this < _Right)); } friend const_iterator operator+(difference_type _Off, const const_iterator& _Right) { // return iterator + integer return (_Right + _Off); } protected: difference_type _Myoff; // offset of element in deque const deque<_Ty, _Alloc> *_Mydeque; // pointer to deque }; // CLASS iterator class iterator; friend class iterator; class iterator : public const_iterator { // iterator for mutable deque public: typedef random_access_iterator_tag iterator_category; typedef _Ty value_type; typedef _Dift difference_type; typedef _Tptr pointer; typedef _Reft reference; iterator() { // construct with null deque pointer } iterator(difference_type _Off, const deque<_Ty, _Alloc> *_Pdeque) : const_iterator(_Off, _Pdeque) { // construct with offset _Off in *_Pdeque } reference operator*() const { // return designated object size_type _Block = _Myoff / _DEQUESIZ; size_type _Off = _Myoff - _Block * _DEQUESIZ; if (_Mydeque->_Mapsize <= _Block) _Block -= _Mydeque->_Mapsize; return ((_Mydeque->_Map)[_Block][_Off]); } _Tptr operator->() const { // return pointer to class object return (&**this); } iterator& operator++() { // preincrement ++_Myoff; return (*this); } iterator operator++(int) { // postincrement iterator _Tmp = *this; ++*this; return (_Tmp); } iterator& operator--() { // predecrement --_Myoff; return (*this); } iterator operator--(int) { // postdecrement iterator _Tmp = *this; --*this; return (_Tmp); } iterator& operator+=(difference_type _Off) { // increment by integer _Myoff += _Off; return (*this); } iterator operator+(difference_type _Off) const { // return this + integer iterator _Tmp = *this; return (_Tmp += _Off); } iterator& operator-=(difference_type _Off) { // decrement by integer return (*this += -_Off); } iterator operator-(difference_type _Off) const { // return this - integer iterator _Tmp = *this; return (_Tmp -= _Off); } difference_type operator-(const iterator& _Right) const { // return difference of iterators return (_Myoff - _Right._Myoff); } reference operator[](difference_type _Off) const { // subscript return (*(*this + _Off)); } friend iterator operator+(difference_type _Off, const iterator& _Right) { // return iterator + integer return (_Right + _Off); } }; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; deque() : _Mybase(), _Map(0), _Mapsize(0), _Myoff(0), _Mysize(0) { // construct empty deque } explicit deque(const _Alloc& _Al) : _Mybase(_Al), _Map(0), _Mapsize(0), _Myoff(0), _Mysize(0) { // construct empty deque with allocator } explicit deque(size_type _Count) : _Mybase(), _Map(0), _Mapsize(0), _Myoff(0), _Mysize(0) { // construct from _Count * _Ty() _Construct_n(_Count, _Ty()); } deque(size_type _Count, const _Ty& _Val) : _Mybase(), _Map(0), _Mapsize(0), _Myoff(0), _Mysize(0) { // construct from _Count * _Val _Construct_n(_Count, _Val); } deque(size_type _Count, const _Ty& _Val, const _Alloc& _Al) : _Mybase(_Al), _Map(0), _Mapsize(0), _Myoff(0), _Mysize(0) { // construct from _Count * _Val with allocator _Construct_n(_Count, _Val); } deque(const _Myt& _Right) : _Mybase(_Right._Alval), _Map(0), _Mapsize(0), _Myoff(0), _Mysize(0) { // construct by copying _Right _TRY_BEGIN insert(begin(), _Right.begin(), _Right.end()); _CATCH_ALL _Tidy(); _RERAISE; _CATCH_END } template deque(_It _First, _It _Last) : _Mybase(), _Map(0), _Mapsize(0), _Myoff(0), _Mysize(0) { // construct from [_First, _Last) _Construct(_First, _Last, _Iter_cat(_First)); } template deque(_It _First, _It _Last, const _Alloc& _Al) : _Mybase(_Al), _Map(0), _Mapsize(0), _Myoff(0), _Mysize(0) { // construct from [_First, _Last) with allocator _Construct(_First, _Last, _Iter_cat(_First)); } template void _Construct(_It _Count, _It _Val, _Int_iterator_tag) { // initialize from _Count * _Val _Construct_n((size_type)_Count, (_Ty)_Val); } template void _Construct(_It _First, _It _Last, input_iterator_tag) { // initialize from [_First, _Last), input iterators _TRY_BEGIN insert(begin(), _First, _Last); _CATCH_ALL _Tidy(); _RERAISE; _CATCH_END } void _Construct_n(size_type _Count, const _Ty& _Val) { // construct from _Count * _Val _TRY_BEGIN _Insert_n(begin(), _Count, _Val); _CATCH_ALL _Tidy(); _RERAISE; _CATCH_END } ~deque() { // destroy the deque _Tidy(); } _Myt& operator=(const _Myt& _Right) { // assign _Right if (this == &_Right) ; else if (_Right.size() == 0) clear(); else if (_Right.size() <= size()) { // new sequence not longer, assign elements and erase unused iterator _Mid = copy(_Right.begin(), _Right.end(), begin()); erase(_Mid, end()); } else { // new sequence longer, assign elements and append rest const_iterator _Mid = _Right.begin() + size(); copy(_Right.begin(), _Mid, begin()); insert(end(), _Mid, _Right.end()); } return (*this); } iterator begin() { // return iterator for beginning of mutable sequence return (iterator(_Myoff, this)); } const_iterator begin() const { // return iterator for beginning of nonmutable sequence return (const_iterator(_Myoff, this)); } iterator end() { // return iterator for end of mutable sequence return (iterator(_Myoff + _Mysize, this)); } const_iterator end() const { // return iterator for end of nonmutable sequence return (const_iterator(_Myoff + _Mysize, this)); } reverse_iterator rbegin() { // return iterator for beginning of reversed mutable sequence return (reverse_iterator(end())); } const_reverse_iterator rbegin() const { // return iterator for beginning of reversed nonmutable sequence return (const_reverse_iterator(end())); } reverse_iterator rend() { // return iterator for end of reversed mutable sequence return (reverse_iterator(begin())); } const_reverse_iterator rend() const { // return iterator for end of reversed nonmutable sequence return (const_reverse_iterator(begin())); } void resize(size_type _Newsize) { // determine new length, padding with _Ty() elements as needed resize(_Newsize, _Ty()); } void resize(size_type _Newsize, _Ty _Val) { // determine new length, padding with _Val elements as needed if (size() < _Newsize) _Insert_n(end(), _Newsize - size(), _Val); else if (_Newsize < size()) erase(begin() + _Newsize, end()); } size_type size() const { // return length of sequence return (_Mysize); } size_type max_size() const { // return maximum possible length of sequence return (this->_Alval.max_size()); } bool empty() const { // test if sequence is empty return (size() == 0); } allocator_type get_allocator() const { // return allocator object for values return (this->_Alval); } const_reference at(size_type _Pos) const { // subscript nonmutable sequence with checking if (size() <= _Pos) _Xran(); return (*(begin() + _Pos)); } reference at(size_type _Pos) { // subscript mutable sequence with checking if (size() <= _Pos) _Xran(); return (*(begin() + _Pos)); } const_reference operator[](size_type _Pos) const { // subscript nonmutable sequence return (*(begin() + _Pos)); } reference operator[](size_type _Pos) { // subscript mutable sequence return (*(begin() + _Pos)); } reference front() { // return first element of mutable sequence return (*begin()); } const_reference front() const { // return first element of nonmutable sequence return (*begin()); } reference back() { // return last element of mutable sequence return (*(end() - 1)); } const_reference back() const { // return last element of nonmutable sequence return (*(end() - 1)); } void push_front(const _Ty& _Val) { // insert element at beginning if (_Myoff % _DEQUESIZ == 0 && _Mapsize <= (_Mysize + _DEQUESIZ) / _DEQUESIZ) _Growmap(1); size_type _Newoff = _Myoff != 0 ? _Myoff : _Mapsize * _DEQUESIZ; size_type _Block = --_Newoff / _DEQUESIZ; if (_Map[_Block] == 0) _Map[_Block] = this->_Alval.allocate(_DEQUESIZ, (void *)0); this->_Alval.construct(_Map[_Block] + _Newoff % _DEQUESIZ, _Val); _Myoff = _Newoff; ++_Mysize; } void pop_front() { // erase element at beginning if (!empty()) { // something to erase, do it size_type _Block = _Myoff / _DEQUESIZ; this->_Alval.destroy(_Map[_Block] + _Myoff % _DEQUESIZ); if (_Mapsize * _DEQUESIZ <= ++_Myoff) _Myoff = 0; if (--_Mysize == 0) _Myoff = 0; } } void push_back(const _Ty& _Val) { // insert element at end if ((_Myoff + _Mysize) % _DEQUESIZ == 0 && _Mapsize <= (_Mysize + _DEQUESIZ) / _DEQUESIZ) _Growmap(1); size_type _Newoff = _Myoff + _Mysize; size_type _Block = _Newoff / _DEQUESIZ; if (_Mapsize <= _Block) _Block -= _Mapsize; if (_Map[_Block] == 0) _Map[_Block] = this->_Alval.allocate(_DEQUESIZ, (void *)0); this->_Alval.construct(_Map[_Block] + _Newoff % _DEQUESIZ, _Val); ++_Mysize; } void pop_back() { // erase element at end if (!empty()) { // something to erase, do it size_type _Newoff = _Mysize + _Myoff - 1; size_type _Block = _Newoff / _DEQUESIZ; if (_Mapsize <= _Block) _Block -= _Mapsize; this->_Alval.destroy(_Map[_Block] + _Newoff % _DEQUESIZ); if (--_Mysize == 0) _Myoff = 0; } } template void assign(_It _First, _It _Last) { // assign [_First, _Last) _Assign(_First, _Last, _Iter_cat(_First)); } template void _Assign(_It _Count, _It _Val, _Int_iterator_tag) { // assign _Count * _Val _Assign_n((size_type)_Count, (_Ty)_Val); } template void _Assign(_It _First, _It _Last, input_iterator_tag) { // assign [_First, _Last), input iterators erase(begin(), end()); insert(begin(), _First, _Last); } void assign(size_type _Count, const _Ty& _Val) { // assign _Count * _Val _Assign_n(_Count, _Val); } iterator insert(iterator _Where, const _Ty& _Val) { // insert _Val at _Where if (_Where == begin()) { // insert at front push_front(_Val); return (begin()); } else if (_Where == end()) { // insert at back push_back(_Val); return (end() - 1); } else { // insert inside sequence iterator _Mid; size_type _Off = _Where - begin(); _Ty _Tmp = _Val; // in case _Val is in sequence if (_Off < size() / 2) { // closer to front, push to front then copy push_front(front()); _Mid = begin() + _Off; copy(begin() + 2, _Mid + 1, begin() + 1); } else { // closer to back, push to back then copy push_back(back()); _Mid = begin() + _Off; copy_backward(_Mid, end() - 2, end() - 1); } *_Mid = _Tmp; // store inserted value return (_Mid); } } void insert(iterator _Where, size_type _Count, const _Ty& _Val) { // insert _Count * _Val at _Where _Insert_n(_Where, _Count, _Val); } template void insert(iterator _Where, _It _First, _It _Last) { // insert [_First, _Last) at _Where _Insert(_Where, _First, _Last, _Iter_cat(_First)); } template void _Insert(iterator _Where, _It _Count, _It _Val, _Int_iterator_tag) { // insert _Count * _Val at _Where _Insert_n(_Where, (size_type)_Count, (_Ty)_Val); } template void _Insert(iterator _Where, _It _First, _It _Last, input_iterator_tag) { // insert [_First, _Last) at _Where, input iterators size_type _Off = _Where - begin(); for (; _First != _Last; ++_First, ++_Off) insert(begin() + _Off, *_First); } template void _Insert(iterator _Where, _It _First, _It _Last, bidirectional_iterator_tag) { // insert [_First, _Last) at _Where, bidirectional iterators size_type _Count = 0; _Distance(_First, _Last, _Count); size_type _Num; size_type _Off = _Where - begin(); size_type _Rem = _Mysize - _Off; if (_Off < _Rem) if (_Off < _Count) // closer to front { // insert longer than prefix _It _Mid = _First; advance(_Mid, _Count - _Off); for (_It _Next = _Mid; _First != _Next; ) push_front(*--_Next); // push head of insert for (_Num = _Off; 0 < _Num; --_Num) push_front(begin()[_Count - 1]); // push prefix copy(_Mid, _Last, begin() + _Count); // copy rest of insert } else { // insert not longer than prefix for (_Num = _Count; 0 < _Num; --_Num) push_front(begin()[_Count - 1]); // push part of prefix iterator _Mid = begin() + _Count; copy(_Mid + _Count, _Mid + _Off, _Mid); // copy rest of prefix copy(_First, _Last, begin() + _Off); // copy in insert } else if (_Rem < _Count) // closer to back { // insert longer than suffix _It _Mid = _First; advance(_Mid, _Rem); for (_It _Next = _Mid; _Next != _Last; ++_Next) push_back(*_Next); // push tail of insert for (_Num = 0; _Num < _Rem; ++_Num) push_back(begin()[_Off + _Num]); // push suffix copy(_First, _Mid, begin() + _Off); // copy rest of insert } else { // insert not longer than suffix for (_Num = 0; _Num < _Count; ++_Num) push_back(begin()[_Off + _Rem - _Count + _Num]); // push part of suffix iterator _Mid = begin() + _Off; copy_backward(_Mid, _Mid + _Rem - _Count, _Mid + _Rem); // copy rest of prefix copy(_First, _Last, _Mid); // copy in values } } iterator erase(iterator _Where) { // erase element at _Where return (erase(_Where, _Where + 1)); } iterator erase(iterator _First, iterator _Last) { // erase [_First, _Last) size_type _Count = _Last - _First; size_type _Off = _First - begin(); if (_Off < (size_type)(end() - _Last)) { // closer to front copy_backward(begin(), _First, _Last); // copy over hole for (; 0 < _Count; --_Count) pop_front(); // pop copied elements } else { // closer to back copy(_Last, end(), _First); // copy over hole for (; 0 < _Count; --_Count) pop_back(); // pop copied elements } return (_Off == 0 ? begin() : begin() + _Off); } void clear() { // erase all _Tidy(); } void swap(_Myt& _Right) { // exchange contents with _Right if (_Alval == _Right._Alval) { // same allocator, swap control information std::swap(_Map, _Right._Map); std::swap(_Mapsize, _Right._Mapsize); std::swap(_Myoff, _Right._Myoff); std::swap(_Mysize, _Right._Mysize); } else { // different allocator, do multiple assigns _Myt _Ts = *this; *this = _Right, _Right = _Ts; } } protected: void _Assign_n(size_type _Count, const _Ty& _Val) { // assign _Count * _Val _Ty _Tmp = _Val; // in case _Val is in sequence erase(begin(), end()); _Insert_n(begin(), _Count, _Tmp); } void _Insert_n(iterator _Where, size_type _Count, const _Ty& _Val) { // insert _Count * _Val at _Where iterator _Mid; size_type _Num; size_type _Off = _Where - begin(); size_type _Rem = _Mysize - _Off; if (_Off < _Rem) if (_Off < _Count) // closer to front { // insert longer than prefix for (_Num = _Count - _Off; 0 < _Num; --_Num) push_front(_Val); // push excess values for (_Num = _Off; 0 < _Num; --_Num) push_front(begin()[_Count - 1]); // push prefix _Mid = begin() + _Count; fill(_Mid, _Mid + _Off, _Val); // fill in rest of values } else { // insert not longer than prefix for (_Num = _Count; 0 < _Num; --_Num) push_front(begin()[_Count - 1]); // push part of prefix _Mid = begin() + _Count; _Ty _Tmp = _Val; // in case _Val is in sequence copy(_Mid + _Count, _Mid + _Off, _Mid); // copy rest of prefix fill(begin() + _Off, _Mid + _Off, _Tmp); // fill in values } else if (_Rem < _Count) // closer to back { // insert longer than suffix for (_Num = _Count - _Rem; 0 < _Num; --_Num) push_back(_Val); // push excess values for (_Num = 0; _Num < _Rem; ++_Num) push_back(begin()[_Off + _Num]); // push suffix _Mid = begin() + _Off; fill(_Mid, _Mid + _Rem, _Val); // fill in rest of values } else { // insert not longer than prefix for (_Num = 0; _Num < _Count; ++_Num) push_back(begin()[_Off + _Rem - _Count + _Num]); // push part of prefix _Mid = begin() + _Off; _Ty _Tmp = _Val; // in case _Val is in sequence copy_backward(_Mid, _Mid + _Rem - _Count, _Mid + _Rem); // copy rest of prefix fill(_Mid, _Mid + _Count, _Tmp); // fill in values } } void _Xlen() const { // report length error _THROW(length_error, "deque too long"); } void _Xran() const { // report range error _THROW(out_of_range, "invalid deque subscript"); } void _Growmap(size_type _Count) { // grow map by _Count pointers if (max_size() / _DEQUESIZ - _Mapsize < _Count) _Xlen(); // result too long size_type _Inc = _Mapsize / 2; // try to grow by 50% if (_Inc < _DEQUEMAPSIZ) _Inc = _DEQUEMAPSIZ; if (_Count < _Inc && _Mapsize <= max_size() / _DEQUESIZ - _Inc) _Count = _Inc; size_type _Myboff = _Myoff / _DEQUESIZ; _Mapptr _Newmap = this->_Almap.allocate(_Mapsize + _Count, (void *)0); _Mapptr _Myptr = _Newmap + _Myboff; _Myptr = _Uninitialized_copy(_Map + _Myboff, _Map + _Mapsize, _Myptr, _Almap); // copy from initial to end if (_Myboff <= _Count) { // increment greater than offset of initial block _Myptr = _Uninitialized_copy(_Map, _Map + _Myboff, _Myptr, _Almap); // copy rest of old _Uninitialized_fill_n(_Myptr, _Count - _Myboff, (_Tptr)0, _Almap); // clear suffix of new _Uninitialized_fill_n(_Newmap, _Myboff, (_Tptr)0, _Almap); // clear prefix of new } else { // increment not greater than offset of initial block _Uninitialized_copy(_Map, _Map + _Count, _Myptr, _Almap); // copy more old to end _Myptr = _Uninitialized_copy(_Map + _Count, _Map + _Myboff, _Newmap, _Almap); // copy rest of old _Uninitialized_fill_n(_Myptr, _Count, (_Tptr)0, _Almap); // clear rest to initial block } _Destroy_range(_Map + _Myboff, _Map + _Mapsize, _Almap); this->_Almap.deallocate(_Map, _Mapsize); // free storage for old _Map = _Newmap; // point at new _Mapsize += _Count; } void _Tidy() { // free all storage while (!empty()) pop_back(); for (size_type _Count = _Mapsize; 0 < _Count; ) { // free storage for a block and destroy pointer this->_Alval.deallocate(*(_Map + --_Count), _DEQUESIZ); this->_Almap.destroy(_Map + _Count); } this->_Almap.deallocate(_Map, _Mapsize); // free storage for map _Mapsize = 0; _Map = 0; } _Mapptr _Map; // pointer to array of pointers to blocks size_type _Mapsize; // size of map array size_type _Myoff; // offset of initial element size_type _Mysize; // current length of sequence }; // deque TEMPLATE FUNCTIONS template inline bool operator==(const deque<_Ty, _Alloc>& _Left, const deque<_Ty, _Alloc>& _Right) { // test for deque equality return (_Left.size() == _Right.size() && equal(_Left.begin(), _Left.end(), _Right.begin())); } template inline bool operator!=(const deque<_Ty, _Alloc>& _Left, const deque<_Ty, _Alloc>& _Right) { // test for deque inequality return (!(_Left == _Right)); } template inline bool operator<(const deque<_Ty, _Alloc>& _Left, const deque<_Ty, _Alloc>& _Right) { // test if _Left < _Right for deques return (lexicographical_compare(_Left.begin(), _Left.end(), _Right.begin(), _Right.end())); } template inline bool operator<=(const deque<_Ty, _Alloc>& _Left, const deque<_Ty, _Alloc>& _Right) { // test if _Left <= _Right for deques return (!(_Right < _Left)); } template inline bool operator>(const deque<_Ty, _Alloc>& _Left, const deque<_Ty, _Alloc>& _Right) { // test if _Left > _Right for deques return (_Right < _Left); } template inline bool operator>=(const deque<_Ty, _Alloc>& _Left, const deque<_Ty, _Alloc>& _Right) { // test if _Left >= _Right for deques return (!(_Left < _Right)); } template inline void swap(deque<_Ty, _Alloc>& _Left, deque<_Ty, _Alloc>& _Right) { // swap _Left and _Right deques _Left.swap(_Right); } _STD_END #pragma warning(pop) #pragma pack(pop) #endif /* _DEQUE_ */ /* * Copyright (c) 1992-2001 by P.J. Plauger. ALL RIGHTS RESERVED. * Consult your license regarding permissions and restrictions. */ /* * This file is derived from software bearing the following * restrictions: * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this * software and its documentation for any purpose is hereby * granted without fee, provided that the above copyright notice * appear in all copies and that both that copyright notice and * this permission notice appear in supporting documentation. * Hewlett-Packard Company makes no representations about the * suitability of this software for any purpose. It is provided * "as is" without express or implied warranty. V3.10:0009 */