/*++ Copyright (c) 1991 Microsoft Corporation Module Name: hiveinit.c Abstract: Hive initialization code. Author: Bryan M. Willman (bryanwi) 12-Sep-91 Environment: Revision History: Dragos C. Sambotin (dragoss) 25-Jan-99 Implementation of bin-size chunk loading of hives. --*/ #include "cmp.h" VOID HvpFillFileName( PHBASE_BLOCK BaseBlock, PUNICODE_STRING FileName ); #ifdef ALLOC_PRAGMA #pragma alloc_text(PAGE,HvInitializeHive) #pragma alloc_text(PAGE,HvpFillFileName) #pragma alloc_text(PAGE,HvpFreeAllocatedBins) #endif // Dragos: Modified functions VOID HvpFreeAllocatedBins( PHHIVE Hive ) /*++ Routine Description: Free all the bins allocated for the specified hive. It applies only to stable storage. Not all bins are allocated. Those that are not allocated have BinAddress set to 0 Arguments: Hive - supplies a pointer to hive control structure for hive who's bin to free. Return Value: NONE. --*/ { ULONG Length; PHBIN Bin; ULONG MapSlots; ULONG Tables; PHMAP_ENTRY Me; PHMAP_TABLE Tab; ULONG i; ULONG j; // // calculate the number of tables in the map // Length = Hive->Storage[Stable].Length; MapSlots = Length / HBLOCK_SIZE; if( MapSlots > 0 ) { Tables = (MapSlots-1) / HTABLE_SLOTS; } else { Tables = 0; } if( Hive->Storage[Stable].Map ) { // // iterate through the directory // for (i = 0; i <= Tables; i++) { Tab = Hive->Storage[Stable].Map->Directory[i]; ASSERT(Tab); // // iterate through the slots in the directory // for(j=0;jTable[j]); // // BinAddress non-zero means allocated bin // if( Me->BinAddress ) { // // a bin is freed if it is a new alloc AND it resides in paged pool // if( (Me->BinAddress & HMAP_NEWALLOC) && (Me->BinAddress & HMAP_INPAGEDPOOL) ) { Bin = (PHBIN)HBIN_BASE(Me->BinAddress); (Hive->Free)(Bin, HvpGetBinMemAlloc(Hive,Bin,Stable)); } Me->BinAddress = 0; } } } } } NTSTATUS HvInitializeHive( PHHIVE Hive, ULONG OperationType, ULONG HiveFlags, ULONG FileType, PVOID HiveData OPTIONAL, PALLOCATE_ROUTINE AllocateRoutine, PFREE_ROUTINE FreeRoutine, PFILE_SET_SIZE_ROUTINE FileSetSizeRoutine, PFILE_WRITE_ROUTINE FileWriteRoutine, PFILE_READ_ROUTINE FileReadRoutine, PFILE_FLUSH_ROUTINE FileFlushRoutine, ULONG Cluster, PUNICODE_STRING FileName OPTIONAL ) /*++ Routine Description: Initialize a hive. Core HHive fields are always inited. File calls WILL be made BEFORE this call returns. Caller is expected to create/open files and store file handles in a way that can be derived from the hive pointer. Three kinds of initialization can be done, selected by OperationType: HINIT_CREATE Create a new hive from scratch. Will have 0 storage. [Used to do things like create HARDWARE hive and for parts of SaveKey and RestoreKey] HINIT_MEMORY_INPLACE Build a hive control structure which allows read only access to a contiguous in-memory image of a hive. No part of the image will be copied, but a map will be made. [Used by osloader.] HINIT_FLAT Support very limited (read-only, no checking code) operation against a hive image. HINIT_MEMORY Create a new hive, using a hive image already in memory, at address supplied by pointer HiveData. The data will be copied. Caller is expected to free HiveData. [Used for SYSTEM hive] HINIT_FILE Create a hive, reading its data from a file. Recovery processing via log file will be done if a log is available. If a log is recovered, flush and clear operation will proceed. HINIT_MAPFILE Create a hive, reading its data from a file. Data reading is done by mapping views of the file in the system cache. NOTE: The HHive is not a completely opaque structure, because it is really only used by a limited set of code. Do not assume that only this routine sets all of these values. Arguments: Hive - supplies a pointer to hive control structure to be initialized to describe this hive. OperationType - specifies whether to create a new hive from scratch, from a memory image, or by reading a file from disk. HiveFlags - HIVE_VOLATILE - Entire hive is to be volatile, regardless of the types of cells allocated HIVE_NO_LAZY_FLUSH - Data in this hive is never written to disk except by an explicit FlushKey FileType - HFILE_TYPE_*, HFILE_TYPE_LOG set up for logging support respectively. HiveData - if present, supplies a pointer to an in memory image of from which to init the hive. Only useful when OperationType is set to HINIT_MEMORY. AllocateRoutine - supplies a pointer to routine called to allocate memory. WILL be called before this routine returns. FreeRoutine - supplies a pointer to routine called to free memory. CAN be called before this routine returns. FileSetSizeRoutine - supplies a pointer to a routine used to set the size of a file. CAN be called before this routine returns. FileWriteRoutine - supplies a pointer to routine called to write memory to a file. FileReadRoutine - supplies a pointer to routine called to read from a file into memory. CAN be called before this routine returns. FileFlushRoutine - supplies a pointer to routine called to flush a file. Cluster - clustering factor in HSECTOR_SIZE units. (i.e. Size of physical sector in media / HSECTOR_SIZE. 1 for 512 byte physical sectors (or smaller), 2 for 1024, 4 for 2048, etc. (Numbers greater than 8 won't work.) FileName - some path like "...\system32\config\system", last 32 or so characters will be copied into baseblock (and thus to disk) as a debugging aid. May be null. Return Value: NTSTATUS code. --*/ { BOOLEAN UseForIo; PHBASE_BLOCK BaseBlock = NULL; NTSTATUS Status; ULONG i; ULONG Alignment; CmKdPrintEx((DPFLTR_CONFIG_ID,CML_INIT,"HvInitializeHive:\n")); CmKdPrintEx((DPFLTR_CONFIG_ID,CML_INIT,"\tHive=%p\n", Hive)); // // reject invalid parameter combinations // if ( (! ARGUMENT_PRESENT(HiveData)) && ((OperationType == HINIT_MEMORY) || (OperationType == HINIT_FLAT) || (OperationType == HINIT_MEMORY_INPLACE)) ) { return STATUS_INVALID_PARAMETER; } if ( ! ((OperationType == HINIT_CREATE) || (OperationType == HINIT_MEMORY) || (OperationType == HINIT_MEMORY_INPLACE) || (OperationType == HINIT_FLAT) || (OperationType == HINIT_FILE) || (OperationType == HINIT_MAPFILE)) ) { return STATUS_INVALID_PARAMETER; } // // static and global control values // Hive->Signature = HHIVE_SIGNATURE; Hive->Allocate = AllocateRoutine; Hive->Free = FreeRoutine; Hive->FileSetSize = FileSetSizeRoutine; Hive->FileWrite = FileWriteRoutine; Hive->FileRead = FileReadRoutine; Hive->FileFlush = FileFlushRoutine; Hive->Log = (BOOLEAN)((FileType == HFILE_TYPE_LOG) ? TRUE : FALSE); if (Hive->Log && (HiveFlags & HIVE_VOLATILE)) { return STATUS_INVALID_PARAMETER; } Hive->HiveFlags = HiveFlags; if ((Cluster == 0) || (Cluster > HSECTOR_COUNT)) { return STATUS_INVALID_PARAMETER; } Hive->Cluster = Cluster; Hive->RefreshCount = 0; Hive->StorageTypeCount = HTYPE_COUNT; Hive->Storage[Volatile].Length = 0; #ifdef HV_TRACK_FREE_SPACE Hive->Storage[Volatile].FreeStorage = 0; #endif Hive->Storage[Volatile].Map = NULL; Hive->Storage[Volatile].SmallDir = NULL; Hive->Storage[Volatile].Guard = (ULONG)-1; Hive->Storage[Volatile].FreeSummary = 0; InitializeListHead(&Hive->Storage[Volatile].FreeBins); for (i = 0; i < HHIVE_FREE_DISPLAY_SIZE; i++) { RtlInitializeBitMap(&(Hive->Storage[Volatile].FreeDisplay[i].Display), NULL, 0); Hive->Storage[Volatile].FreeDisplay[i].RealVectorSize = 0; } Hive->Storage[Stable].Length = 0; #ifdef HV_TRACK_FREE_SPACE Hive->Storage[Stable].FreeStorage = 0; #endif Hive->Storage[Stable].Map = NULL; Hive->Storage[Stable].SmallDir = NULL; Hive->Storage[Stable].Guard = (ULONG)-1; Hive->Storage[Stable].FreeSummary = 0; InitializeListHead(&Hive->Storage[Stable].FreeBins); for (i = 0; i < HHIVE_FREE_DISPLAY_SIZE; i++) { RtlInitializeBitMap(&(Hive->Storage[Stable].FreeDisplay[i].Display), NULL, 0); Hive->Storage[Stable].FreeDisplay[i].RealVectorSize = 0; } RtlInitializeBitMap(&(Hive->DirtyVector), NULL, 0); Hive->DirtyCount = 0; Hive->DirtyAlloc = 0; Hive->LogSize = 0; Hive->BaseBlockAlloc = sizeof(HBASE_BLOCK); Hive->GetCellRoutine = HvpGetCellPaged; Hive->ReleaseCellRoutine = NULL; Hive->Flat = FALSE; Hive->ReadOnly = FALSE; UseForIo = (BOOLEAN)!(Hive->HiveFlags & HIVE_VOLATILE); // // new create case // if (OperationType == HINIT_CREATE) { BaseBlock = (PHBASE_BLOCK)((Hive->Allocate)(Hive->BaseBlockAlloc, UseForIo,CM_FIND_LEAK_TAG11)); if (BaseBlock == NULL) { return STATUS_INSUFFICIENT_RESOURCES; } // // Make sure the buffer we got back is cluster-aligned. If not, try // harder to get an aligned buffer. // Alignment = Cluster * HSECTOR_SIZE - 1; if (((ULONG_PTR)BaseBlock & Alignment) != 0) { (Hive->Free)(BaseBlock, Hive->BaseBlockAlloc); BaseBlock = (PHBASE_BLOCK)((Hive->Allocate)(PAGE_SIZE, TRUE,CM_FIND_LEAK_TAG12)); if (BaseBlock == NULL) { return STATUS_INSUFFICIENT_RESOURCES; } Hive->BaseBlockAlloc = PAGE_SIZE; } BaseBlock->Signature = HBASE_BLOCK_SIGNATURE; BaseBlock->Sequence1 = 1; BaseBlock->Sequence2 = 1; BaseBlock->TimeStamp.HighPart = 0; BaseBlock->TimeStamp.LowPart = 0; BaseBlock->Major = HSYS_MAJOR; BaseBlock->Minor = HSYS_MINOR; BaseBlock->Type = HFILE_TYPE_PRIMARY; BaseBlock->Format = HBASE_FORMAT_MEMORY; BaseBlock->RootCell = HCELL_NIL; BaseBlock->Length = 0; BaseBlock->Cluster = Cluster; BaseBlock->CheckSum = 0; HvpFillFileName(BaseBlock, FileName); Hive->BaseBlock = BaseBlock; Hive->Version = HSYS_MINOR; Hive->BaseBlock->BootType = 0; return STATUS_SUCCESS; } // // flat image case // if (OperationType == HINIT_FLAT) { Hive->BaseBlock = (PHBASE_BLOCK)HiveData; Hive->Version = Hive->BaseBlock->Minor; Hive->Flat = TRUE; Hive->ReadOnly = TRUE; Hive->GetCellRoutine = HvpGetCellFlat; Hive->Storage[Stable].Length = Hive->BaseBlock->Length; Hive->StorageTypeCount = 1; Hive->BaseBlock->BootType = 0; // don't init this as we don't need it!!! //Status = HvpAdjustHiveFreeDisplay(Hive,Hive->Storage[Stable].Length,Stable); return STATUS_SUCCESS; } // // readonly image case // if (OperationType == HINIT_MEMORY_INPLACE) { BaseBlock = (PHBASE_BLOCK)HiveData; if ( (BaseBlock->Signature != HBASE_BLOCK_SIGNATURE) || (BaseBlock->Type != HFILE_TYPE_PRIMARY) || (BaseBlock->Major != HSYS_MAJOR) || (BaseBlock->Minor > HSYS_MINOR_SUPPORTED) || (BaseBlock->Format != HBASE_FORMAT_MEMORY) || (BaseBlock->Sequence1 != BaseBlock->Sequence2) || (HvpHeaderCheckSum(BaseBlock) != (BaseBlock->CheckSum)) ) { return STATUS_REGISTRY_CORRUPT; } Hive->BaseBlock = BaseBlock; Hive->Version = BaseBlock->Minor; Hive->ReadOnly = TRUE; Hive->StorageTypeCount = 1; Hive->BaseBlock->BootType = 0; Status = HvpAdjustHiveFreeDisplay(Hive,BaseBlock->Length,Stable); if( !NT_SUCCESS(Status) ) { return Status; } if ( !NT_SUCCESS(HvpBuildMap( Hive, (PUCHAR)HiveData + HBLOCK_SIZE ))) { return STATUS_REGISTRY_CORRUPT; } return(STATUS_SUCCESS); } // // memory copy case // if (OperationType == HINIT_MEMORY) { BaseBlock = (PHBASE_BLOCK)HiveData; if ( (BaseBlock->Signature != HBASE_BLOCK_SIGNATURE) || (BaseBlock->Type != HFILE_TYPE_PRIMARY) || (BaseBlock->Format != HBASE_FORMAT_MEMORY) || (BaseBlock->Major != HSYS_MAJOR) || (BaseBlock->Minor > HSYS_MINOR_SUPPORTED) || (HvpHeaderCheckSum(BaseBlock) != (BaseBlock->CheckSum)) ) { return STATUS_REGISTRY_CORRUPT; } Hive->BaseBlock = (PHBASE_BLOCK)((Hive->Allocate)(Hive->BaseBlockAlloc, UseForIo,CM_FIND_LEAK_TAG13)); if (Hive->BaseBlock==NULL) { return(STATUS_INSUFFICIENT_RESOURCES); } // // Make sure the buffer we got back is cluster-aligned. If not, try // harder to get an aligned buffer. // Alignment = Cluster * HSECTOR_SIZE - 1; if (((ULONG_PTR)Hive->BaseBlock & Alignment) != 0) { (Hive->Free)(Hive->BaseBlock, Hive->BaseBlockAlloc); Hive->BaseBlock = (PHBASE_BLOCK)((Hive->Allocate)(PAGE_SIZE, TRUE,CM_FIND_LEAK_TAG14)); if (Hive->BaseBlock == NULL) { return (STATUS_INSUFFICIENT_RESOURCES); } Hive->BaseBlockAlloc = PAGE_SIZE; } RtlCopyMemory(Hive->BaseBlock, BaseBlock, HSECTOR_SIZE); Hive->BaseBlock->BootRecover = BaseBlock->BootRecover; Hive->BaseBlock->BootType = BaseBlock->BootType; Hive->Version = Hive->BaseBlock->Minor; Status = HvpAdjustHiveFreeDisplay(Hive,BaseBlock->Length,Stable); if( !NT_SUCCESS(Status) ) { (Hive->Free)(Hive->BaseBlock, Hive->BaseBlockAlloc); Hive->BaseBlock = NULL; return Status; } if ( !NT_SUCCESS(HvpBuildMapAndCopy(Hive, (PUCHAR)HiveData + HBLOCK_SIZE))) { (Hive->Free)(Hive->BaseBlock, Hive->BaseBlockAlloc); Hive->BaseBlock = NULL; return STATUS_REGISTRY_CORRUPT; } HvpFillFileName(Hive->BaseBlock, FileName); return(STATUS_SUCCESS); } #ifndef CM_ENABLE_MAPPED_VIEWS if( OperationType == HINIT_MAPFILE ) { OperationType = HINIT_FILE; } #endif //CM_ENABLE_MAPPED_VIEWS // // file read case // if (OperationType == HINIT_FILE) { CmKdPrintEx((DPFLTR_CONFIG_ID,CML_BIN_MAP,"HvInitializeHive(%wZ,HINIT_FILE) :\n", FileName)); // // get the file image (possible recovered via log) into memory // Status = HvLoadHive(Hive); if ((Status != STATUS_SUCCESS) && (Status != STATUS_REGISTRY_RECOVERED)) { return Status; } CmKdPrintEx((DPFLTR_CONFIG_ID,CML_BIN_MAP,"\n")); if (Status == STATUS_REGISTRY_RECOVERED) { // // We have a good hive, with a log, and a dirty map, // all set up. Only problem is that we need to flush // the file so the log can be cleared and new writes // posted against the hive. Since we know we have // a good log in hand, we just write the hive image. // if ( ! HvpDoWriteHive(Hive, HFILE_TYPE_PRIMARY)) { // // DRAGOS: Here we need cleanup // Clean up the bins already allocated // HvpFreeAllocatedBins( Hive ); return STATUS_REGISTRY_IO_FAILED; } // // If we get here, we have recovered the hive, and // written it out to disk correctly. So we clear // the log here. // RtlClearAllBits(&(Hive->DirtyVector)); Hive->DirtyCount = 0; (Hive->FileSetSize)(Hive, HFILE_TYPE_LOG, 0,0); Hive->LogSize = 0; } // // slam debug name data into base block // HvpFillFileName(Hive->BaseBlock, FileName); return STATUS_SUCCESS; } // // file map case // if (OperationType == HINIT_MAPFILE) { Hive->GetCellRoutine = HvpGetCellMapped; Hive->ReleaseCellRoutine = HvpReleaseCellMapped; CmKdPrintEx((DPFLTR_CONFIG_ID,CML_BIN_MAP,"HvInitializeHive(%wZ,HINIT_MAPFILE) :\n", FileName)); Status = HvMapHive(Hive); if ((Status != STATUS_SUCCESS) && (Status != STATUS_REGISTRY_RECOVERED)) { return Status; } CmKdPrintEx((DPFLTR_CONFIG_ID,CML_BIN_MAP,"\n")); if (Status == STATUS_REGISTRY_RECOVERED) { // // We have a good hive, with a log, and a dirty map, // all set up. Only problem is that we need to flush // the file so the log can be cleared and new writes // posted against the hive. Since we know we have // a good log in hand, we just write the hive image. // if ( ! HvpDoWriteHive(Hive, HFILE_TYPE_PRIMARY)) { // // DRAGOS: Here we need cleanup // Clean up the bins already allocated // HvpFreeAllocatedBins( Hive ); return STATUS_REGISTRY_IO_FAILED; } // // If we get here, we have recovered the hive, and // written it out to disk correctly. So we clear // the log here. // RtlClearAllBits(&(Hive->DirtyVector)); Hive->DirtyCount = 0; (Hive->FileSetSize)(Hive, HFILE_TYPE_LOG, 0,0); Hive->LogSize = 0; } // // slam debug name data into base block // HvpFillFileName(Hive->BaseBlock, FileName); return STATUS_SUCCESS; } return STATUS_INVALID_PARAMETER; } VOID HvpFillFileName( PHBASE_BLOCK BaseBlock, PUNICODE_STRING FileName ) /*++ Routine Description: Zero out the filename portion of the base block. If FileName is not NULL, copy last 64 bytes into name tail field of base block Arguments: BaseBlock - supplies pointer to a base block FileName - supplies pointer to a unicode STRING Return Value: None. --*/ { ULONG offset; ULONG length; PUCHAR sptr; CmKdPrintEx((DPFLTR_CONFIG_ID,CML_HIVE,"HvpFillFileName: %wZ\n", FileName)); RtlZeroMemory((PVOID)&(BaseBlock->FileName[0]), HBASE_NAME_ALLOC); if (FileName == NULL) { return; } // // Account for 0 at the end, so we have nice debug spews // if (FileName->Length < HBASE_NAME_ALLOC) { offset = 0; length = FileName->Length; } else { offset = FileName->Length - HBASE_NAME_ALLOC + sizeof(WCHAR); length = HBASE_NAME_ALLOC - sizeof(WCHAR); } sptr = (PUCHAR)&(FileName->Buffer[0]); RtlCopyMemory( (PVOID)&(BaseBlock->FileName[0]), (PVOID)&(sptr[offset]), length ); }