/******************************Module*Header*******************************\ * Module Name: enable.c * * This module contains the functions that enable and disable the * driver, the pdev, and the surface. * * Copyright (c) 1992-1994 Microsoft Corporation \**************************************************************************/ #include "precomp.h" /******************************Public*Structure****************************\ * GDIINFO ggdiDefault * * This contains the default GDIINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/ GDIINFO ggdiDefault = { GDI_DRIVER_VERSION, DT_RASDISPLAY, // ulTechnology 0, // ulHorzSize (filled in later) 0, // ulVertSize (filled in later) 0, // ulHorzRes (filled in later) 0, // ulVertRes (filled in later) 0, // cBitsPixel (filled in later) 0, // cPlanes (filled in later) 20, // ulNumColors (palette managed) 0, // flRaster (DDI reserved field) 0, // ulLogPixelsX (filled in later) 0, // ulLogPixelsY (filled in later) TC_RA_ABLE, // flTextCaps -- If we had wanted console windows // to scroll by repainting the entire window, // instead of doing a screen-to-screen blt, we // would have set TC_SCROLLBLT (yes, the flag is // bass-ackwards). 0, // ulDACRed (filled in later) 0, // ulDACGreen (filled in later) 0, // ulDACBlue (filled in later) 0x0024, // ulAspectX 0x0024, // ulAspectY 0x0033, // ulAspectXY (one-to-one aspect ratio) 1, // xStyleStep 1, // yStyleSte; 3, // denStyleStep -- Styles have a one-to-one aspect // ratio, and every 'dot' is 3 pixels long { 0, 0 }, // ptlPhysOffset { 0, 0 }, // szlPhysSize 256, // ulNumPalReg // These fields are for halftone initialization. The actual values are // a bit magic, but seem to work well on our display. { // ciDevice { 6700, 3300, 0 }, // Red { 2100, 7100, 0 }, // Green { 1400, 800, 0 }, // Blue { 1750, 3950, 0 }, // Cyan { 4050, 2050, 0 }, // Magenta { 4400, 5200, 0 }, // Yellow { 3127, 3290, 0 }, // AlignmentWhite 20000, // RedGamma 20000, // GreenGamma 20000, // BlueGamma 0, 0, 0, 0, 0, 0 // No dye correction for raster displays }, 0, // ulDevicePelsDPI (for printers only) PRIMARY_ORDER_CBA, // ulPrimaryOrder HT_PATSIZE_4x4_M, // ulHTPatternSize HT_FORMAT_8BPP, // ulHTOutputFormat HT_FLAG_ADDITIVE_PRIMS, // flHTFlags 0, // ulVRefresh (filled in later) 0, // ulBltAlignment 0, // ulPanningHorzRes (filled in later) 0, // ulPanningVertRes (filled in later) }; /******************************Public*Structure****************************\ * DEVINFO gdevinfoDefault * * This contains the default DEVINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/ #define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\ CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"System"} #define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\ CLIP_STROKE_PRECIS,PROOF_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"} #define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\ CLIP_STROKE_PRECIS,PROOF_QUALITY,\ FIXED_PITCH | FF_DONTCARE, L"Courier"} DEVINFO gdevinfoDefault = { (GCAPS_OPAQUERECT | GCAPS_DITHERONREALIZE | GCAPS_PALMANAGED | GCAPS_ALTERNATEFILL | GCAPS_WINDINGFILL | GCAPS_MONO_DITHER | GCAPS_COLOR_DITHER), // flGraphicsFlags SYSTM_LOGFONT, // lfDefaultFont HELVE_LOGFONT, // lfAnsiVarFont COURI_LOGFONT, // lfAnsiFixFont 0, // cFonts BMF_8BPP, // iDitherFormat 8, // cxDither 8, // cyDither 0 // hpalDefault (filled in later) }; /******************************Public*Structure****************************\ * DFVFN gadrvfn[] * * Build the driver function table gadrvfn with function index/address * pairs. This table tells GDI which DDI calls we support, and their * location (GDI does an indirect call through this table to call us). * * Why haven't we implemented DrvSaveScreenBits? To save code. * * When the driver doesn't hook DrvSaveScreenBits, USER simulates on- * the-fly by creating a temporary device-format-bitmap, and explicitly * calling DrvCopyBits to save/restore the bits. Since we already hook * DrvCreateDeviceBitmap, we'll end up using off-screen memory to store * the bits anyway (which would have been the main reason for implementing * DrvSaveScreenBits). So we may as well save some working set. \**************************************************************************/ #if DBG || !SYNCHRONIZEACCESS_WORKS // On Checked builds, or when we have to synchronize access, thunk // everything through Dbg calls... DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DbgEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) DbgCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) DbgDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) DbgEnableSurface }, { INDEX_DrvDisableSurface, (PFN) DbgDisableSurface }, { INDEX_DrvAssertMode, (PFN) DbgAssertMode }, { INDEX_DrvMovePointer, (PFN) DbgMovePointer }, { INDEX_DrvSetPointerShape, (PFN) DbgSetPointerShape }, { INDEX_DrvDitherColor, (PFN) DbgDitherColor }, { INDEX_DrvSetPalette, (PFN) DbgSetPalette }, { INDEX_DrvCopyBits, (PFN) DbgCopyBits }, { INDEX_DrvBitBlt, (PFN) DbgBitBlt }, { INDEX_DrvTextOut, (PFN) DbgTextOut }, { INDEX_DrvGetModes, (PFN) DbgGetModes }, { INDEX_DrvStrokePath, (PFN) DbgStrokePath }, { INDEX_DrvFillPath, (PFN) DbgFillPath }, { INDEX_DrvPaint, (PFN) DbgPaint }, { INDEX_DrvRealizeBrush, (PFN) DbgRealizeBrush }, { INDEX_DrvCreateDeviceBitmap, (PFN) DbgCreateDeviceBitmap }, { INDEX_DrvDeleteDeviceBitmap, (PFN) DbgDeleteDeviceBitmap }, { INDEX_DrvStretchBlt, (PFN) DbgStretchBlt }, { INDEX_DrvDisableDriver, (PFN) DbgDisableDriver } }; #else // On Free builds, directly call the appropriate functions... DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) DrvEnableSurface }, { INDEX_DrvDisableSurface, (PFN) DrvDisableSurface }, { INDEX_DrvAssertMode, (PFN) DrvAssertMode }, { INDEX_DrvMovePointer, (PFN) DrvMovePointer }, { INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape }, { INDEX_DrvDitherColor, (PFN) DrvDitherColor }, { INDEX_DrvSetPalette, (PFN) DrvSetPalette }, { INDEX_DrvCopyBits, (PFN) DrvCopyBits }, { INDEX_DrvBitBlt, (PFN) DrvBitBlt }, { INDEX_DrvTextOut, (PFN) DrvTextOut }, { INDEX_DrvGetModes, (PFN) DrvGetModes }, { INDEX_DrvStrokePath, (PFN) DrvStrokePath }, { INDEX_DrvFillPath, (PFN) DrvFillPath }, { INDEX_DrvPaint, (PFN) DrvPaint }, { INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush }, { INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap }, { INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap }, { INDEX_DrvStretchBlt, (PFN) DrvStretchBlt }, { INDEX_DrvDisableDriver, (PFN) DrvDisableDriver } }; #endif ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN); /******************************Public*Routine******************************\ * BOOL DrvEnableDriver * * Enables the driver by retrieving the drivers function table and version. * \**************************************************************************/ BOOL DrvEnableDriver( ULONG iEngineVersion, ULONG cj, DRVENABLEDATA* pded) { // Engine Version is passed down so future drivers can support previous // engine versions. A next generation driver can support both the old // and new engine conventions if told what version of engine it is // working with. For the first version the driver does nothing with it. // Fill in as much as we can. if (cj >= sizeof(DRVENABLEDATA)) pded->pdrvfn = gadrvfn; if (cj >= (sizeof(ULONG) * 2)) pded->c = gcdrvfn; // DDI version this driver was targeted for is passed back to engine. // Future graphic's engine may break calls down to old driver format. if (cj >= sizeof(ULONG)) pded->iDriverVersion = DDI_DRIVER_VERSION_NT4; return(TRUE); } /******************************Public*Routine******************************\ * VOID DrvDisableDriver * * Tells the driver it is being disabled. Release any resources allocated in * DrvEnableDriver. * \**************************************************************************/ VOID DrvDisableDriver(VOID) { return; } /******************************Public*Routine******************************\ * DHPDEV DrvEnablePDEV * * Initializes a bunch of fields for GDI, based on the mode we've been asked * to do. This is the first thing called after DrvEnableDriver, when GDI * wants to get some information about us. * \**************************************************************************/ DHPDEV DrvEnablePDEV( DEVMODEW* pdm, // Contains data pertaining to requested mode PWSTR pwszLogAddr, // Logical address ULONG cPat, // Count of standard patterns HSURF* phsurfPatterns, // Buffer for standard patterns ULONG cjCaps, // Size of buffer for device caps 'pdevcaps' ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo' ULONG cjDevInfo, // Number of bytes in device info 'pdi' DEVINFO* pdi, // Device information HDEV hdev, // HDEV, used for callbacks PWSTR pwszDeviceName, // Device name HANDLE hDriver) // Kernel driver handle { PDEV* ppdev; // Future versions of NT had better supply 'devcaps' and 'devinfo' // structures that are the same size or larger than the current // structures: if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO))) { DISPDBG((0, "DrvEnablePDEV - Buffer size too small")); goto ReturnFailure0; } // Allocate a physical device structure. Note that we definitely // rely on the zero initialization: ppdev = (PDEV*) EngAllocMem(FL_ZERO_MEMORY, sizeof(PDEV), ALLOC_TAG); if (ppdev == NULL) { DISPDBG((0, "DrvEnablePDEV - Failed EngAllocMem")); goto ReturnFailure0; } ppdev->hDriver = hDriver; // Get the current screen mode information. Set up device caps and // devinfo: if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializeModeFields")); goto ReturnFailure1; } // Initialize palette information. if (!bInitializePalette(ppdev, pdi)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette")); goto ReturnFailure1; } return((DHPDEV) ppdev); ReturnFailure1: DrvDisablePDEV((DHPDEV) ppdev); ReturnFailure0: DISPDBG((0, "Failed DrvEnablePDEV")); return(0); } /******************************Public*Routine******************************\ * DrvDisablePDEV * * Release the resources allocated in DrvEnablePDEV. If a surface has been * enabled DrvDisableSurface will have already been called. * * Note: In an error, we may call this before DrvEnablePDEV is done. * \**************************************************************************/ VOID DrvDisablePDEV( DHPDEV dhpdev) { PDEV* ppdev; ppdev = (PDEV*) dhpdev; vUninitializePalette(ppdev); EngFreeMem(ppdev); } /******************************Public*Routine******************************\ * VOID DrvCompletePDEV * * Store the HPDEV, the engines handle for this PDEV, in the DHPDEV. * \**************************************************************************/ VOID DrvCompletePDEV( DHPDEV dhpdev, HDEV hdev) { ((PDEV*) dhpdev)->hdevEng = hdev; } /******************************Public*Routine******************************\ * HSURF DrvEnableSurface * * Creates the drawing surface and initializes the hardware. This is called * after DrvEnablePDEV, and performs the final device initialization. * \**************************************************************************/ HSURF DrvEnableSurface( DHPDEV dhpdev) { PDEV* ppdev; HSURF hsurf; SIZEL sizl; DSURF* pdsurf; VOID* pvTmpBuffer; ppdev = (PDEV*) dhpdev; ///////////////////////////////////////////////////////////////////// // First, create our private surface structure. // // Whenever we get a call to draw directly to the screen, we'll get // passed a pointer to a SURFOBJ whose 'dhpdev' field will point // to our PDEV structure, and whose 'dhsurf' field will point to the // following DSURF structure. // // Every device bitmap we create in DrvCreateDeviceBitmap will also // have its own unique DSURF structure allocated (but will share the // same PDEV). To make our code more polymorphic for handling drawing // to either the screen or an off-screen bitmap, we have the same // structure for both. pdsurf = EngAllocMem(FL_ZERO_MEMORY, sizeof(DSURF), ALLOC_TAG); if (pdsurf == NULL) { DISPDBG((0, "DrvEnableSurface - Failed pdsurf EngAllocMem")); goto ReturnFailure; } ppdev->pdsurfScreen = pdsurf; // Remember it for clean-up pdsurf->poh = &ppdev->heap.ohDfb;// The only thing we use this OH node pdsurf->poh->x = 0; // for is its (x, y) location, and pdsurf->poh->y = 0; // 'ohDfb' is otherwise unused pdsurf->dt = DT_SCREEN; // Not to be confused with a DIB DFB pdsurf->sizl.cx = ppdev->cxScreen; pdsurf->sizl.cy = ppdev->cyScreen; pdsurf->ppdev = ppdev; ///////////////////////////////////////////////////////////////////// // Next, have GDI create the actual SURFOBJ. // // Our drawing surface is going to be 'device-managed', meaning that // GDI cannot draw on the framebuffer bits directly, and as such we // create the surface via EngCreateDeviceSurface. By doing this, we ensure // that GDI will only ever access the bitmaps bits via the Drv calls // that we've HOOKed. // // If we could map the entire framebuffer linearly into main memory // (i.e., we didn't have to go through a 64k aperture), it would be // beneficial to create the surface via EngCreateBitmap, giving GDI a // pointer to the framebuffer bits. When we pass a call on to GDI // where it can't directly read/write to the surface bits because the // surface is device managed, it has to create a temporary bitmap and // call our DrvCopyBits routine to get/set a copy of the affected bits. // Fer example, the OpenGl component prefers to be able to write on the // framebuffer bits directly. sizl.cx = ppdev->cxScreen; sizl.cy = ppdev->cyScreen; hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat); if (hsurf == 0) { DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface")); goto ReturnFailure; } ppdev->hsurfScreen = hsurf; // Remember it for clean-up ppdev->bEnabled = TRUE; // We'll soon be in graphics mode ///////////////////////////////////////////////////////////////////// // Now associate the surface and the PDEV. // // We have to associate the surface we just created with our physical // device so that it works. // if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks)) { DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface")); goto ReturnFailure; } // Create our generic temporary buffer, which may be used by any // component. Because this may get swapped out of memory any time // the driver is not active, we want to minimize the number of pages // it takes up. We use 'VirtualAlloc' to get an exactly page-aligned // allocation (which 'EngAllocMem' will not do): pvTmpBuffer = EngAllocMem(0, TMP_BUFFER_SIZE, ALLOC_TAG); if (pvTmpBuffer == NULL) { DISPDBG((0, "DrvEnableSurface - Failed EngAllocMem")); goto ReturnFailure; } ppdev->pvTmpBuffer = pvTmpBuffer; ///////////////////////////////////////////////////////////////////// // Now enable all the subcomponents. // // Note that the order in which these 'Enable' functions are called // may be significant in low off-screen memory conditions, because // the off-screen heap manager may fail some of the later // allocations... // NOTE: It isn't until bEnableHardware that cyMemory is correctly set. if (!bEnableHardware(ppdev)) goto ReturnFailure; if (!bEnableOffscreenHeap(ppdev)) goto ReturnFailure; if (!bEnablePointer(ppdev)) goto ReturnFailure; if (!bEnableText(ppdev)) goto ReturnFailure; if (!bEnableBrushCache(ppdev)) goto ReturnFailure; if (!bEnablePalette(ppdev)) goto ReturnFailure; DISPDBG((5, "Passed DrvEnableSurface")); return(hsurf); ReturnFailure: DrvDisableSurface((DHPDEV) ppdev); DISPDBG((0, "Failed DrvEnableSurface")); return(0); } /******************************Public*Routine******************************\ * VOID DrvDisableSurface * * Free resources allocated by DrvEnableSurface. Release the surface. * * Note: In an error case, we may call this before DrvEnableSurface is * completely done. * \**************************************************************************/ VOID DrvDisableSurface( DHPDEV dhpdev) { PDEV* ppdev; ppdev = (PDEV*) dhpdev; // Note: In an error case, some of the following relies on the // fact that the PDEV is zero-initialized, so fields like // 'hsurfScreen' will be zero unless the surface has been // sucessfully initialized, and makes the assumption that // EngDeleteSurface can take '0' as a parameter. vDisablePalette(ppdev); vDisableBrushCache(ppdev); vDisableText(ppdev); vDisablePointer(ppdev); vDisableOffscreenHeap(ppdev); vDisableHardware(ppdev); EngFreeMem(ppdev->pvTmpBuffer); EngDeleteSurface(ppdev->hsurfScreen); EngFreeMem(ppdev->pdsurfScreen); } /******************************Public*Routine******************************\ * VOID DrvAssertMode * * This asks the device to reset itself to the mode of the pdev passed in. * \**************************************************************************/ BOOL DrvAssertMode( DHPDEV dhpdev, BOOL bEnable) { PDEV* ppdev; ppdev = (PDEV*) dhpdev; if (!bEnable) { ////////////////////////////////////////////////////////////// // Disable - Switch to full-screen mode vAssertModePalette(ppdev, FALSE); vAssertModeBrushCache(ppdev, FALSE); vAssertModeText(ppdev, FALSE); vAssertModePointer(ppdev, FALSE); if (bAssertModeOffscreenHeap(ppdev, FALSE)) { if (bAssertModeHardware(ppdev, FALSE)) { ppdev->bEnabled = FALSE; return(TRUE); } ////////////////////////////////////////////////////////// // We failed to switch to full-screen. So undo everything: bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check } // return code with TRUE vAssertModePointer(ppdev, TRUE); vAssertModeText(ppdev, TRUE); vAssertModeBrushCache(ppdev, TRUE); vAssertModePalette(ppdev, TRUE); } else { ////////////////////////////////////////////////////////////// // Enable - Switch back to graphics mode // We have to enable every subcomponent in the reverse order // in which it was disabled: if (bAssertModeHardware(ppdev, TRUE)) { bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check // return code with TRUE vAssertModePointer(ppdev, TRUE); vAssertModeText(ppdev, TRUE); vAssertModeBrushCache(ppdev, TRUE); vAssertModePalette(ppdev, TRUE); ppdev->bEnabled = TRUE; return(TRUE); } } return(FALSE); } /******************************Public*Routine******************************\ * ULONG DrvGetModes * * Returns the list of available modes for the device. * \**************************************************************************/ ULONG DrvGetModes( HANDLE hDriver, ULONG cjSize, DEVMODEW* pdm) { DWORD cModes; DWORD cbOutputSize; PVIDEO_MODE_INFORMATION pVideoModeInformation; PVIDEO_MODE_INFORMATION pVideoTemp; DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); DWORD cbModeSize; cModes = getAvailableModes(hDriver, (PVIDEO_MODE_INFORMATION *) &pVideoModeInformation, &cbModeSize); if (cModes == 0) { DISPDBG((0, "DrvGetModes failed to get mode information")); return(0); } if (pdm == NULL) { cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); } else { // // Now copy the information for the supported modes back into the // output buffer // cbOutputSize = 0; pVideoTemp = pVideoModeInformation; do { if (pVideoTemp->Length != 0) { if (cOutputModes == 0) { break; } // // Zero the entire structure to start off with. // memset(pdm, 0, sizeof(DEVMODEW)); // // Set the name of the device to the name of the DLL. // memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME)); pdm->dmSpecVersion = DM_SPECVERSION; pdm->dmDriverVersion = DM_SPECVERSION; pdm->dmSize = sizeof(DEVMODEW); pdm->dmDriverExtra = DRIVER_EXTRA_SIZE; pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes * pVideoTemp->BitsPerPlane; pdm->dmPelsWidth = pVideoTemp->VisScreenWidth; pdm->dmPelsHeight = pVideoTemp->VisScreenHeight; pdm->dmDisplayFrequency = pVideoTemp->Frequency; pdm->dmDisplayFlags = 0; pdm->dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT | DM_DISPLAYFREQUENCY | DM_DISPLAYFLAGS ; // // Go to the next DEVMODE entry in the buffer. // cOutputModes--; pdm = (LPDEVMODEW) ( ((ULONG)pdm) + sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); } pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize); } while (--cModes); } EngFreeMem(pVideoModeInformation); return(cbOutputSize); } /******************************Public*Routine******************************\ * BOOL bAssertModeHardware * * Sets the appropriate hardware state for graphics mode or full-screen. * \**************************************************************************/ BOOL bAssertModeHardware( PDEV* ppdev, BOOL bEnable) { DWORD ReturnedDataLength; ULONG ulReturn; if (bEnable) { // Call the miniport via an IOCTL to set the graphics mode. if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ppdev->ulMode, // input buffer sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "bAssertModeHardware - Failed set IOCTL")); return FALSE; } // Then set the rest of the default registers: vResetClipping(ppdev); IO_FIFO_WAIT(ppdev, 1); IO_WRT_MASK(ppdev, -1); } else { // Call the kernel driver to reset the device to a known state. // NTVDM will take things from there: if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_RESET_DEVICE, NULL, 0, NULL, 0, &ulReturn)) { DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL")); return FALSE; } } DISPDBG((5, "Passed bAssertModeHardware")); return(TRUE); } /******************************Public*Routine******************************\ * BOOL bAtiAccelerator * * Returns TRUE if we're running on a Mach8 or compatible accelerator. * This algorithm was taken from "Programmer's Guide to the Mach-8 Extended * Registers Supplement," 1992, ATI Technologies Inc, p. 5-2. * * It seems like a pretty goofy test to me, but it's what they prescribe * to 'specifically detect an ATI accelerator product.' * \**************************************************************************/ BOOL bAtiAccelerator( PDEV* ppdev) { ULONG ulSave; BOOL bAti; bAti = FALSE; ulSave = INPW(0x52ee); OUTPW(0x52ee, 0x5555); IO_GP_WAIT(ppdev); if (INPW(0x52ee) == 0x5555) { OUTPW(0x52ee, 0x2a2a); IO_GP_WAIT(ppdev); if (INPW(0x52ee) == 0x2a2a) { bAti = TRUE; } } // Restore the register's original contents: OUTPW(0x52ee, ulSave); return(bAti); } /******************************Public*Routine******************************\ * BOOL bEnableHardware * * Puts the hardware in the requested mode and initializes it. Also * sets ppdev->cyMemory. * \**************************************************************************/ BOOL bEnableHardware( PDEV* ppdev) { VIDEO_MEMORY VideoMemory; VIDEO_MEMORY_INFORMATION VideoMemoryInfo; DWORD ReturnedDataLength; // Set all the register addresses (to allow easier porting of code // from the S3): ppdev->ioCur_y = CUR_Y; ppdev->ioCur_x = CUR_X; ppdev->ioDesty_axstp = DEST_Y; ppdev->ioDestx_diastp = DEST_X; ppdev->ioErr_term = ERR_TERM; ppdev->ioMaj_axis_pcnt = MAJ_AXIS_PCNT; ppdev->ioGp_stat_cmd = CMD; ppdev->ioShort_stroke = SHORT_STROKE; ppdev->ioBkgd_color = BKGD_COLOR; ppdev->ioFrgd_color = FRGD_COLOR; ppdev->ioWrt_mask = WRT_MASK; ppdev->ioRd_mask = RD_MASK; ppdev->ioColor_cmp = COLOR_CMP; ppdev->ioBkgd_mix = BKGD_MIX; ppdev->ioFrgd_mix = FRGD_MIX; ppdev->ioMulti_function = MULTIFUNC_CNTL; ppdev->ioPix_trans = PIX_TRANS; // Now we can set the mode, unlock the accelerator, and reset the // clipping: if (!bAssertModeHardware(ppdev, TRUE)) goto ReturnFalse; // Get the linear memory address range. VideoMemory.RequestedVirtualAddress = NULL; // About this IOCTL_VIDEO_MAP_VIDEO_MEMORY call. // // Since we're an 8514/A driver, we don't care squat about any stinking // frame buffer mapping. The only reason we're calling this IOCTL // is because we may be running as an 8514/A using the ATI miniport. // And this IOCTL is the only way to get the ATI miniport to return // the total number of scans of video memory. 'cyMemory' is needed // so we can take advantage of as much off-screen memory as possible // for the 2-d heap. It's also conceivable that we're running at // 640x480x256 using the ATI miniport on a 512k card, in which case // we can't just assume that 'cyMemory' was 1024. // // So all we're interested in is the 'VideoRamLength' field returned // in 'VideoMemoryInfo'. Currently, any other side effects of // making this call with the ATI miniport (such as the actual memory // mapping) are inoccuous, and hopefully this will remain to be so in // future ATI miniports. // // If we're running with the 8514/A miniport, this call does nothing // but return 1 meg for the 'FrameLength' size: if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_MAP_VIDEO_MEMORY, &VideoMemory, // input buffer sizeof(VIDEO_MEMORY), &VideoMemoryInfo, // output buffer sizeof(VideoMemoryInfo), &ReturnedDataLength)) { DISPDBG((0, "bEnableHardware - Error mapping buffer address")); goto ReturnFalse; } // All we were interested in is 'VideoMemoryInfo', so unmap the buffer // straight away: VideoMemory.RequestedVirtualAddress = VideoMemoryInfo.FrameBufferBase; EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_UNMAP_VIDEO_MEMORY, &VideoMemory, sizeof(VIDEO_MEMORY), NULL, 0, &ReturnedDataLength); // Note that 8514/A registers cannot handle coordinates any larger // than 1535: ppdev->cyMemory = VideoMemoryInfo.VideoRamLength / ppdev->lDelta; ppdev->cyMemory = min(ppdev->cyMemory, 1535); DISPDBG((0, "Memory size %li x %li.", ppdev->cxMemory, ppdev->cyMemory)); // Set up the jump vectors to our low-level blt routines (which ones are // used depends on whether we can do memory-mapped IO or not): // Have to do IN/OUTs: ppdev->pfnFillSolid = vIoFillSolid; ppdev->pfnFillPat = vIoFillPatSlow; ppdev->pfnXfer4bpp = vIoXfer4bpp; ppdev->pfnXferNative = vIoXferNative; ppdev->pfnCopyBlt = vIoCopyBlt; ppdev->pfnFastLine = vIoFastLine; ppdev->pfnFastFill = bIoFastFill; if (!bAtiAccelerator(ppdev)) { ppdev->pfnXfer1bpp = vIoXfer1bpp; } else { DISPDBG((0, "ATI extensions enabled.")); // Disable vIoMaskCopy() for fixing bug 143531. // ppdev->flCaps |= CAPS_MASKBLT_CAPABLE; ppdev->pfnMaskCopy = vIoMaskCopy; ppdev->pfnXfer1bpp = vIoXfer1bppPacked; } DISPDBG((5, "Passed bEnableHardware")); return(TRUE); ReturnFalse: DISPDBG((0, "Failed bEnableHardware")); return(FALSE); } /******************************Public*Routine******************************\ * VOID vDisableHardware * * Undoes anything done in bEnableHardware. * * Note: In an error case, we may call this before bEnableHardware is * completely done. * \**************************************************************************/ VOID vDisableHardware( PDEV* ppdev) { } /******************************Public*Routine******************************\ * BOOL bDetect8514A * * Detects whether or not an 8514/A compatible adapter is present. * * This code was stolen from the 8514/A miniport. It simply checks to see * if the line-drawing error term register is readable/writable. * \**************************************************************************/ BOOL bDetect8514A() { USHORT SubSysCntlRegisterValue; USHORT ErrTermRegisterValue; USHORT ErrTerm5555; USHORT ErrTermAAAA; BOOL b8514A; // // Remember the original value of any registers we'll muck with. // SubSysCntlRegisterValue = INPW(SUBSYS_CNTL); ErrTermRegisterValue = INPW(ERR_TERM); // // Reset the draw engine. // OUTPW(SUBSYS_CNTL, 0x9000); OUTPW(SUBSYS_CNTL, 0x5000); // // We detect an 8514/A by writing a value to the error term register, // and reading it back to see if it's the same value we wrote. // OUTPW(ERR_TERM, 0x5555); ErrTerm5555 = INPW(ERR_TERM); OUTPW(ERR_TERM, 0xAAAA); ErrTermAAAA = INPW(ERR_TERM); b8514A = ((ErrTerm5555 == 0x5555) && (ErrTermAAAA == 0xAAAA)); // // Now that we're done mucking with the hardware state, we have to // restore everything to the way it was. // OUTPW(ERR_TERM, ErrTermRegisterValue); // // Since the SUBSYS_CNTL register is not readable on a true 8514/A, // don't try to restore it: // if (!b8514A) { OUTPW(SUBSYS_CNTL, SubSysCntlRegisterValue); } return(b8514A); } /******************************Public*Routine******************************\ * BOOL bInitializeModeFields * * Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and * devinfo based on the requested mode. * \**************************************************************************/ BOOL bInitializeModeFields( PDEV* ppdev, GDIINFO* pgdi, DEVINFO* pdi, DEVMODEW* pdm) { ULONG cModes; PVIDEO_MODE_INFORMATION pVideoBuffer; PVIDEO_MODE_INFORMATION pVideoModeSelected; PVIDEO_MODE_INFORMATION pVideoTemp; BOOL bSelectDefault; VIDEO_MODE_INFORMATION VideoModeInformation; ULONG cbModeSize; // Verify that we have an 8514/A display. We do this because we can // work with the ATI miniport, which supports some cards (notably the // Mach64) that aren't 8514/A compatible. if (!bDetect8514A()) { DISPDBG((0, "bInitializeModeFields - 8514/A not detected")); goto ReturnFalse; } // Call the miniport to get mode information cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize); if (cModes == 0) goto ReturnFalse; // Now see if the requested mode has a match in that table. pVideoModeSelected = NULL; pVideoTemp = pVideoBuffer; if ((pdm->dmPelsWidth == 0) && (pdm->dmPelsHeight == 0) && (pdm->dmBitsPerPel == 0) && (pdm->dmDisplayFrequency == 0)) { DISPDBG((1, "Default mode requested")); bSelectDefault = TRUE; } else { DISPDBG((1, "Requested mode...")); DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth)); DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight)); DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel)); DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency)); bSelectDefault = FALSE; } while (cModes--) { if (pVideoTemp->Length != 0) { DISPDBG((2, " Checking against miniport mode:")); DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency)); if (bSelectDefault || ((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) && (pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) && (pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) && (pVideoTemp->Frequency == pdm->dmDisplayFrequency))) { pVideoModeSelected = pVideoTemp; DISPDBG((1, "...Found a mode match!")); break; } } pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize); } // If no mode has been found, return an error if (pVideoModeSelected == NULL) { DISPDBG((1, "...Couldn't find a mode match!")); EngFreeMem(pVideoBuffer); goto ReturnFalse; } // We have chosen the one we want. Save it in a stack buffer and // get rid of allocated memory before we forget to free it. VideoModeInformation = *pVideoModeSelected; EngFreeMem(pVideoBuffer); #if DEBUG_HEAP VideoModeInformation.VisScreenWidth = 640; VideoModeInformation.VisScreenHeight = 480; #endif // Set up screen information from the mini-port: ppdev->ulMode = VideoModeInformation.ModeIndex; ppdev->cxScreen = VideoModeInformation.VisScreenWidth; ppdev->cyScreen = VideoModeInformation.VisScreenHeight; ppdev->lDelta = VideoModeInformation.ScreenStride; ppdev->flCaps = 0; // We've have no capabilities // Note that 8514/A registers cannot handle coordinates any larger // than 1535: ppdev->cxMemory = min(VideoModeInformation.ScreenStride, 1535); // Note: We compute 'cyMemory' later at DrvEnableSurface time. For now, // set cyMemory to an interesting value to aid in debugging: ppdev->cyMemory = 0xdeadbeef; DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride)); ppdev->flHooks = (HOOK_BITBLT | HOOK_TEXTOUT | HOOK_FILLPATH | HOOK_COPYBITS | HOOK_STROKEPATH | HOOK_PAINT | HOOK_STRETCHBLT); // Fill in the GDIINFO data structure with the default 8bpp values: *pgdi = ggdiDefault; // Now overwrite the defaults with the relevant information returned // from the kernel driver: pgdi->ulHorzSize = VideoModeInformation.XMillimeter; pgdi->ulVertSize = VideoModeInformation.YMillimeter; pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulVertRes = VideoModeInformation.VisScreenHeight; pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight; pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane; pgdi->cPlanes = VideoModeInformation.NumberOfPlanes; pgdi->ulVRefresh = VideoModeInformation.Frequency; pgdi->ulDACRed = VideoModeInformation.NumberRedBits; pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits; pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits; pgdi->ulLogPixelsX = pdm->dmLogPixels; pgdi->ulLogPixelsY = pdm->dmLogPixels; // Fill in the devinfo structure with the default 8bpp values: *pdi = gdevinfoDefault; ppdev->cPelSize = 0; ppdev->iBitmapFormat = BMF_8BPP; ppdev->ulWhite = 0xff; // Assuming palette is orthogonal - all colors are same size. ppdev->cPaletteShift = 8 - pgdi->ulDACRed; DISPDBG((5, "Passed bInitializeModeFields")); return(TRUE); ReturnFalse: DISPDBG((0, "Failed bInitializeModeFields")); return(FALSE); } /******************************Public*Routine******************************\ * DWORD getAvailableModes * * Calls the miniport to get the list of modes supported by the kernel driver, * and returns the list of modes supported by the diplay driver among those * * returns the number of entries in the videomode buffer. * 0 means no modes are supported by the miniport or that an error occured. * * NOTE: the buffer must be freed up by the caller. * \**************************************************************************/ DWORD getAvailableModes( HANDLE hDriver, PVIDEO_MODE_INFORMATION* modeInformation, DWORD* cbModeSize) { ULONG ulTemp; VIDEO_NUM_MODES modes; PVIDEO_MODE_INFORMATION pVideoTemp; // // Get the number of modes supported by the mini-port // if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES, NULL, 0, &modes, sizeof(VIDEO_NUM_MODES), &ulTemp)) { DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES")); return(0); } *cbModeSize = modes.ModeInformationLength; // // Allocate the buffer for the mini-port to write the modes in. // *modeInformation = (PVIDEO_MODE_INFORMATION) EngAllocMem(FL_ZERO_MEMORY, modes.NumModes * modes.ModeInformationLength, ALLOC_TAG); if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL) { DISPDBG((0, "getAvailableModes - Failed EngAllocMem")); return 0; } // // Ask the mini-port to fill in the available modes. // if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_AVAIL_MODES, NULL, 0, *modeInformation, modes.NumModes * modes.ModeInformationLength, &ulTemp)) { DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES")); EngFreeMem(*modeInformation); *modeInformation = (PVIDEO_MODE_INFORMATION) NULL; return(0); } // // Now see which of these modes are supported by the display driver. // As an internal mechanism, set the length to 0 for the modes we // DO NOT support. // ulTemp = modes.NumModes; pVideoTemp = *modeInformation; // // Mode is rejected if it is not one plane, or not graphics, or is not // 8 bits per pel. // while (ulTemp--) { if ((pVideoTemp->NumberOfPlanes != 1 ) || !(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) || (pVideoTemp->BitsPerPlane != 8)) { DISPDBG((2, "Rejecting miniport mode:")); DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency)); pVideoTemp->Length = 0; } pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + modes.ModeInformationLength); } return(modes.NumModes); }