#include #include "chorusp.h" #include "Debug.h" #include "clone.h" STD_CREATE(Chorus) ////////////////////////////////////////////////////////////////////////////// // // CDirectSoundChorusDMO::QueryInterface // // Subclass can override if it wants to implement more interfaces. // HRESULT CDirectSoundChorusDMO::NDQueryInterface(REFIID riid, void **ppv) { IMP_DSDMO_QI(riid,ppv); if (riid == IID_IPersist) { return GetInterface((IPersist*)this, ppv); } else if (riid == IID_IMediaObject) { return GetInterface((IMediaObject*)this, ppv); } else if (riid == IID_IDirectSoundFXChorus) { return GetInterface((IDirectSoundFXChorus*)this, ppv); } else if (riid == IID_ISpecifyPropertyPages) { return GetInterface((ISpecifyPropertyPages*)this, ppv); } else if (riid == IID_IMediaParams) { return GetInterface((IMediaParams*)this, ppv); } else if (riid == IID_IMediaParamInfo) { return GetInterface((IMediaParamInfo*)this, ppv); } else return CComBase::NDQueryInterface(riid, ppv); } ////////////////////////////////////////////////////////////////////////////// // // CDirectSoundChorusDMO::CDirectSoundChorusDMO // CDirectSoundChorusDMO::CDirectSoundChorusDMO( IUnknown *pUnk, HRESULT *phr ) : CComBase( pUnk, phr ), m_fDirty(false) // { EAX: put init data here if any (otherwise use Discontinuity). // } EAX { m_EaxSamplesPerSec = 22050; m_DelayLine.Init(0); } ////////////////////////////////////////////////////////////////////////////// // // CDirectSoundChorusDMO::Init() // HRESULT CDirectSoundChorusDMO::Init() { DSFXChorus chorus; HRESULT hr; // Force recalc of all internal parameters // hr = GetAllParameters(&chorus); if (SUCCEEDED(hr)) hr = SetAllParameters(&chorus); if (SUCCEEDED(hr)) hr = m_DelayLine.Init(m_EaxSamplesPerSec); if (SUCCEEDED(hr)) hr = Discontinuity(); return hr; } const MP_CAPS g_capsAll = MP_CAPS_CURVE_JUMP | MP_CAPS_CURVE_LINEAR | MP_CAPS_CURVE_SQUARE | MP_CAPS_CURVE_INVSQUARE | MP_CAPS_CURVE_SINE; static ParamInfo g_params[] = { // index type caps min, max, neutral, unit text, label, pwchText CFP_Wetdrymix, MPT_FLOAT, g_capsAll, DSFXCHORUS_WETDRYMIX_MIN, DSFXCHORUS_WETDRYMIX_MAX, 50, L"%", L"WetDryMix", L"", CFP_Depth, MPT_FLOAT, g_capsAll, DSFXCHORUS_DEPTH_MIN, DSFXCHORUS_DEPTH_MAX, 10, L"", L"Depth", L"", CFP_Frequency, MPT_FLOAT, g_capsAll, DSFXCHORUS_FREQUENCY_MIN, DSFXCHORUS_FREQUENCY_MAX, (float)1.1, L"Hz", L"Frequency", L"", CFP_Waveform, MPT_ENUM, g_capsAll, DSFXCHORUS_WAVE_TRIANGLE, DSFXCHORUS_WAVE_SIN, DSFXCHORUS_WAVE_SIN, L"", L"WaveShape", L"Triangle,Sine", CFP_Phase, MPT_INT, g_capsAll, DSFXCHORUS_PHASE_MIN, DSFXCHORUS_PHASE_MAX, 3, L"", L"Phase", L"", CFP_Feedback, MPT_FLOAT, g_capsAll, DSFXCHORUS_FEEDBACK_MIN, DSFXCHORUS_FEEDBACK_MAX, 25, L"", L"Feedback", L"", CFP_Delay, MPT_FLOAT, g_capsAll, DSFXCHORUS_DELAY_MIN, DSFXCHORUS_DELAY_MAX, 16, L"", L"Delay", L"", }; HRESULT CDirectSoundChorusDMO::InitOnCreation() { HRESULT hr = InitParams(1, &GUID_TIME_REFERENCE, 0, 0, sizeof(g_params)/sizeof(*g_params), g_params); return hr; } ////////////////////////////////////////////////////////////////////////////// // // CDirectSoundChorusDMO::~CDirectSoundChorusDMO // CDirectSoundChorusDMO::~CDirectSoundChorusDMO() { m_DelayLine.Init(-1); } ////////////////////////////////////////////////////////////////////////////// // // CDirectSoundChorusDMO::Clone // STDMETHODIMP CDirectSoundChorusDMO::Clone(IMediaObjectInPlace **pp) { return StandardDMOClone(this, pp); } HRESULT CDirectSoundChorusDMO::Discontinuity() { if (!m_EaxWaveform) { m_LfoState[0] = (float)0.0; m_LfoState[1] = (float)0.5; } else { m_LfoState[0] = (float)0.0; m_LfoState[1] = (float)0.99999999999; } m_DelayLine.ZeroBuffer(); m_DelayFixedPtr = (int)m_EaxDelayCoef; m_DelayL = m_DelayFixedPtr; m_DelayL1 = m_DelayFixedPtr; m_DelayR = m_DelayFixedPtr; m_DelayR1 = m_DelayFixedPtr; return S_OK; } ////////////////////////////////////////////////////////////////////////////// static int LMul [5] = { 1, 1, 1, 1, -1}; static int RMul [5] = { -1, -1, 1, 1, 1}; static int RPhase[5] = { 0, 1, 0, 1, 0}; __forceinline void CDirectSoundChorusDMO::DoOneSample(int *l, int *r) { float inPortL, inPortR; float TempVar; float XWave[2]; // float sinwave, coswave; #define sinwave XWave[0] #define coswave XWave[1] int Pos0, Pos1; int DelayFixedPtr = m_DelayLine.Pos(m_DelayFixedPtr); Pos0 = m_DelayLine.Pos(0); TempVar = m_DelayLine[DelayFixedPtr] * m_EaxFbCoef; inPortL = (float)*l; inPortR = (float)*r; m_DelayLine[Pos0] = TempVar + (inPortL + inPortR) / 2; if (!m_EaxWaveform) { m_LfoState[0] = m_LfoState[0] + m_EaxLfoCoef; if (m_LfoState[0] > 1) m_LfoState[0] -= 2; m_LfoState[1] = m_LfoState[1] + m_EaxLfoCoef; if (m_LfoState[1] > 1) m_LfoState[1] -= 2; sinwave = (float)fabs(m_LfoState[0]); coswave = (float)fabs(m_LfoState[1]); sinwave = -1 + 2 * sinwave; coswave = -1 + 2 * coswave; } else { m_LfoState[0] = m_LfoState[0] + m_EaxLfoCoef * m_LfoState[1]; m_LfoState[1] = m_LfoState[1] - m_EaxLfoCoef * m_LfoState[0]; sinwave = m_LfoState[0]; coswave = m_LfoState[1]; } Pos0 = m_DelayLine.Pos(m_DelayL); Pos1 = m_DelayLine.Pos(m_DelayL1); TempVar = (float)(m_DelayL & FractMask); TempVar /= (float)FractMultiplier; TempVar = Interpolate(m_DelayLine[Pos0], m_DelayLine[Pos1], TempVar); inPortL = Interpolate(inPortL, TempVar, m_EaxWetLevel); // m_DelayL = m_DelayFixedPtr + (int)(sinwave * m_EaxDepthCoef); #if 0 switch (m_EaxPhase) { case 0: case 1: case 2: case 3: m_DelayL = (int)(sinwave * m_EaxDepthCoef); break; case 4: m_DelayL = - (int)(sinwave * m_EaxDepthCoef); break; } #else #ifdef DONTUSEi386 { int x; float f = (sinwave * m_EaxDepthCoef); _asm { fld f fistp x } m_DelayL = LMul[m_EaxPhase] * x; } #else m_DelayL = LMul[m_EaxPhase] * (int)(sinwave * m_EaxDepthCoef); #endif #endif m_DelayL += m_DelayFixedPtr; m_DelayL1 = m_DelayL + FractMultiplier; *l = Saturate(inPortL); Pos0 = m_DelayLine.Pos(m_DelayR); Pos1 = m_DelayLine.Pos(m_DelayR1); TempVar = (float)(m_DelayR & FractMask); TempVar /= (float)FractMultiplier; TempVar = Interpolate(m_DelayLine[Pos0], m_DelayLine[Pos1], TempVar); inPortR = Interpolate(inPortR, TempVar, m_EaxWetLevel); // m_DelayR = m_DelayFixedPtr + (int)(coswave * m_EaxDepthCoef); #if 0 switch (m_EaxPhase) { case 0: m_DelayR = - (int)(sinwave * m_EaxDepthCoef); break; case 1: m_DelayR = - (int)(coswave * m_EaxDepthCoef); break; case 3: m_DelayR = (int)(coswave * m_EaxDepthCoef); break; case 2: case 4: m_DelayR = (int)(sinwave * m_EaxDepthCoef); break; } #else Pos0 = RPhase[m_EaxPhase]; #ifdef DONTUSEi386 { int x; float f = (XWave[Pos0] * m_EaxDepthCoef); _asm { fld f fistp x } m_DelayR = RMul [m_EaxPhase] * x; } #else m_DelayR = RMul [m_EaxPhase] * (int)(XWave[Pos0] * m_EaxDepthCoef); #endif #endif m_DelayR += m_DelayFixedPtr; m_DelayR1 = m_DelayR + FractMultiplier; *r = Saturate(inPortR); m_DelayLine.Bump(); } ////////////////////////////////////////////////////////////////////////////// // // CDirectSoundChorusDMO::FBRProcess // HRESULT CDirectSoundChorusDMO::FBRProcess(DWORD cSamples, BYTE *pIn, BYTE *pOut) { #define cb cSamples #define pin pIn #define pout pOut if (m_cChannels == 1) { if (m_b8bit) { for (;cb > 0; --cb) { int i, j; i = *(pin+0)-128; i *=256; j = i; DoOneSample(&i, &j); i += j; i /= 2; i /= 256; *(pout+0) = (unsigned char)(i + 128); pin += sizeof(unsigned char); pout += sizeof(unsigned char); } } else if (!m_b8bit) { for (;cb > 0; --cb) { // for (;cb > 0; cb -= sizeof(short)) { short int *psi = (short int *)pin; short int *pso = (short int *)pout; int i, j; i = *psi; j = i; DoOneSample(&i, &j); i += j; i /= 2; *pso = (short)i; pin += sizeof(short); pout += sizeof(short); } } } else if (m_cChannels == 2) { if (m_b8bit) { for (;cb > 0; --cb) { // for (;cb > 0; cb -= 2 * sizeof(unsigned char)) { int i, j; i = *(pin+0)-128; j = *(pin+1)-128; i *=256; j *=256; DoOneSample(&i, &j); i /= 256; j /= 256; *(pout+0) = (unsigned char)(i + 128); *(pout+1) = (unsigned char)(j + 128); pin += 2 * sizeof(unsigned char); pout += 2 * sizeof(unsigned char); } } else if (!m_b8bit) { for (;cb > 0; --cb) { // for (;cb > 0; cb -= 2 * sizeof(short)) { short int *psi = (short int *)pin; short int *pso = (short int *)pout; int i, j; i = *(psi+0); j = *(psi+1); DoOneSample(&i, &j); *(pso+0) = (short)i; *(pso+1) = (short)j; pin += 2 * sizeof(short); pout += 2 * sizeof(short); } } } return S_OK; } ////////////////////////////////////////////////////////////////////////////// // // CDirectSoundChorusDMO::ProcessInPlace // HRESULT CDirectSoundChorusDMO::ProcessInPlace(ULONG ulQuanta, LPBYTE pcbData, REFERENCE_TIME rtStart, DWORD dwFlags) { // Update parameter values from any curves that may be in effect. this->UpdateActiveParams(rtStart, *this); return FBRProcess(ulQuanta, pcbData, pcbData); } ////////////////////////////////////////////////////////////////////////////// // // CDirectSoundChorusDMO::SetParamInternal // HRESULT CDirectSoundChorusDMO::SetParamInternal(DWORD dwParamIndex, MP_DATA value, bool fSkipPasssingToParamManager) { long l; if (!m_EaxSamplesPerSec) return DMO_E_TYPE_NOT_ACCEPTED; // NO TYPE! switch (dwParamIndex) { // { EAX case CFP_Wetdrymix : CHECK_PARAM(DSFXCHORUS_WETDRYMIX_MIN, DSFXCHORUS_WETDRYMIX_MAX); PUT_EAX_VALUE(WetLevel, value / 100); break; case CFP_Depth : { CHECK_PARAM(DSFXCHORUS_DEPTH_MIN, DSFXCHORUS_DEPTH_MAX); PUT_EAX_VALUE(Depth, value / 100); double midpoint = m_EaxDelay * m_EaxSamplesPerSec/1000; INTERPOLATE(DepthCoef, (float)((m_EaxDepth * midpoint) / 2) * FractMultiplier); break; } case CFP_Delay : { CHECK_PARAM(DSFXCHORUS_DELAY_MIN, DSFXCHORUS_DELAY_MAX); PUT_EAX_VALUE(Delay, value); double midpoint = m_EaxDelay * m_EaxSamplesPerSec/1000; m_EaxDepthCoef = (float)(((m_EaxDepth * midpoint) / 2) * FractMultiplier); m_EaxDelayCoef = (float)((midpoint + 2) * FractMultiplier); break; } case CFP_Frequency : { CHECK_PARAM(DSFXCHORUS_FREQUENCY_MIN, DSFXCHORUS_FREQUENCY_MAX); PUT_EAX_VALUE(Frequency, value); x: if (!m_EaxWaveform) { INTERPOLATE ( LfoCoef, TOFRACTION(2.0 * (m_EaxFrequency/m_EaxSamplesPerSec) * 1.0) ); } else { INTERPOLATE ( LfoCoef, TOFRACTION(2.0*sin(PI*m_EaxFrequency/m_EaxSamplesPerSec)) ); } break; } case CFP_Waveform : CHECK_PARAM(DSFXCHORUS_WAVE_TRIANGLE, DSFXCHORUS_WAVE_SIN); l = m_EaxWaveform; PUT_EAX_VALUE(Waveform, (long)value); if (l != m_EaxWaveform) { if (!m_EaxWaveform) { m_LfoState[0] = (float)0.0; m_LfoState[1] = (float)0.5; } else { m_LfoState[0] = (float)0.0; m_LfoState[1] = (float)0.99999999999; } } goto x; case CFP_Phase : CHECK_PARAM(DSFXCHORUS_PHASE_MIN, DSFXCHORUS_PHASE_MAX); PUT_EAX_VALUE(Phase, (long)value); break; case CFP_Feedback : CHECK_PARAM(DSFXCHORUS_FEEDBACK_MIN, DSFXCHORUS_FEEDBACK_MAX); PUT_EAX_VALUE(FbCoef, value / 100); // m_EaxFbCoef = TOFRACTION(m_EaxFbCoef); break; // } EAX default: return E_FAIL; } // Let base class set this so it can handle all the rest of the param calls. // Skip the base class if fSkipPasssingToParamManager. This indicates that we're calling the function // internally using valuds that came from the base class -- thus there's no need to tell it values it // already knows. return fSkipPasssingToParamManager ? S_OK : CParamsManager::SetParam(dwParamIndex, value); } ////////////////////////////////////////////////////////////////////////////// // // CDirectSoundChorusDMO::SetAllParameters // STDMETHODIMP CDirectSoundChorusDMO::SetAllParameters(LPCDSFXChorus pChorus) { HRESULT hr = S_OK; // Check that the pointer is not NULL if (pChorus == NULL) { Trace(1,"ERROR: pChorus is NULL\n"); hr = E_POINTER; } // Set the parameters if (SUCCEEDED(hr)) hr = SetParam(CFP_Wetdrymix, pChorus->fWetDryMix); if (SUCCEEDED(hr)) hr = SetParam(CFP_Depth, pChorus->fDepth); if (SUCCEEDED(hr)) hr = SetParam(CFP_Frequency, pChorus->fFrequency); if (SUCCEEDED(hr)) hr = SetParam(CFP_Waveform, (float)pChorus->lWaveform); if (SUCCEEDED(hr)) hr = SetParam(CFP_Phase, (float)pChorus->lPhase); if (SUCCEEDED(hr)) hr = SetParam(CFP_Feedback, pChorus->fFeedback); if (SUCCEEDED(hr)) hr = SetParam(CFP_Delay, pChorus->fDelay); m_fDirty = true; return hr; } ////////////////////////////////////////////////////////////////////////////// // // CDirectSoundChorusDMO::GetAllParameters // STDMETHODIMP CDirectSoundChorusDMO::GetAllParameters(LPDSFXChorus pChorus) { HRESULT hr = S_OK; MP_DATA mpd; if (pChorus == NULL) { return E_POINTER; } #define GET_PARAM(x,y) \ if (SUCCEEDED(hr)) { \ hr = GetParam(x, &mpd); \ if (SUCCEEDED(hr)) pChorus->y = mpd; \ } #define GET_PARAM_LONG(x,y) \ if (SUCCEEDED(hr)) { \ hr = GetParam(x, &mpd); \ if (SUCCEEDED(hr)) pChorus->y = (long)mpd; \ } GET_PARAM(CFP_Wetdrymix, fWetDryMix); GET_PARAM(CFP_Delay, fDelay); GET_PARAM(CFP_Depth, fDepth); GET_PARAM(CFP_Frequency, fFrequency); GET_PARAM_LONG(CFP_Waveform, lWaveform); GET_PARAM_LONG(CFP_Phase, lPhase); GET_PARAM(CFP_Feedback, fFeedback); return hr; } // GetClassID // // Part of the persistent file support. We must supply our class id // which can be saved in a graph file and used on loading a graph with // this fx in it to instantiate this filter via CoCreateInstance. // HRESULT CDirectSoundChorusDMO::GetClassID(CLSID *pClsid) { if (pClsid==NULL) { return E_POINTER; } *pClsid = GUID_DSFX_STANDARD_CHORUS; return NOERROR; } // GetClassID HRESULT CDirectSoundChorusDMO::CheckInputType(const DMO_MEDIA_TYPE *pmt) { HRESULT hr = CPCMDMO::CheckInputType(pmt); if (FAILED(hr)) return hr; WAVEFORMATEX *pWave = (WAVEFORMATEX*)pmt->pbFormat; if (pWave->wFormatTag != WAVE_FORMAT_PCM || (pWave->wBitsPerSample != 8 && pWave->wBitsPerSample != 16) || (pWave->nChannels != 1 && pWave->nChannels != 2)) { return DMO_E_TYPE_NOT_ACCEPTED; } return S_OK; }