//+------------------------------------------------------------------------- // // Microsoft Windows // // Copyright (C) Microsoft Corporation, 1992 - 1999 // // File: queue.cxx // //-------------------------------------------------------------------------- /*++ --*/ #include #include QUEUE::QUEUE ( ) /*++ Routine Description: We will construct an empty queue. --*/ { ALLOCATE_THIS(QUEUE); QueueSlots = InitialQueueSlots; NumberOfQueueSlots = INITIALQUEUESLOTS; EndOfQueue = 0; } QUEUE::~QUEUE ( ) /*++ Routine Desciption: We need to free up the queue slots if they have expanded beyond the initial ones. --*/ { if (QueueSlots != InitialQueueSlots) delete QueueSlots; } int QUEUE::PutOnQueue ( IN void * Item, IN unsigned int Length ) /*++ Routine Description: The item will be placed on the tail of the queue. Arguments: Item - Supplies the item to be placed on the queue. Length - Supplies the length of the item. Return Value: Zero will be returned if everything completes successfully; otherwise, non-zero will be returned indicating an out of memory error. --*/ { QUEUE_ITEM * NewQueueSlots; int Count; if (EndOfQueue == NumberOfQueueSlots) { NewQueueSlots = (QUEUE_ITEM *) new char[ sizeof(QUEUE_ITEM) * NumberOfQueueSlots * 2]; if (NewQueueSlots == 0) return(1); memcpy(NewQueueSlots, QueueSlots, sizeof(QUEUE_ITEM) * NumberOfQueueSlots); if (QueueSlots != InitialQueueSlots) delete QueueSlots; QueueSlots = NewQueueSlots; NumberOfQueueSlots *= 2; } for (Count = EndOfQueue; Count > 0; Count--) { ASSERT(QueueSlots[Count-1].Buffer != Item); QueueSlots[Count] = QueueSlots[Count - 1]; } EndOfQueue += 1; QueueSlots[0].Buffer = Item; QueueSlots[0].BufferLength = Length; return(0); } int QUEUE::PutOnFrontOfQueue ( IN void * Item, IN unsigned int Length ) /*++ Routine Description: The item will be placed on the front of the queue. Arguments: Item - Supplies the item to be placed on the queue. Length - Supplies the length of the item. Return Value: Zero will be returned if everything completes successfully; otherwise, non-zero will be returned indicating an out of memory error. --*/ { QUEUE_ITEM * NewQueueSlots; int Count; if (EndOfQueue == NumberOfQueueSlots) { NewQueueSlots = (QUEUE_ITEM *) new char[ sizeof(QUEUE_ITEM) * NumberOfQueueSlots * 2]; if (NewQueueSlots == 0) return(1); memcpy(NewQueueSlots, QueueSlots, sizeof(QUEUE_ITEM) * NumberOfQueueSlots); if (QueueSlots != InitialQueueSlots) delete QueueSlots; QueueSlots = NewQueueSlots; NumberOfQueueSlots *= 2; } QueueSlots[EndOfQueue].Buffer = Item; QueueSlots[EndOfQueue].BufferLength = Length; EndOfQueue += 1; return(0); } void * QUEUE::TakeOffQueue ( OUT unsigned int * Length ) /*++ Routine Description: This routine will remove an item from the front of the queue and return it. Arguments: Length - Returns the length of the item in the queue. Return Value: If the queue is not empty, the last item in the queue will be returned; otherwise, zero will be returned. --*/ { if (EndOfQueue == 0) return(0); EndOfQueue -= 1; *Length = QueueSlots[EndOfQueue].BufferLength; return(QueueSlots[EndOfQueue].Buffer); } void * QUEUE::TakeOffEndOfQueue ( OUT unsigned int * Length ) /*++ Routine Description: This routine will remove an item from the tail of the queue and return it. Arguments: Length - Returns the length of the item in the queue. Return Value: If the queue is not empty, the last item in the queue will be returned; otherwise, zero will be returned. --*/ { void *Buffer; int Count; if (EndOfQueue == 0) return(0); *Length = QueueSlots[0].BufferLength; Buffer = QueueSlots[0].Buffer; EndOfQueue -= 1; for (Count = 0; Count < EndOfQueue; Count++) { QueueSlots[Count] = QueueSlots[Count + 1]; } return(Buffer); } int QUEUE::FindAndTakeOffQueue ( IN void * Item ) /*++ Routine Description: Searches for a given element on the queue and removes it from the queue if found. Arguments: Return Value: 1 - If the element was found and removed. 0 - Otherwise. --*/ { int Count; int fFound = 0; if (IsQueueEmpty()) { return 0; } for (Count = 0; Count < EndOfQueue; Count++) { if (QueueSlots[Count].Buffer == Item) { fFound = 1; EndOfQueue -= 1; } if (fFound && Count < EndOfQueue) { QueueSlots[Count] = QueueSlots[Count + 1]; } } return fFound; } int QUEUE::MergeWithQueue ( IN QUEUE *pQueue ) /*++ Routine Description: Takes the contents of the second queue and merges it into the first queue. Does not check for duplicates. Does not implement transactional semantics - i.e. if merging fails halfway due to lack of memory, the operation is aborted, and the amount of elements that were transferred remain in the this queue. Appropriate synchronization must be taken care for by the caller. Arguments: pQueue - the queue that we want to merge from. Return Value: 0 - success !0 - failure - out of memory --*/ { unsigned int nLength; void *pQueueElement; while (1) { pQueueElement = pQueue->TakeOffQueue(&nLength); if (pQueueElement == 0) break; if (PutOnQueue(pQueueElement, nLength) != 0) { // guaranteed to succeed since we never decrease buffers pQueue->PutOnFrontOfQueue(pQueueElement, nLength); return 1; } } return 0; } int QUEUE::MergeWithQueueInFront ( IN QUEUE *SourceQueue ) /*++ Routine Description: Takes the contents of the second queue and merges it into the front of first queue. Does not check for duplicates. Does not implement transactional semantics - i.e. if merging fails halfway due to lack of memory, the operation is aborted, and the amount of elements that were transferred remain in the this queue. Appropriate synchronization must be taken care for by the caller. Arguments: SourceQueue - the queue that we want to merge from. Return Value: 0 - success !0 - failure - out of memory --*/ { unsigned int nLength; void *pQueueElement; while (1) { pQueueElement = SourceQueue->TakeOffEndOfQueue(&nLength); if (pQueueElement == 0) break; if (PutOnFrontOfQueue(pQueueElement, nLength) != 0) { // guaranteed to succeed since we never decrease buffers SourceQueue->PutOnFrontOfQueue(pQueueElement, nLength); return 1; } } return 0; }