/******************************Module*Header*******************************\ * Module Name: enable.c * * This module contains the functions that enable and disable the * driver, the pdev, and the surface. * * Copyright (c) 1992-1995 Microsoft Corporation \**************************************************************************/ #include "precomp.h" #if defined(ALPHA) /**************************************************************************\ * BOOL isDense * * This global is used to distinguish dense space from sparse space on the * DEC Alpha in order to use the appropriate method of register access. * \**************************************************************************/ BOOL isDense = TRUE; #endif /******************************Public*Structure****************************\ * GDIINFO ggdiDefault * * This contains the default GDIINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/ GDIINFO ggdiDefault = { GDI_DRIVER_VERSION, // ulVersion DT_RASDISPLAY, // ulTechnology 0, // ulHorzSize (filled in later) 0, // ulVertSize (filled in later) 0, // ulHorzRes (filled in later) 0, // ulVertRes (filled in later) 0, // cBitsPixel (filled in later) 0, // cPlanes (filled in later) 20, // ulNumColors (palette managed) 0, // flRaster (DDI reserved field) 0, // ulLogPixelsX (filled in later) 0, // ulLogPixelsY (filled in later) TC_RA_ABLE, // flTextCaps -- If we had wanted console windows // to scroll by repainting the entire window, // instead of doing a screen-to-screen blt, we // would have set TC_SCROLLBLT (yes, the flag is // bass-ackwards). 0, // ulDACRed (filled in later) 0, // ulDACGreen (filled in later) 0, // ulDACBlue (filled in later) 0x0024, // ulAspectX 0x0024, // ulAspectY 0x0033, // ulAspectXY (one-to-one aspect ratio) 1, // xStyleStep 1, // yStyleSte; 3, // denStyleStep -- Styles have a one-to-one aspect // ratio, and every 'dot' is 3 pixels long { 0, 0 }, // ptlPhysOffset { 0, 0 }, // szlPhysSize 256, // ulNumPalReg // These fields are for halftone initialization. The actual values are // a bit magic, but seem to work well on our display. { // ciDevice { 6700, 3300, 0 }, // Red { 2100, 7100, 0 }, // Green { 1400, 800, 0 }, // Blue { 1750, 3950, 0 }, // Cyan { 4050, 2050, 0 }, // Magenta { 4400, 5200, 0 }, // Yellow { 3127, 3290, 0 }, // AlignmentWhite 20000, // RedGamma 20000, // GreenGamma 20000, // BlueGamma 0, 0, 0, 0, 0, 0 // No dye correction for raster displays }, 0, // ulDevicePelsDPI (for printers only) PRIMARY_ORDER_CBA, // ulPrimaryOrder HT_PATSIZE_4x4_M, // ulHTPatternSize HT_FORMAT_8BPP, // ulHTOutputFormat HT_FLAG_ADDITIVE_PRIMS, // flHTFlags 0, // ulVRefresh 0, // ulPanningHorzRes 0, // ulPanningVertRes 0, // ulBltAlignment }; /******************************Public*Structure****************************\ * DEVINFO gdevinfoDefault * * This contains the default DEVINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/ #define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\ CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"System"} #define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\ CLIP_STROKE_PRECIS,PROOF_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"} #define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\ CLIP_STROKE_PRECIS,PROOF_QUALITY,\ FIXED_PITCH | FF_DONTCARE, L"Courier"} DEVINFO gdevinfoDefault = { (GCAPS_OPAQUERECT | GCAPS_DITHERONREALIZE | GCAPS_PALMANAGED | GCAPS_ALTERNATEFILL | GCAPS_WINDINGFILL | #if TARGET_BUILD > 351 GCAPS_DIRECTDRAW | #endif GCAPS_MONO_DITHER | GCAPS_COLOR_DITHER | GCAPS_ASYNCMOVE), // NOTE: Only enable ASYNCMOVE if your code // and hardware can handle DrvMovePointer // calls at any time, even while another // thread is in the middle of a drawing // call such as DrvBitBlt. // flGraphicsFlags SYSTM_LOGFONT, // lfDefaultFont HELVE_LOGFONT, // lfAnsiVarFont COURI_LOGFONT, // lfAnsiFixFont 0, // cFonts BMF_8BPP, // iDitherFormat 8, // cxDither 8, // cyDither 0 // hpalDefault (filled in later) }; /******************************Public*Structure****************************\ * DFVFN gadrvfn[] * * Build the driver function table gadrvfn with function index/address * pairs. This table tells GDI which DDI calls we support, and their * location (GDI does an indirect call through this table to call us). * * Why haven't we implemented DrvSaveScreenBits? To save code. * * When the driver doesn't hook DrvSaveScreenBits, USER simulates on- * the-fly by creating a temporary device-format-bitmap, and explicitly * calling DrvCopyBits to save/restore the bits. Since we already hook * DrvCreateDeviceBitmap, we'll end up using off-screen memory to store * the bits anyway (which would have been the main reason for implementing * DrvSaveScreenBits). So we may as well save some working set. \**************************************************************************/ #if MULTI_BOARDS // Multi-board support has its own thunks... DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) MulEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) MulCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) MulDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) MulEnableSurface }, { INDEX_DrvDisableSurface, (PFN) MulDisableSurface }, { INDEX_DrvAssertMode, (PFN) MulAssertMode }, { INDEX_DrvMovePointer, (PFN) MulMovePointer }, { INDEX_DrvSetPointerShape, (PFN) MulSetPointerShape }, { INDEX_DrvDitherColor, (PFN) MulDitherColor }, { INDEX_DrvSetPalette, (PFN) MulSetPalette }, { INDEX_DrvCopyBits, (PFN) MulCopyBits }, { INDEX_DrvBitBlt, (PFN) MulBitBlt }, { INDEX_DrvTextOut, (PFN) MulTextOut }, { INDEX_DrvGetModes, (PFN) MulGetModes }, { INDEX_DrvStrokePath, (PFN) MulStrokePath }, { INDEX_DrvFillPath, (PFN) MulFillPath }, { INDEX_DrvPaint, (PFN) MulPaint }, { INDEX_DrvRealizeBrush, (PFN) MulRealizeBrush }, { INDEX_DrvDestroyFont, (PFN) MulDestroyFont }, #if TARGET_BUILD > 351 { INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo }, { INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw }, { INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw }, #endif { INDEX_DrvDisableDriver, (PFN) DrvDisableDriver } // Note that we don't support DrvCreateDeviceBitmap for multi-boards // Note that we don't support DrvDeleteDeviceBitmap for multi-boards // Note that we don't support DrvStretchBlt for multi-boards // Note that we don't support DrvLineTo for multi-boards // Note that we don't support DrvEscape for multi-boards }; #elif DBG // On Checked builds, thunk everything through Dbg calls... DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DbgEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) DbgCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) DbgDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) DbgEnableSurface }, { INDEX_DrvDisableSurface, (PFN) DbgDisableSurface }, { INDEX_DrvAssertMode, (PFN) DbgAssertMode }, { INDEX_DrvMovePointer, (PFN) DbgMovePointer }, { INDEX_DrvSetPointerShape, (PFN) DbgSetPointerShape }, { INDEX_DrvDitherColor, (PFN) DbgDitherColor }, { INDEX_DrvSetPalette, (PFN) DbgSetPalette }, { INDEX_DrvCopyBits, (PFN) DbgCopyBits }, { INDEX_DrvBitBlt, (PFN) DbgBitBlt }, { INDEX_DrvTextOut, (PFN) DbgTextOut }, { INDEX_DrvGetModes, (PFN) DbgGetModes }, { INDEX_DrvStrokePath, (PFN) DbgStrokePath }, #if TARGET_BUILD > 351 { INDEX_DrvLineTo, (PFN) DbgLineTo }, #endif { INDEX_DrvFillPath, (PFN) DbgFillPath }, { INDEX_DrvPaint, (PFN) DbgPaint }, { INDEX_DrvStretchBlt, (PFN) DbgStretchBlt }, { INDEX_DrvRealizeBrush, (PFN) DbgRealizeBrush }, { INDEX_DrvCreateDeviceBitmap, (PFN) DbgCreateDeviceBitmap }, { INDEX_DrvDeleteDeviceBitmap, (PFN) DbgDeleteDeviceBitmap }, { INDEX_DrvDestroyFont, (PFN) DbgDestroyFont }, #if TARGET_BUILD > 351 { INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo }, { INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw }, { INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw }, #endif { INDEX_DrvDisableDriver, (PFN) DbgDisableDriver } }; #else // On Free builds, directly call the appropriate functions... DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) DrvEnableSurface }, { INDEX_DrvDisableSurface, (PFN) DrvDisableSurface }, { INDEX_DrvAssertMode, (PFN) DrvAssertMode }, { INDEX_DrvMovePointer, (PFN) DrvMovePointer }, { INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape }, { INDEX_DrvDitherColor, (PFN) DrvDitherColor }, { INDEX_DrvSetPalette, (PFN) DrvSetPalette }, { INDEX_DrvCopyBits, (PFN) DrvCopyBits }, { INDEX_DrvBitBlt, (PFN) DrvBitBlt }, { INDEX_DrvTextOut, (PFN) DrvTextOut }, { INDEX_DrvGetModes, (PFN) DrvGetModes }, { INDEX_DrvStrokePath, (PFN) DrvStrokePath }, #if TARGET_BUILD > 351 { INDEX_DrvLineTo, (PFN) DrvLineTo }, #endif { INDEX_DrvFillPath, (PFN) DrvFillPath }, { INDEX_DrvPaint, (PFN) DrvPaint }, { INDEX_DrvStretchBlt, (PFN) DrvStretchBlt }, { INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush }, { INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap }, { INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap }, { INDEX_DrvDestroyFont, (PFN) DrvDestroyFont }, #if TARGET_BUILD > 351 { INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo }, { INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw }, { INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw }, #endif { INDEX_DrvDisableDriver, (PFN) DrvDisableDriver } }; #endif ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN); /******************************Public*Routine******************************\ * BOOL DrvEnableDriver * * Enables the driver by retrieving the drivers function table and version. * \**************************************************************************/ BOOL DrvEnableDriver( ULONG iEngineVersion, ULONG cj, DRVENABLEDATA* pded) { // Engine Version is passed down so future drivers can support previous // engine versions. A next generation driver can support both the old // and new engine conventions if told what version of engine it is // working with. For the first version the driver does nothing with it. // Fill in as much as we can. if (cj >= sizeof(DRVENABLEDATA)) pded->pdrvfn = gadrvfn; if (cj >= (sizeof(ULONG) * 2)) pded->c = gcdrvfn; // DDI version this driver was targeted for is passed back to engine. // Future graphic's engine may break calls down to old driver format. if (cj >= sizeof(ULONG)) pded->iDriverVersion = DDI_DRIVER_VERSION_NT4; return(TRUE); } /******************************Public*Routine******************************\ * VOID DrvDisableDriver * * Tells the driver it is being disabled. Release any resources allocated in * DrvEnableDriver. * \**************************************************************************/ VOID DrvDisableDriver(VOID) { return; } /******************************Public*Routine******************************\ * BOOL bInitializeATI * * Initializes some private ATI info. * \**************************************************************************/ BOOL bInitializeATI(PDEV* ppdev) { ENH_VERSION_NT info; ULONG ReturnedDataLength; info.FeatureFlags = 0; info.StructureVersion = 0; info.InterfaceVersion = 0; // Miniport needs these to be zero // Get some adapter information via a private IOCTL call: if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_ATI_GET_VERSION, &info, sizeof(ENH_VERSION_NT), &info, sizeof(ENH_VERSION_NT), &ReturnedDataLength)) { DISPDBG((0, "bInitializeATI - Failed ATI_GET_VERSION")); goto ReturnFalse; } ppdev->FeatureFlags = info.FeatureFlags; ppdev->iAsic = info.ChipIndex; ppdev->iAperture = info.ApertureType; #if defined(ALPHA) if (!(ppdev->FeatureFlags & EVN_DENSE_CAPABLE)) { // Can't use a sparse linear aperture. // Banked aperture is always sparse. // In either case, we execute no-aperture code... ppdev->iAperture = APERTURE_NONE; isDense = FALSE; } #endif if (info.ChipIndex == ASIC_88800GX) { ppdev->iMachType = MACH_MM_64; } else if (info.BusFlag & FL_MM_REGS) { ppdev->iMachType = MACH_MM_32; } else { ppdev->iMachType = MACH_IO_32; } return(TRUE); ReturnFalse: return(FALSE); } /******************************Public*Routine******************************\ * DHPDEV DrvEnablePDEV * * Initializes a bunch of fields for GDI, based on the mode we've been asked * to do. This is the first thing called after DrvEnableDriver, when GDI * wants to get some information about us. * * (This function mostly returns back information; DrvEnableSurface is used * for initializing the hardware and driver components.) * \**************************************************************************/ DHPDEV DrvEnablePDEV( DEVMODEW* pdm, // Contains data pertaining to requested mode PWSTR pwszLogAddr, // Logical address ULONG cPat, // Count of standard patterns HSURF* phsurfPatterns, // Buffer for standard patterns ULONG cjCaps, // Size of buffer for device caps 'pdevcaps' ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo' ULONG cjDevInfo, // Number of bytes in device info 'pdi' DEVINFO* pdi, // Device information #if TARGET_BUILD > 351 HDEV hdev, // Used for callbacks #else PWSTR pwszDataFile, #endif PWSTR pwszDeviceName, // Device name HANDLE hDriver) // Kernel driver handle { PDEV* ppdev; // Future versions of NT had better supply 'devcaps' and 'devinfo' // structures that are the same size or larger than the current // structures: if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO))) { DISPDBG((0, "DrvEnablePDEV - Buffer size too small")); goto ReturnFailure0; } // Allocate a physical device structure. Note that we definitely // rely on the zero initialization: ppdev = AtiAllocMem(LPTR, FL_ZERO_MEMORY, sizeof(PDEV)); if (ppdev == NULL) { DISPDBG((0, "DrvEnablePDEV - Failed AtiAllocMem")); goto ReturnFailure0; } ppdev->hDriver = hDriver; // Do some private ATI-specific initialization: if (!bInitializeATI(ppdev)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializeATI")); goto ReturnFailure1; } // Get the current screen mode information. Set up device caps and // devinfo: if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializeModeFields")); goto ReturnFailure1; } // Initialize palette information. if (!bInitializePalette(ppdev, pdi)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette")); goto ReturnFailure1; } return((DHPDEV) ppdev); ReturnFailure1: DrvDisablePDEV((DHPDEV) ppdev); ReturnFailure0: DISPDBG((0, "Failed DrvEnablePDEV")); return(0); } /******************************Public*Routine******************************\ * DrvDisablePDEV * * Release the resources allocated in DrvEnablePDEV. If a surface has been * enabled DrvDisableSurface will have already been called. * * Note that this function will be called when previewing modes in the * Display Applet, but not at system shutdown. If you need to reset the * hardware at shutdown, you can do it in the miniport by providing a * 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure. * * Note: In an error, we may call this before DrvEnablePDEV is done. * \**************************************************************************/ VOID DrvDisablePDEV( DHPDEV dhpdev) { PDEV* ppdev; ppdev = (PDEV*) dhpdev; vUninitializePalette(ppdev); AtiFreeMem(ppdev); } /******************************Public*Routine******************************\ * VOID DrvCompletePDEV * * Store the HPDEV, the engines handle for this PDEV, in the DHPDEV. * \**************************************************************************/ VOID DrvCompletePDEV( DHPDEV dhpdev, HDEV hdev) { ((PDEV*) dhpdev)->hdevEng = hdev; } /******************************Public*Routine******************************\ * HSURF DrvEnableSurface * * Creates the drawing surface, initializes the hardware, and initializes * driver components. This function is called after DrvEnablePDEV, and * performs the final device initialization. * \**************************************************************************/ HSURF DrvEnableSurface( DHPDEV dhpdev) { PDEV* ppdev; HSURF hsurf; SIZEL sizl; DSURF* pdsurf; VOID* pvTmpBuffer; ppdev = (PDEV*) dhpdev; ///////////////////////////////////////////////////////////////////// // First enable all the subcomponents. // // Note that the order in which these 'Enable' functions are called // may be significant in low off-screen memory conditions, because // the off-screen heap manager may fail some of the later // allocations... if (!bEnableHardware(ppdev)) goto ReturnFailure; if (!bEnableBanking(ppdev)) goto ReturnFailure; if (!bEnableOffscreenHeap(ppdev)) goto ReturnFailure; if (!bEnablePointer(ppdev)) goto ReturnFailure; if (!bEnableText(ppdev)) goto ReturnFailure; if (!bEnableBrushCache(ppdev)) goto ReturnFailure; if (!bEnablePalette(ppdev)) goto ReturnFailure; if (!bEnableDirectDraw(ppdev)) goto ReturnFailure; ///////////////////////////////////////////////////////////////////// // Now create our private surface structure. // // Whenever we get a call to draw directly to the screen, we'll get // passed a pointer to a SURFOBJ whose 'dhpdev' field will point // to our PDEV structure, and whose 'dhsurf' field will point to the // following DSURF structure. // // Every device bitmap we create in DrvCreateDeviceBitmap will also // have its own unique DSURF structure allocated (but will share the // same PDEV). To make our code more polymorphic for handling drawing // to either the screen or an off-screen bitmap, we have the same // structure for both. pdsurf = AtiAllocMem(LPTR, FL_ZERO_MEMORY, sizeof(DSURF)); if (pdsurf == NULL) { DISPDBG((0, "DrvEnableSurface - Failed pdsurf AtiAllocMem")); goto ReturnFailure; } ppdev->pdsurfScreen = pdsurf; // Remember it for clean-up pdsurf->poh = ppdev->pohScreen; // The screen is a surface, too pdsurf->dt = DT_SCREEN; // Not to be confused with a DIB pdsurf->sizl.cx = ppdev->cxScreen; pdsurf->sizl.cy = ppdev->cyScreen; pdsurf->ppdev = ppdev; ///////////////////////////////////////////////////////////////////// // Next, have GDI create the actual SURFOBJ. // // Our drawing surface is going to be 'device-managed', meaning that // GDI cannot draw on the framebuffer bits directly, and as such we // create the surface via EngCreateDeviceSurface. By doing this, we ensure // that GDI will only ever access the bitmaps bits via the Drv calls // that we've HOOKed. // // If we could map the entire framebuffer linearly into main memory // (i.e., we didn't have to go through a 64k aperture), it would be // beneficial to create the surface via EngCreateBitmap, giving GDI a // pointer to the framebuffer bits. When we pass a call on to GDI // where it can't directly read/write to the surface bits because the // surface is device managed, it has to create a temporary bitmap and // call our DrvCopyBits routine to get/set a copy of the affected bits. // Fer example, the OpenGL component prefers to be able to write on the // framebuffer bits directly. sizl.cx = ppdev->cxScreen; sizl.cy = ppdev->cyScreen; // Let GDI manage 24bpp mach32 with linear aperture. if (ppdev->iBitmapFormat == BMF_24BPP && ppdev->iAsic != ASIC_88800GX && ppdev->iAperture == APERTURE_FULL) { hsurf= ppdev->hsurfPunt; // // Also tell GDI that we don't want to be called back. // if (!EngAssociateSurface(hsurf, ppdev->hdevEng, 0)) { DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface")); goto ReturnFailure; } } else { hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat); if (hsurf == 0) { DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface")); goto ReturnFailure; } ppdev->hsurfScreen = hsurf; // Remember it for clean-up ppdev->bEnabled = TRUE; // We'll soon be in graphics mode ///////////////////////////////////////////////////////////////////// // Now associate the surface and the PDEV. // // We have to associate the surface we just created with our physical // device so that GDI can get information related to the PDEV when // it's drawing to the surface (such as, for example, the length of // styles on the device when simulating styled lines). // if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks)) { DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface")); goto ReturnFailure; } } // Create our generic temporary buffer, which may be used by any // component. pvTmpBuffer = AtiAllocMem(LMEM_FIXED, 0, TMP_BUFFER_SIZE); if (pvTmpBuffer == NULL) { DISPDBG((0, "DrvEnableSurface - Failed VirtualAlloc")); goto ReturnFailure; } ppdev->pvTmpBuffer = pvTmpBuffer; DISPDBG((5, "Passed DrvEnableSurface")); return(hsurf); ReturnFailure: DrvDisableSurface((DHPDEV) ppdev); DISPDBG((0, "Failed DrvEnableSurface")); return(0); } /******************************Public*Routine******************************\ * VOID DrvDisableSurface * * Free resources allocated by DrvEnableSurface. Release the surface. * * Note that this function will be called when previewing modes in the * Display Applet, but not at system shutdown. If you need to reset the * hardware at shutdown, you can do it in the miniport by providing a * 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure. * * Note: In an error case, we may call this before DrvEnableSurface is * completely done. * \**************************************************************************/ VOID DrvDisableSurface( DHPDEV dhpdev) { PDEV* ppdev; ppdev = (PDEV*) dhpdev; // Note: In an error case, some of the following relies on the // fact that the PDEV is zero-initialized, so fields like // 'hsurfScreen' will be zero unless the surface has been // sucessfully initialized, and makes the assumption that // EngDeleteSurface can take '0' as a parameter. vDisableDirectDraw(ppdev); vDisablePalette(ppdev); vDisableBrushCache(ppdev); vDisableText(ppdev); vDisablePointer(ppdev); vDisableOffscreenHeap(ppdev); vDisableBanking(ppdev); vDisableHardware(ppdev); AtiFreeMem(ppdev->pvTmpBuffer); EngDeleteSurface(ppdev->hsurfScreen); AtiFreeMem(ppdev->pdsurfScreen); } /******************************Public*Routine******************************\ * VOID DrvAssertMode * * This asks the device to reset itself to the mode of the pdev passed in. * \**************************************************************************/ #if TARGET_BUILD > 351 BOOL DrvAssertMode( #else VOID DrvAssertMode( #endif DHPDEV dhpdev, BOOL bEnable) { PDEV* ppdev; ppdev = (PDEV*) dhpdev; if (!bEnable) { ////////////////////////////////////////////////////////////// // Disable - Switch to full-screen mode vAssertModeDirectDraw(ppdev, FALSE); vAssertModePalette(ppdev, FALSE); vAssertModeBrushCache(ppdev, FALSE); vAssertModeText(ppdev, FALSE); vAssertModePointer(ppdev, FALSE); if (bAssertModeOffscreenHeap(ppdev, FALSE)) { vAssertModeBanking(ppdev, FALSE); if (bAssertModeHardware(ppdev, FALSE)) { ppdev->bEnabled = FALSE; #if TARGET_BUILD > 351 return(TRUE); #else return; #endif } ////////////////////////////////////////////////////////// // We failed to switch to full-screen. So undo everything: vAssertModeBanking(ppdev, TRUE); bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check } // return code with TRUE vAssertModePointer(ppdev, TRUE); vAssertModeText(ppdev, TRUE); vAssertModeBrushCache(ppdev, TRUE); vAssertModePalette(ppdev, TRUE); vAssertModeDirectDraw(ppdev, TRUE); } else { ////////////////////////////////////////////////////////////// // Enable - Switch back to graphics mode // We have to enable every subcomponent in the reverse order // in which it was disabled: #if TARGET_BUILD > 351 if (!bAssertModeHardware(ppdev, TRUE)) { return FALSE; } #else bAssertModeHardware(ppdev, TRUE); #endif vAssertModeBanking(ppdev, TRUE); bAssertModeOffscreenHeap(ppdev, TRUE); // don't need the return vAssertModePointer(ppdev, TRUE); vAssertModeText(ppdev, TRUE); vAssertModeBrushCache(ppdev, TRUE); vAssertModePalette(ppdev, TRUE); vAssertModeDirectDraw(ppdev, TRUE); ppdev->bEnabled = TRUE; #if TARGET_BUILD > 351 return TRUE; #endif } #if TARGET_BUILD > 351 return FALSE; // If we get here, we've failed! #endif } /******************************Public*Routine******************************\ * ULONG DrvGetModes * * Returns the list of available modes for the device. * \**************************************************************************/ ULONG DrvGetModes( HANDLE hDriver, ULONG cjSize, DEVMODEW* pdm) { DWORD cModes; DWORD cbOutputSize; PVIDEO_MODE_INFORMATION pVideoModeInformation; PVIDEO_MODE_INFORMATION pVideoTemp; DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); DWORD cbModeSize; cModes = getAvailableModes(hDriver, (PVIDEO_MODE_INFORMATION *) &pVideoModeInformation, &cbModeSize); if (cModes == 0) { DISPDBG((0, "DrvGetModes failed to get mode information")); return(0); } if (pdm == NULL) { cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); } else { // // Now copy the information for the supported modes back into the // output buffer // cbOutputSize = 0; pVideoTemp = pVideoModeInformation; do { if (pVideoTemp->Length != 0) { if (cOutputModes == 0) { break; } // // Zero the entire structure to start off with. // memset(pdm, 0, sizeof(DEVMODEW)); // // Set the name of the device to the name of the DLL. // memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME)); pdm->dmSpecVersion = DM_SPECVERSION; pdm->dmDriverVersion = DM_SPECVERSION; // // We currently do not support Extra information in the driver // pdm->dmDriverExtra = DRIVER_EXTRA_SIZE; pdm->dmSize = sizeof(DEVMODEW); pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes * pVideoTemp->BitsPerPlane; pdm->dmPelsWidth = pVideoTemp->VisScreenWidth; pdm->dmPelsHeight = pVideoTemp->VisScreenHeight; pdm->dmDisplayFrequency = pVideoTemp->Frequency; #if TARGET_BUILD > 351 pdm->dmDisplayFlags = 0; pdm->dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT | DM_DISPLAYFREQUENCY | DM_DISPLAYFLAGS ; #else if (pVideoTemp->AttributeFlags & VIDEO_MODE_INTERLACED) { pdm->dmDisplayFlags |= DM_INTERLACED; } #endif //DISPDBG((0, "pdm: %4li bpp, %4li x %4li, %4li Hz", //pdm->dmBitsPerPel, pdm->dmPelsWidth, pdm->dmPelsHeight, pdm->dmDisplayFrequency )); // // Go to the next DEVMODE entry in the buffer. // cOutputModes--; pdm = (LPDEVMODEW) ( ((ULONG_PTR)pdm) + sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); } pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize); } while (--cModes); } AtiFreeMem(pVideoModeInformation); return(cbOutputSize); } /******************************Public*Routine******************************\ * BOOL bAssertModeHardware * * Sets the appropriate hardware state for graphics mode or full-screen. * \**************************************************************************/ BOOL bAssertModeHardware( PDEV* ppdev, BOOL bEnable) { DWORD ReturnedDataLength; ULONG ulReturn; if (bEnable) { // Call the miniport via an IOCTL to set the graphics mode. if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ppdev->ulMode, // input buffer sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "bAssertModeHardware - Failed set IOCTL")); return(FALSE); } vResetClipping(ppdev); // Set some Mach64 defaults: if (ppdev->iMachType == MACH_MM_64) { BYTE* pjMmBase; pjMmBase = ppdev->pjMmBase; M64_CHECK_FIFO_SPACE(ppdev, pjMmBase, 1); M64_OD(pjMmBase, DP_PIX_WIDTH, ppdev->ulMonoPixelWidth); vSetDefaultContext(ppdev); } } else { // Call the kernel driver to reset the device to a known state. // NTVDM will take things from there: if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_RESET_DEVICE, NULL, 0, NULL, 0, &ulReturn)) { DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL")); return(FALSE); } } DISPDBG((5, "Passed bAssertModeHardware")); return(TRUE); } /******************************Public*Routine******************************\ * BOOL bEnableHardware * * Puts the hardware in the requested mode and initializes it. * * Note: Should be called before any access is done to the hardware from * the display driver. * \**************************************************************************/ BOOL bEnableHardware( PDEV* ppdev) { BYTE* pjIoBase; VIDEO_PUBLIC_ACCESS_RANGES VideoAccessRange[2]; VIDEO_MEMORY VideoMemory; VIDEO_MEMORY_INFORMATION VideoMemoryInfo; DWORD ReturnedDataLength; ppdev->pjIoBase = NULL; ppdev->pjMmBase = NULL; // Map io ports into virtual memory: if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES, NULL, // input buffer 0, VideoAccessRange, // output buffer sizeof(VideoAccessRange), &ReturnedDataLength)) { DISPDBG((0, "bEnableHardware - Initialization error mapping IO port base")); goto ReturnFalse; } ppdev->pjIoBase = (UCHAR*) VideoAccessRange[0].VirtualAddress; ppdev->pjMmBase_Ext = (BYTE*) VideoAccessRange[1].VirtualAddress; // ------------------------- ATI-specific ---------------------------- // Call the miniport via an IOCTL to set the graphics mode. // Because of a hardware quirk, 4 BPP causes the mach64 to alter its // video memory size when you do a SET_CURRENT_MODE, so we do it here // first so that MAP_VIDEO_MEMORY maps the correct amount of memory. if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ppdev->ulMode, // input buffer sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "bEnableHardware - Failed set IOCTL")); goto ReturnFalse; } ppdev->pModeInfo = AtiAllocMem( LPTR, FL_ZERO_MEMORY, sizeof (ATI_MODE_INFO) ); if( ppdev->pModeInfo == NULL ) { DISPDBG((0, "bEnableHardware - Failed memory allocation" )); goto ReturnFalse; } if( !AtiDeviceIoControl( ppdev->hDriver, IOCTL_VIDEO_ATI_GET_MODE_INFORMATION, ppdev->pModeInfo, sizeof (ATI_MODE_INFO), ppdev->pModeInfo, sizeof (ATI_MODE_INFO), &ReturnedDataLength ) ) { DISPDBG((0, "bEnableHardware - Failed to get ATI-specific mode information" )); goto ReturnFalse; } // Get the linear memory address range. VideoMemory.RequestedVirtualAddress = NULL; if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_MAP_VIDEO_MEMORY, &VideoMemory, // input buffer sizeof(VIDEO_MEMORY), &VideoMemoryInfo, // output buffer sizeof(VideoMemoryInfo), &ReturnedDataLength)) { DISPDBG((0, "bEnableHardware - Error mapping buffer address")); goto ReturnFalse; } // Record the Frame Buffer Linear Address. ppdev->cjBank = VideoMemoryInfo.FrameBufferLength; // 128K VGA Aperture? if (ppdev->cjBank == 0x20000) { ppdev->cjBank = 0x10000; // true banksize is 64K } ppdev->pjScreen = (BYTE*) VideoMemoryInfo.FrameBufferBase; // So we can free it later in vDisableHardware... ppdev->VideoRamBase = (BYTE*) VideoMemoryInfo.VideoRamBase; if (ppdev->iMachType == MACH_MM_64) { ppdev->pjMmBase = (BYTE*) VideoMemoryInfo.VideoRamBase + VideoMemoryInfo.FrameBufferLength - 0x400; } else { ppdev->pjMmBase = (BYTE*) VideoMemoryInfo.FrameBufferBase; } pjIoBase = ppdev->pjIoBase; // We finally have enough information to calculate the dimensions // of on-screen and off-screen memory: ppdev->cxMemory = ppdev->lDelta / ppdev->cjPelSize; ppdev->cyMemory = VideoMemoryInfo.VideoRamLength / ppdev->lDelta; if (VideoMemoryInfo.VideoRamLength <= VideoMemoryInfo.FrameBufferLength) { ppdev->flCaps |= CAPS_LINEAR_FRAMEBUFFER; } ppdev->ulTearOffset = (ULONG)(ppdev->pjScreen - ppdev->VideoRamBase); ppdev->ulVramOffset = ppdev->ulTearOffset/8; if (ppdev->iBitmapFormat != BMF_24BPP) ppdev->ulScreenOffsetAndPitch = PACKPAIR(ppdev->ulVramOffset, ppdev->cxMemory * 8); else ppdev->ulScreenOffsetAndPitch = PACKPAIR(ppdev->ulVramOffset, (ppdev->cxMemory * 3) * 8); // The default pixel width is setup to have monochrome as the // host data path pixel width: switch (ppdev->iBitmapFormat) { case BMF_4BPP: ppdev->ulMonoPixelWidth = 0x00000101; break; case BMF_8BPP: ppdev->ulMonoPixelWidth = 0x00000202; break; case BMF_16BPP: ppdev->ulMonoPixelWidth = 0x00000404; break; case BMF_24BPP: ppdev->ulMonoPixelWidth = 0x01000202; break; case BMF_32BPP: ppdev->ulMonoPixelWidth = 0x00000606; break; } DISPDBG((1, "RamLength = %lxH, lDelta = %li", VideoMemoryInfo.VideoRamLength, ppdev->lDelta)); if ((ppdev->iMachType == MACH_IO_32) || (ppdev->iMachType == MACH_MM_32)) { // The Mach32 and Mach8 can't handle coordinates larger than 1535: ppdev->cyMemory = min(ppdev->cyMemory, 1535); } if (ppdev->iMachType == MACH_MM_32) { // Can do memory-mapped IO: ppdev->pfnFillSolid = vM32FillSolid; ppdev->pfnFillPatColor = vM32FillPatColor; ppdev->pfnFillPatMonochrome = vM32FillPatMonochrome; ppdev->pfnXfer1bpp = vM32Xfer1bpp; ppdev->pfnXfer4bpp = vM32Xfer4bpp; ppdev->pfnXfer8bpp = vM32Xfer8bpp; ppdev->pfnXferNative = vM32XferNative; ppdev->pfnCopyBlt = vM32CopyBlt; ppdev->pfnLineToTrivial = vM32LineToTrivial; if (ppdev->iAsic == ASIC_68800AX) // Timing problem. ppdev->pfnTextOut = bI32TextOut; else ppdev->pfnTextOut = bM32TextOut; ppdev->pfnStretchDIB = bM32StretchDIB; } else if (ppdev->iMachType == MACH_IO_32) { ppdev->pfnFillSolid = vI32FillSolid; ppdev->pfnFillPatColor = vI32FillPatColor; ppdev->pfnFillPatMonochrome = vI32FillPatMonochrome; ppdev->pfnXfer1bpp = vI32Xfer1bpp; ppdev->pfnXfer4bpp = vI32Xfer4bpp; ppdev->pfnXfer8bpp = vI32Xfer8bpp; ppdev->pfnXferNative = vI32XferNative; ppdev->pfnCopyBlt = vI32CopyBlt; ppdev->pfnLineToTrivial = vI32LineToTrivial; ppdev->pfnTextOut = bI32TextOut; ppdev->pfnStretchDIB = bI32StretchDIB; } else { // ppdev->iMachType == MACH_MM_64 ppdev->pfnFillSolid = vM64FillSolid; ppdev->pfnFillPatColor = vM64FillPatColor; ppdev->pfnFillPatMonochrome = vM64FillPatMonochrome; ppdev->pfnXfer1bpp = vM64Xfer1bpp; ppdev->pfnXfer4bpp = vM64Xfer4bpp; ppdev->pfnXfer8bpp = vM64Xfer8bpp; ppdev->pfnXferNative = vM64XferNative; if (!(ppdev->FeatureFlags & EVN_SDRAM_1M)) { ppdev->pfnCopyBlt = vM64CopyBlt; } else { // Special version to fix screen source FIFO bug in VT-A4 // with 1 MB of SDRAM. ppdev->pfnCopyBlt = vM64CopyBlt_VTA4; } ppdev->pfnLineToTrivial = vM64LineToTrivial; ppdev->pfnTextOut = bM64TextOut; ppdev->pfnStretchDIB = bM64StretchDIB; if (ppdev->iBitmapFormat == BMF_24BPP) { ppdev->pfnFillSolid = vM64FillSolid24; ppdev->pfnFillPatColor = vM64FillPatColor24; ppdev->pfnFillPatMonochrome = vM64FillPatMonochrome24; ppdev->pfnXferNative = vM64XferNative24; if (!(ppdev->FeatureFlags & EVN_SDRAM_1M)) { ppdev->pfnCopyBlt = vM64CopyBlt24; } else { // Special version to fix screen source FIFO bug in VT-A4 // with 1 MB of SDRAM. ppdev->pfnCopyBlt = vM64CopyBlt24_VTA4; } ppdev->pfnLineToTrivial = vM64LineToTrivial24; ppdev->pfnTextOut = bM64TextOut24; } vEnableContexts(ppdev); } if ((ppdev->iAsic != ASIC_38800_1) && ((ppdev->iAperture != APERTURE_NONE)||(ppdev->iMachType == MACH_MM_64))) { ppdev->pfnGetBits = vGetBits; ppdev->pfnPutBits = vPutBits; } else { ppdev->pfnGetBits = vI32GetBits; ppdev->pfnPutBits = vI32PutBits; } // Now we can set the mode, unlock the accelerator, and reset the // clipping: if (!bAssertModeHardware(ppdev, TRUE)) goto ReturnFalse; DISPDBG((0, "%li bpp, %li x %li, pjScreen = %lx, cjBank = %lxH, pjMmBase = %lx", ppdev->cBitsPerPel, ppdev->cxMemory, ppdev->cyMemory, ppdev->pjScreen, ppdev->cjBank, ppdev->pjMmBase)); DISPDBG((5, "Passed bEnableHardware")); return(TRUE); ReturnFalse: DISPDBG((0, "Failed bEnableHardware")); return(FALSE); } /******************************Public*Routine******************************\ * VOID vDisableHardware * * Undoes anything done in bEnableHardware. * * Note: In an error case, we may call this before bEnableHardware is * completely done. * \**************************************************************************/ VOID vDisableHardware( PDEV* ppdev) { DWORD ReturnedDataLength; VIDEO_MEMORY VideoMemory[2]; VideoMemory[0].RequestedVirtualAddress = ppdev->VideoRamBase; if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_UNMAP_VIDEO_MEMORY, VideoMemory, sizeof(VIDEO_MEMORY), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_UNMAP_VIDEO")); } VideoMemory[0].RequestedVirtualAddress = ppdev->pjIoBase; VideoMemory[1].RequestedVirtualAddress = ppdev->VideoRamBase; if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES, VideoMemory, sizeof(VideoMemory), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS")); } } /******************************Public*Routine******************************\ * BOOL bInitializeModeFields * * Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and * devinfo based on the requested mode. * \**************************************************************************/ BOOL bInitializeModeFields( PDEV* ppdev, GDIINFO* pgdi, DEVINFO* pdi, DEVMODEW* pdm) { ULONG cModes; PVIDEO_MODE_INFORMATION pVideoBuffer; PVIDEO_MODE_INFORMATION pVideoModeSelected; PVIDEO_MODE_INFORMATION pVideoTemp; BOOL bSelectDefault; VIDEO_MODE_INFORMATION VideoModeInformation; ULONG cbModeSize; // Call the miniport to get mode information cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize); if (cModes == 0) goto ReturnFalse; // Now see if the requested mode has a match in that table. pVideoModeSelected = NULL; pVideoTemp = pVideoBuffer; if ((pdm->dmPelsWidth == 0) && (pdm->dmPelsHeight == 0) && (pdm->dmBitsPerPel == 0) && (pdm->dmDisplayFrequency == 0)) { DISPDBG((1, "Default mode requested")); bSelectDefault = TRUE; } else { DISPDBG((1, "Requested mode...")); DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth)); DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight)); DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel)); DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency)); bSelectDefault = FALSE; } while (cModes--) { if (pVideoTemp->Length != 0) { DISPDBG((8, " Checking against miniport mode:")); DISPDBG((8, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((8, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((8, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((8, " Frequency -- %li", pVideoTemp->Frequency)); if (bSelectDefault || ((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) && (pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) && (pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) && (pVideoTemp->Frequency == pdm->dmDisplayFrequency))) { pVideoModeSelected = pVideoTemp; DISPDBG((1, "...Found a mode match!")); break; } } pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize); } // If no mode has been found, return an error if (pVideoModeSelected == NULL) { DISPDBG((1, "...Couldn't find a mode match!")); AtiFreeMem(pVideoBuffer); goto ReturnFalse; } // Punt all rev 3 VLB cards in 8bpp to the 8514/A driver. // Timing problems on "MIO" cards are impossible to deal with. // They only show up on 5% of all mach32 cards. if ((ppdev->FeatureFlags & EVN_MIO_BUG) && pVideoModeSelected->BitsPerPlane == 8) { AtiFreeMem(pVideoBuffer); goto ReturnFalse; } // We won't support 24bpp without a linear frame buffer. if (pVideoModeSelected->BitsPerPlane == 24 && ppdev->iAperture != APERTURE_FULL) { AtiFreeMem(pVideoBuffer); goto ReturnFalse; } // We have chosen the one we want. Save it in a stack buffer and // get rid of allocated memory before we forget to free it. VideoModeInformation = *pVideoModeSelected; AtiFreeMem(pVideoBuffer); #if DEBUG_HEAP VideoModeInformation.VisScreenWidth = 640; VideoModeInformation.VisScreenHeight = 480; #endif // Set up screen information from the mini-port: ppdev->ulMode = VideoModeInformation.ModeIndex; ppdev->cxScreen = VideoModeInformation.VisScreenWidth; ppdev->cyScreen = VideoModeInformation.VisScreenHeight; ppdev->lDelta = VideoModeInformation.ScreenStride; ppdev->cBitsPerPel = VideoModeInformation.BitsPerPlane; DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride)); ppdev->flHooks = (HOOK_BITBLT | HOOK_TEXTOUT | HOOK_FILLPATH | HOOK_COPYBITS | HOOK_STROKEPATH | HOOK_STRETCHBLT | #if TARGET_BUILD > 351 HOOK_LINETO | #endif HOOK_PAINT); // Fill in the GDIINFO data structure with the default 8bpp values: *pgdi = ggdiDefault; // Now overwrite the defaults with the relevant information returned // from the kernel driver: pgdi->ulHorzSize = VideoModeInformation.XMillimeter; pgdi->ulVertSize = VideoModeInformation.YMillimeter; pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulVertRes = VideoModeInformation.VisScreenHeight; #if TARGET_BUILD > 351 pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight; #else pgdi->ulDesktopHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulDesktopVertRes = VideoModeInformation.VisScreenHeight; #endif pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane; pgdi->cPlanes = VideoModeInformation.NumberOfPlanes; pgdi->ulVRefresh = VideoModeInformation.Frequency; pgdi->ulDACRed = VideoModeInformation.NumberRedBits; pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits; pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits; pgdi->ulLogPixelsX = pdm->dmLogPixels; pgdi->ulLogPixelsY = pdm->dmLogPixels; // Fill in the devinfo structure with the default 8bpp values: *pdi = gdevinfoDefault; if (VideoModeInformation.BitsPerPlane == 8) { ppdev->cPelSize = 0; ppdev->cjPelSize = 1; ppdev->iBitmapFormat = BMF_8BPP; ppdev->ulWhite = 0xff; // Assuming palette is orthogonal - all colors are same size. ppdev->cPaletteShift = 8 - pgdi->ulDACRed; DISPDBG((3, "palette shift = %d\n", ppdev->cPaletteShift)); } else if ((VideoModeInformation.BitsPerPlane == 16) || (VideoModeInformation.BitsPerPlane == 15)) { ppdev->cPelSize = 1; ppdev->cjPelSize = 2; ppdev->iBitmapFormat = BMF_16BPP; ppdev->ulWhite = 0xffff; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask; pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_16BPP; pdi->iDitherFormat = BMF_16BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); } else if (VideoModeInformation.BitsPerPlane == 24) { ppdev->cPelSize = 0; // not used?! ppdev->cjPelSize = 3; ppdev->iBitmapFormat = BMF_24BPP; ppdev->ulWhite = 0xffffff; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask; pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_24BPP; pdi->iDitherFormat = BMF_24BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); } else { ASSERTDD(VideoModeInformation.BitsPerPlane == 32, "This driver supports only 8, 16, 24 and 32bpp"); ppdev->cPelSize = 2; ppdev->cjPelSize = 4; ppdev->iBitmapFormat = BMF_32BPP; ppdev->ulWhite = 0xffffffff; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask; pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_32BPP; pdi->iDitherFormat = BMF_32BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); } DISPDBG((5, "Passed bInitializeModeFields")); return(TRUE); ReturnFalse: DISPDBG((0, "Failed bInitializeModeFields")); return(FALSE); } /******************************Public*Routine******************************\ * DWORD getAvailableModes * * Calls the miniport to get the list of modes supported by the kernel driver, * and returns the list of modes supported by the diplay driver among those * * returns the number of entries in the videomode buffer. * 0 means no modes are supported by the miniport or that an error occured. * * NOTE: the buffer must be freed up by the caller. * \**************************************************************************/ DWORD getAvailableModes( HANDLE hDriver, PVIDEO_MODE_INFORMATION* modeInformation, // Must be freed by caller DWORD* cbModeSize) { ULONG ulTemp; VIDEO_NUM_MODES modes; PVIDEO_MODE_INFORMATION pVideoTemp; // // Get the number of modes supported by the mini-port // if (!AtiDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES, NULL, 0, &modes, sizeof(VIDEO_NUM_MODES), &ulTemp)) { DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES")); return(0); } *cbModeSize = modes.ModeInformationLength; // // Allocate the buffer for the mini-port to write the modes in. // *modeInformation = AtiAllocMem(LPTR, FL_ZERO_MEMORY, modes.NumModes * modes.ModeInformationLength ); if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL) { DISPDBG((0, "getAvailableModes - Failed AtiAllocMem")); return 0; } // // Ask the mini-port to fill in the available modes. // if (!AtiDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_AVAIL_MODES, NULL, 0, *modeInformation, modes.NumModes * modes.ModeInformationLength, &ulTemp)) { DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES")); AtiFreeMem(*modeInformation); *modeInformation = (PVIDEO_MODE_INFORMATION) NULL; return(0); } // // Now see which of these modes are supported by the display driver. // As an internal mechanism, set the length to 0 for the modes we // DO NOT support. // ulTemp = modes.NumModes; pVideoTemp = *modeInformation; // // Mode is rejected if it is not one plane, or not graphics, or is not // one of 8, 15, 16, 24 or 32 bits per pel. // while (ulTemp--) { //DISPDBG((0, "pVideoTemp: %4li bpp, %4li x %4li, %4li Hz", //pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes, //pVideoTemp->VisScreenWidth, pVideoTemp->VisScreenHeight, //pVideoTemp->Frequency )); if ((pVideoTemp->NumberOfPlanes != 1 ) || !(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) || ((pVideoTemp->BitsPerPlane != 8) && (pVideoTemp->BitsPerPlane != 15) && (pVideoTemp->BitsPerPlane != 16) && (pVideoTemp->BitsPerPlane != 24) && (pVideoTemp->BitsPerPlane != 32))) { DISPDBG((2, "Rejecting miniport mode:")); DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency)); pVideoTemp->Length = 0; } pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + modes.ModeInformationLength); } return(modes.NumModes); }