/************************************************************************** AVStream Simulated Hardware Sample Copyright (c) 2001, Microsoft Corporation. File: capture.h Abstract: This file contains header for the video capture pin on the capture filter. The capture sample performs "fake" DMA directly into the capture buffers. Common buffer DMA will work slightly differently. For common buffer DMA, the general technique would be DPC schedules processing with KsPinAttemptProcessing. The processing routine grabs the leading edge, copies data out of the common buffer and advances. Cloning would not be necessary with this technique. It would be similiar to the way "AVSSamp" works, but it would be pin-centric. History: created 3/8/2001 **************************************************************************/ // // STREAM_POINTER_CONTEXT: // // This is the context structure we associate with all clone stream pointers. // It allows the mapping code to rip apart the buffer into chunks the same // size as the scatter/gather mappings in order to fake scatter / gather // bus-master DMA. // typedef struct _STREAM_POINTER_CONTEXT { PUCHAR BufferVirtual; } STREAM_POINTER_CONTEXT, *PSTREAM_POINTER_CONTEXT; // // CCapturePin: // // The video capture pin class. // class CCapturePin : public ICaptureSink { private: // // The AVStream pin we're associated with. // PKSPIN m_Pin; // // Pointer to the internal device object for our capture device. // We access the "fake" hardware through this object. // CCaptureDevice *m_Device; // // The state we've put the hardware into. This allows us to keep track // of whether to do things like unpausing or restarting. // HARDWARE_STATE m_HardwareState; // // The clock we've been assigned. As with other capture filters, we do // not expose a clock. If one has been assigned, we will use it to // time stamp packets (plus a reasonable delta to work the capture stream // in a preview graph). // PIKSREFERENCECLOCK m_Clock; // // The transport information for this capture pin. The settings for "fake" hardware will be // programmed for this transport info. // PBDA_TRANSPORT_INFO m_TransportInfo; // // If we are unable to insert all of the mappings in a stream pointer into // the "fake" hardware's scatter / gather table, we set this to the // stream pointer that's incomplete. This is done both to make the // relasing easier and to make it easier to fake the scatter / gather // hardware. // PKSSTREAM_POINTER m_PreviousStreamPointer; // // An indication of whether or not we pended I/O for some reason. If this // is set, the DPC will resume I/O when any mappings are completed. // BOOLEAN m_PendIo; // // An indication of whether or not this pin has acquired the necessary // hardware resources to operate. When the pin reaches KSSTATE_ACQUIRE, // we attempt to acquire the hardware. This flag will be set based on // our success / failure. // BOOLEAN m_AcquiredResources; // // CleanupReferences(): // // Clean up any references we hold on frames in the queue. This is called // when we abruptly stop the fake hardware. // NTSTATUS CleanupReferences ( ); // // SetState(): // // This is the state transition handler for the capture pin. It attempts // to acquire resources for the capture pin (or releasing them if // necessary) and starts and stops the hardware as required. // NTSTATUS SetState ( IN KSSTATE ToState, IN KSSTATE FromState ); // // Process(): // // This is the processing dispatch for the capture pin. It handles // programming the scatter / gather tables for the hardware as buffers // become available. This processing routine is designed for a direct // into the capture buffers kind of DMA as opposed to common-buffer // and copy strategies. // NTSTATUS Process ( ); // // CaptureBdaTransportInfo(): // // This routine stashes the BDA Transport Info for the pin connection // in the CCapturePin object. This is used to base hardware settings. // PBDA_TRANSPORT_INFO CaptureBdaTransportInfo ( ); // // Cleanup(): // // This is the free callback from the bagged item (CCapturePin). If we // do not provide a callback when we bag the CCapturePin, ExFreePool // would be called. This is not desirable for C++ constructed objects. // We merely delete the object here. // static void Cleanup ( IN CCapturePin *Pin ) { delete Pin; } public: // // CCapturePin(): // // The capture pin's constructor. Initialize any non-0, non-NULL fields // (since new will have zero'ed the memory anyway) and set up our // device level pointers for access during capture routines. // CCapturePin ( IN PKSPIN Pin ); // // ~CCapturePin(): // // The capture pin's destructor. // ~CCapturePin ( ) { } // // ICaptureSink::CompleteMappings() // // This is the capture sink notification mechanism for mapping completion. // When the device DPC detects that a given number of mappings have been // completed by the fake hardware, it signals the capture sink of this // through this method. // virtual void CompleteMappings ( IN ULONG NumMappings ); /************************************************* Dispatch Routines *************************************************/ // // DispatchCreate(): // // This is the creation dispatch for the capture pin. It creates // the CCapturePin object and associates it with the AVStream object // bagging it in the process. // static NTSTATUS DispatchCreate ( IN PKSPIN Pin, IN PIRP Irp ); // // DispatchSetState(): // // This is the set device state dispatch for the pin. The routine bridges // to SetState() in the context of the CCapturePin. // static NTSTATUS DispatchSetState ( IN PKSPIN Pin, IN KSSTATE ToState, IN KSSTATE FromState ) { return (reinterpret_cast (Pin -> Context)) -> SetState (ToState, FromState); } // // DispatchProcess(): // // This is the processing dispatch for the capture pin. The routine // bridges to Process() in the context of the CCapturePin. // static NTSTATUS DispatchProcess ( IN PKSPIN Pin ) { return (reinterpret_cast (Pin -> Context)) -> Process (); } };