/*++ Copyright (c) 1991-1992 Microsoft Corporation Module Name: secobj.c Abstract: This module provides support routines to simplify the creation of security descriptors for user-mode objects. Author: Rita Wong (ritaw) 27-Feb-1991 Environment: Contains NT specific code. Revision History: 16-Apr-1991 JohnRo Include header files for . 14 Apr 1992 RichardW Changed for modified ACE_HEADER struct. --*/ #include #include #include #include // DWORD. #include // NET_API_STATUS. #include #include #include #include #include #include #include #include // NetpInitOemString(). #if DEVL #define STATIC #else #define STATIC static #endif // DEVL //-------------------------------------------------------------------// // // // Local function prototypes // // // //-------------------------------------------------------------------// STATIC NTSTATUS NetpInitializeAllowedAce( IN PACCESS_ALLOWED_ACE AllowedAce, IN USHORT AceSize, IN UCHAR InheritFlags, IN UCHAR AceFlags, IN ACCESS_MASK Mask, IN PSID AllowedSid ); STATIC NTSTATUS NetpInitializeDeniedAce( IN PACCESS_DENIED_ACE DeniedAce, IN USHORT AceSize, IN UCHAR InheritFlags, IN UCHAR AceFlags, IN ACCESS_MASK Mask, IN PSID DeniedSid ); STATIC NTSTATUS NetpInitializeAuditAce( IN PACCESS_ALLOWED_ACE AuditAce, IN USHORT AceSize, IN UCHAR InheritFlags, IN UCHAR AceFlags, IN ACCESS_MASK Mask, IN PSID AuditSid ); //-------------------------------------------------------------------// // // // Global variables // // // //-------------------------------------------------------------------// // // NT well-known SIDs // PSID NullSid = NULL; // No members SID PSID WorldSid = NULL; // All users SID PSID LocalSid = NULL; // NT local users SID PSID NetworkSid = NULL; // NT remote users SID PSID LocalSystemSid = NULL; // NT system processes SID PSID BuiltinDomainSid = NULL; // Domain Id of the Builtin Domain PSID AuthenticatedUserSid = NULL; // Authenticated user SID PSID AnonymousLogonSid = NULL; // Anonymous Logon SID PSID LocalServiceSid = NULL; // Local Service SID PSID OtherOrganizationSid = NULL; // Other org SID // // Well Known Aliases. // // These are aliases that are relative to the built-in domain. // PSID LocalAdminSid = NULL; // NT local admins SID PSID AliasAdminsSid = NULL; PSID AliasUsersSid = NULL; PSID AliasGuestsSid = NULL; PSID AliasPowerUsersSid = NULL; PSID AliasAccountOpsSid = NULL; PSID AliasSystemOpsSid = NULL; PSID AliasPrintOpsSid = NULL; PSID AliasBackupOpsSid = NULL; #if DBG typedef struct _STANDARD_ACE { ACE_HEADER Header; ACCESS_MASK Mask; PSID Sid; } STANDARD_ACE; typedef STANDARD_ACE *PSTANDARD_ACE; // // The following macros used by DumpAcl(), these macros and DumpAcl() are // stolen from private\ntos\se\ctaccess.c (written by robertre) for // debugging purposes. // // // Returns a pointer to the first Ace in an Acl (even if the Acl is empty). // #define FirstAce(Acl) ((PVOID)((PUCHAR)(Acl) + sizeof(ACL))) // // Returns a pointer to the next Ace in a sequence (even if the input // Ace is the one in the sequence). // #define NextAce(Ace) ((PVOID)((PUCHAR)(Ace) + ((PACE_HEADER)(Ace))->AceSize)) STATIC VOID DumpAcl( IN PACL Acl ); #endif //ifdef DBG // // Data describing the well-known SIDs created by NetpCreateWellKnownSids. // ULONG MakeItCompile1, MakeItCompile2, MakeItCompile3; struct _SID_DATA { PSID *Sid; SID_IDENTIFIER_AUTHORITY IdentifierAuthority; ULONG SubAuthority; } SidData[] = { {&NullSid, SECURITY_NULL_SID_AUTHORITY, SECURITY_NULL_RID}, {&WorldSid, SECURITY_WORLD_SID_AUTHORITY, SECURITY_WORLD_RID}, {&LocalSid, SECURITY_LOCAL_SID_AUTHORITY, SECURITY_LOCAL_RID}, {&NetworkSid, SECURITY_NT_AUTHORITY, SECURITY_NETWORK_RID}, {&LocalSystemSid, SECURITY_NT_AUTHORITY, SECURITY_LOCAL_SYSTEM_RID}, {&BuiltinDomainSid, SECURITY_NT_AUTHORITY, SECURITY_BUILTIN_DOMAIN_RID}, {&AuthenticatedUserSid, SECURITY_NT_AUTHORITY, SECURITY_AUTHENTICATED_USER_RID}, {&AnonymousLogonSid,SECURITY_NT_AUTHORITY, SECURITY_ANONYMOUS_LOGON_RID}, {&LocalServiceSid, SECURITY_NT_AUTHORITY, SECURITY_LOCAL_SERVICE_RID}, {&OtherOrganizationSid, SECURITY_NT_AUTHORITY, SECURITY_OTHER_ORGANIZATION_RID} }; struct _BUILTIN_DOMAIN_SID_DATA { PSID *Sid; ULONG RelativeId; } BuiltinDomainSidData[] = { { &LocalAdminSid, DOMAIN_ALIAS_RID_ADMINS}, { &AliasAdminsSid, DOMAIN_ALIAS_RID_ADMINS }, { &AliasUsersSid, DOMAIN_ALIAS_RID_USERS }, { &AliasGuestsSid, DOMAIN_ALIAS_RID_GUESTS }, { &AliasPowerUsersSid, DOMAIN_ALIAS_RID_POWER_USERS }, { &AliasAccountOpsSid, DOMAIN_ALIAS_RID_ACCOUNT_OPS }, { &AliasSystemOpsSid, DOMAIN_ALIAS_RID_SYSTEM_OPS }, { &AliasPrintOpsSid, DOMAIN_ALIAS_RID_PRINT_OPS }, { &AliasBackupOpsSid, DOMAIN_ALIAS_RID_BACKUP_OPS } }; NTSTATUS NetpCreateWellKnownSids( IN PSID DomainId ) /*++ Routine Description: This function creates some well-known SIDs and store them in global variables. Arguments: DomainId - Supplies the Domain SID of the primary domain of this system. This can be attained from UaspGetDomainId. Return Value: STATUS_SUCCESS - if successful STATUS_NO_MEMORY - if cannot allocate memory for SID --*/ { NTSTATUS ntstatus; DWORD i; UNREFERENCED_PARAMETER(DomainId); // // Allocate and initialize well-known SIDs which aren't relative to // the domain Id. // for (i = 0; i < (sizeof(SidData) / sizeof(SidData[0])) ; i++) { ntstatus = NetpAllocateAndInitializeSid( SidData[i].Sid, &(SidData[i].IdentifierAuthority), 1); if (! NT_SUCCESS(ntstatus)) { return STATUS_NO_MEMORY; } *(RtlSubAuthoritySid(*(SidData[i].Sid), 0)) = SidData[i].SubAuthority; } // // Build each SID which is relative to the Builtin Domain Id. // for ( i = 0; i < (sizeof(BuiltinDomainSidData) / sizeof(BuiltinDomainSidData[0])); i++) { NET_API_STATUS NetStatus; NetStatus = NetpDomainIdToSid( BuiltinDomainSid, BuiltinDomainSidData[i].RelativeId, BuiltinDomainSidData[i].Sid ); if ( NetStatus != NERR_Success ) { return STATUS_NO_MEMORY; } } return STATUS_SUCCESS; } VOID NetpFreeWellKnownSids( VOID ) /*++ Routine Description: This function frees up the dynamic memory consumed by the well-known SIDs. Arguments: none. Return Value: none --*/ { DWORD i; // // free up memory allocated for well-known SIDs // for (i = 0; i < (sizeof(SidData) / sizeof(SidData[0])) ; i++) { if( *SidData[i].Sid != NULL ) { NetpMemoryFree( *SidData[i].Sid ); *SidData[i].Sid = NULL; } } // // free up memory allocated for Builtin Domain SIDs // for (i = 0; i < (sizeof(BuiltinDomainSidData) / sizeof(BuiltinDomainSidData[0])) ; i++) { if( *BuiltinDomainSidData[i].Sid != NULL ) { NetpMemoryFree( *BuiltinDomainSidData[i].Sid ); *BuiltinDomainSidData[i].Sid = NULL; } } } NTSTATUS NetpAllocateAndInitializeSid( OUT PSID *Sid, IN PSID_IDENTIFIER_AUTHORITY IdentifierAuthority, IN ULONG SubAuthorityCount ) /*++ Routine Description: This function allocates memory for a SID and initializes it. Arguments: None. Return Value: STATUS_SUCCESS - if successful STATUS_NO_MEMORY - if cannot allocate memory for SID --*/ { *Sid = (PSID) NetpMemoryAllocate(RtlLengthRequiredSid(SubAuthorityCount)); if (*Sid == NULL) { return STATUS_NO_MEMORY; } RtlInitializeSid(*Sid, IdentifierAuthority, (UCHAR)SubAuthorityCount); return STATUS_SUCCESS; } NET_API_STATUS NetpDomainIdToSid( IN PSID DomainId, IN ULONG RelativeId, OUT PSID *Sid ) /*++ Routine Description: Given a domain Id and a relative ID create a SID Arguments: DomainId - The template SID to use. RelativeId - The relative Id to append to the DomainId. Sid - Returns a pointer to an allocated buffer containing the resultant Sid. Free this buffer using NetpMemoryFree. Return Value: STATUS_SUCCESS - if successful STATUS_NO_MEMORY - if cannot allocate memory for SID --*/ { UCHAR DomainIdSubAuthorityCount; // Number of sub authorities in domain ID ULONG SidLength; // Length of newly allocated SID // // Allocate a Sid which has one more sub-authority than the domain ID. // DomainIdSubAuthorityCount = *(RtlSubAuthorityCountSid( DomainId )); SidLength = RtlLengthRequiredSid(DomainIdSubAuthorityCount+1); if ((*Sid = (PSID) NetpMemoryAllocate( SidLength )) == NULL ) { return ERROR_NOT_ENOUGH_MEMORY; } // // Initialize the new SID to have the same inital value as the // domain ID. // if ( !NT_SUCCESS( RtlCopySid( SidLength, *Sid, DomainId ) ) ) { NetpMemoryFree( *Sid ); return NERR_InternalError; } // // Adjust the sub-authority count and // add the relative Id unique to the newly allocated SID // (*(RtlSubAuthorityCountSid( *Sid ))) ++; *RtlSubAuthoritySid( *Sid, DomainIdSubAuthorityCount ) = RelativeId; return NERR_Success; } NTSTATUS NetpCreateSecurityDescriptor( IN PACE_DATA AceData, IN ULONG AceCount, IN PSID OwnerSid OPTIONAL, IN PSID GroupSid OPTIONAL, OUT PSECURITY_DESCRIPTOR *NewDescriptor ) /*++ Routine Description: This function creates an absolutes security descriptor containing the supplied ACE information. A sample usage of this function: // // Order matters! These ACEs are inserted into the DACL in the // following order. Security access is granted or denied based on // the order of the ACEs in the DACL. // ACE_DATA AceData[4] = { {ACCESS_ALLOWED_ACE_TYPE, 0, 0, GENERIC_ALL, &LocalAdminSid}, {ACCESS_DENIED_ACE_TYPE, 0, 0, GENERIC_ALL, &NetworkSid}, {ACCESS_ALLOWED_ACE_TYPE, 0, 0, WKSTA_CONFIG_GUEST_INFO_GET | WKSTA_CONFIG_USER_INFO_GET, &DomainUsersSid}, {ACCESS_ALLOWED_ACE_TYPE, 0, 0, WKSTA_CONFIG_GUEST_INFO_GET, &DomainGuestsSid} }; return NetpCreateSecurityDescriptor( AceData, 4, NullSid, LocalSystemSid, &ConfigurationInfoSd ); Arguments: AceData - Supplies the structure of information that describes the DACL. AceCount - Supplies the number of entries in AceData structure. OwnerSid - Supplies the pointer to the SID of the security descriptor owner. If not specified, a security descriptor with no owner will be created. GroupSid - Supplies the pointer to the SID of the security descriptor primary group. If not specified, a security descriptor with no primary group will be created. NewDescriptor - Returns a pointer to the absolute secutiry descriptor allocated using NetpMemoryAllocate. Return Value: STATUS_SUCCESS - if successful STATUS_NO_MEMORY - if cannot allocate memory for DACL, ACEs, and security descriptor. Any other status codes returned from the security Rtl routines. --*/ { NTSTATUS ntstatus; DWORD i; // // Pointer to memory dynamically allocated by this routine to hold // the absolute security descriptor, the DACL, the SACL, and all the ACEs. // // +---------------------------------------------------------------+ // | Security Descriptor | // +-------------------------------+-------+---------------+-------+ // | DACL | ACE 1 | . . . | ACE n | // +-------------------------------+-------+---------------+-------+ // | SACL | ACE 1 | . . . | ACE n | // +-------------------------------+-------+---------------+-------+ // PSECURITY_DESCRIPTOR AbsoluteSd = NULL; PACL Dacl = NULL; // Pointer to the DACL portion of above buffer PACL Sacl = NULL; // Pointer to the SACL portion of above buffer DWORD DaclSize = sizeof(ACL); DWORD SaclSize = sizeof(ACL); DWORD MaxAceSize = 0; PVOID MaxAce = NULL; LPBYTE CurrentAvailable; DWORD Size; ASSERT( AceCount > 0 ); // // Compute the total size of the DACL and SACL ACEs and the maximum // size of any ACE. // for (i = 0; i < AceCount; i++) { DWORD AceSize; AceSize = RtlLengthSid(*(AceData[i].Sid)); switch (AceData[i].AceType) { case ACCESS_ALLOWED_ACE_TYPE: AceSize += sizeof(ACCESS_ALLOWED_ACE) - sizeof(ULONG); DaclSize += AceSize; break; case ACCESS_DENIED_ACE_TYPE: AceSize += sizeof(ACCESS_DENIED_ACE) - sizeof(ULONG); DaclSize += AceSize; break; case SYSTEM_AUDIT_ACE_TYPE: AceSize += sizeof(SYSTEM_AUDIT_ACE) - sizeof(ULONG); SaclSize += AceSize; break; default: return STATUS_INVALID_PARAMETER; } MaxAceSize = max( MaxAceSize, AceSize ); } // // Allocate a chunk of memory large enough the security descriptor // the DACL, the SACL and all ACEs. // // A security descriptor is of opaque data type but // SECURITY_DESCRIPTOR_MIN_LENGTH is the right size. // Size = SECURITY_DESCRIPTOR_MIN_LENGTH; if ( DaclSize != sizeof(ACL) ) { Size += DaclSize; } if ( SaclSize != sizeof(ACL) ) { Size += SaclSize; } if ((AbsoluteSd = NetpMemoryAllocate( Size )) == NULL) { IF_DEBUG(SECURITY) { NetpKdPrint(( "NetpCreateSecurityDescriptor Fail Create abs SD\n")); } ntstatus = STATUS_NO_MEMORY; goto Cleanup; } // // Initialize the Dacl and Sacl // CurrentAvailable = (LPBYTE)AbsoluteSd + SECURITY_DESCRIPTOR_MIN_LENGTH; if ( DaclSize != sizeof(ACL) ) { Dacl = (PACL)CurrentAvailable; CurrentAvailable += DaclSize; ntstatus = RtlCreateAcl( Dacl, DaclSize, ACL_REVISION ); if ( !NT_SUCCESS(ntstatus) ) { IF_DEBUG(SECURITY) { NetpKdPrint(( "NetpCreateSecurityDescriptor Fail DACL Create ACL\n")); } goto Cleanup; } } if ( SaclSize != sizeof(ACL) ) { Sacl = (PACL)CurrentAvailable; CurrentAvailable += SaclSize; ntstatus = RtlCreateAcl( Sacl, SaclSize, ACL_REVISION ); if ( !NT_SUCCESS(ntstatus) ) { IF_DEBUG(SECURITY) { NetpKdPrint(( "NetpCreateSecurityDescriptor Fail SACL Create ACL\n")); } goto Cleanup; } } // // Allocate a temporary buffer big enough for the biggest ACE. // if ((MaxAce = NetpMemoryAllocate( MaxAceSize )) == NULL ) { IF_DEBUG(SECURITY) { NetpKdPrint(( "NetpCreateSecurityDescriptor Fail Create max ace\n")); } ntstatus = STATUS_NO_MEMORY; goto Cleanup; } // // Initialize each ACE, and append it into the end of the DACL or SACL. // for (i = 0; i < AceCount; i++) { DWORD AceSize; PACL CurrentAcl; AceSize = RtlLengthSid(*(AceData[i].Sid)); switch (AceData[i].AceType) { case ACCESS_ALLOWED_ACE_TYPE: AceSize += sizeof(ACCESS_ALLOWED_ACE) - sizeof(ULONG); CurrentAcl = Dacl; ntstatus = NetpInitializeAllowedAce( MaxAce, (USHORT) AceSize, AceData[i].InheritFlags, AceData[i].AceFlags, AceData[i].Mask, *(AceData[i].Sid) ); break; case ACCESS_DENIED_ACE_TYPE: AceSize += sizeof(ACCESS_DENIED_ACE) - sizeof(ULONG); CurrentAcl = Dacl; ntstatus = NetpInitializeDeniedAce( MaxAce, (USHORT) AceSize, AceData[i].InheritFlags, AceData[i].AceFlags, AceData[i].Mask, *(AceData[i].Sid) ); break; case SYSTEM_AUDIT_ACE_TYPE: AceSize += sizeof(SYSTEM_AUDIT_ACE) - sizeof(ULONG); CurrentAcl = Sacl; ntstatus = NetpInitializeAuditAce( MaxAce, (USHORT) AceSize, AceData[i].InheritFlags, AceData[i].AceFlags, AceData[i].Mask, *(AceData[i].Sid) ); break; } if ( !NT_SUCCESS( ntstatus ) ) { IF_DEBUG(SECURITY) { NetpKdPrint(( "NetpCreateSecurityDescriptor Fail InitAce i: %d ntstatus: %lx\n", i, ntstatus)); } goto Cleanup; } // // Append the initialized ACE to the end of DACL or SACL // if (! NT_SUCCESS (ntstatus = RtlAddAce( CurrentAcl, ACL_REVISION, MAXULONG, MaxAce, AceSize ))) { IF_DEBUG(SECURITY) { NetpKdPrint(( "NetpCreateSecurityDescriptor Fail add ace i: %d ntstatus: %lx\n", i, ntstatus)); } goto Cleanup; } } #if DBG DumpAcl(Dacl); DumpAcl(Sacl); #endif // // Create the security descriptor with absolute pointers to SIDs // and ACLs. // // Owner = OwnerSid // Group = GroupSid // Dacl = Dacl // Sacl = Sacl // if (! NT_SUCCESS(ntstatus = RtlCreateSecurityDescriptor( AbsoluteSd, SECURITY_DESCRIPTOR_REVISION ))) { goto Cleanup; } if (! NT_SUCCESS(ntstatus = RtlSetOwnerSecurityDescriptor( AbsoluteSd, OwnerSid, FALSE ))) { goto Cleanup; } if (! NT_SUCCESS(ntstatus = RtlSetGroupSecurityDescriptor( AbsoluteSd, GroupSid, FALSE ))) { goto Cleanup; } if (! NT_SUCCESS(ntstatus = RtlSetDaclSecurityDescriptor( AbsoluteSd, TRUE, Dacl, FALSE ))) { goto Cleanup; } if (! NT_SUCCESS(ntstatus = RtlSetSaclSecurityDescriptor( AbsoluteSd, FALSE, Sacl, FALSE ))) { goto Cleanup; } // // Done // ntstatus = STATUS_SUCCESS; // // Clean up // Cleanup: // // Either return the security descriptor to the caller or delete it // if ( NT_SUCCESS( ntstatus ) ) { *NewDescriptor = AbsoluteSd; } else if ( AbsoluteSd != NULL ) { NetpMemoryFree(AbsoluteSd); } // // Delete the temporary ACE // if ( MaxAce != NULL ) { NetpMemoryFree( MaxAce ); } return ntstatus; } NTSTATUS NetpCreateSecurityObject( IN PACE_DATA AceData, IN ULONG AceCount, IN PSID OwnerSid, IN PSID GroupSid, IN PGENERIC_MAPPING GenericMapping, OUT PSECURITY_DESCRIPTOR *NewDescriptor ) /*++ Routine Description: This function creates the DACL for the security descriptor based on on the ACE information specified, and creates the security descriptor which becomes the user-mode security object. A sample usage of this function: // // Structure that describes the mapping of Generic access rights to // object specific access rights for the ConfigurationInfo object. // GENERIC_MAPPING WsConfigInfoMapping = { STANDARD_RIGHTS_READ | // Generic read WKSTA_CONFIG_GUEST_INFO_GET | WKSTA_CONFIG_USER_INFO_GET | WKSTA_CONFIG_ADMIN_INFO_GET, STANDARD_RIGHTS_WRITE | // Generic write WKSTA_CONFIG_INFO_SET, STANDARD_RIGHTS_EXECUTE, // Generic execute WKSTA_CONFIG_ALL_ACCESS // Generic all }; // // Order matters! These ACEs are inserted into the DACL in the // following order. Security access is granted or denied based on // the order of the ACEs in the DACL. // ACE_DATA AceData[4] = { {ACCESS_ALLOWED_ACE_TYPE, 0, 0, GENERIC_ALL, &LocalAdminSid}, {ACCESS_DENIED_ACE_TYPE, 0, 0, GENERIC_ALL, &NetworkSid}, {ACCESS_ALLOWED_ACE_TYPE, 0, 0, WKSTA_CONFIG_GUEST_INFO_GET | WKSTA_CONFIG_USER_INFO_GET, &DomainUsersSid}, {ACCESS_ALLOWED_ACE_TYPE, 0, 0, WKSTA_CONFIG_GUEST_INFO_GET, &DomainGuestsSid} }; return NetpCreateSecurityObject( AceData, 4, NullSid, LocalSystemSid, &WsConfigInfoMapping, &ConfigurationInfoSd ); Arguments: AceData - Supplies the structure of information that describes the DACL. AceCount - Supplies the number of entries in AceData structure. OwnerSid - Supplies the pointer to the SID of the security descriptor owner. GroupSid - Supplies the pointer to the SID of the security descriptor primary group. GenericMapping - Supplies the pointer to a generic mapping array denoting the mapping between each generic right to specific rights. NewDescriptor - Returns a pointer to the self-relative security descriptor which represents the user-mode object. Return Value: STATUS_SUCCESS - if successful STATUS_NO_MEMORY - if cannot allocate memory for DACL, ACEs, and security descriptor. Any other status codes returned from the security Rtl routines. NOTE : the security object created by calling this function may be freed up by calling NetpDeleteSecurityObject(). --*/ { NTSTATUS ntstatus; PSECURITY_DESCRIPTOR AbsoluteSd; HANDLE TokenHandle; ntstatus = NetpCreateSecurityDescriptor( AceData, AceCount, OwnerSid, GroupSid, &AbsoluteSd ); if (! NT_SUCCESS(ntstatus)) { NetpKdPrint(("[Netlib] NetpCreateSecurityDescriptor returned %08lx\n", ntstatus)); return ntstatus; } ntstatus = NtOpenProcessToken( NtCurrentProcess(), TOKEN_QUERY, &TokenHandle ); if (! NT_SUCCESS(ntstatus)) { NetpKdPrint(("[Netlib] NtOpenProcessToken returned %08lx\n", ntstatus)); NetpMemoryFree(AbsoluteSd); return ntstatus; } // // Create the security object (a user-mode object is really a pseudo- // object represented by a security descriptor that have relative // pointers to SIDs and ACLs). This routine allocates the memory to // hold the relative security descriptor so the memory allocated for the // DACL, ACEs, and the absolute descriptor can be freed. // ntstatus = RtlNewSecurityObject( NULL, // Parent descriptor AbsoluteSd, // Creator descriptor NewDescriptor, // Pointer to new descriptor FALSE, // Is directory object TokenHandle, // Token GenericMapping // Generic mapping ); NtClose(TokenHandle); if (! NT_SUCCESS(ntstatus)) { NetpKdPrint(("[Netlib] RtlNewSecurityObject returned %08lx\n", ntstatus)); } // // Free dynamic memory before returning // NetpMemoryFree(AbsoluteSd); return ntstatus; } NTSTATUS NetpDeleteSecurityObject( IN PSECURITY_DESCRIPTOR *Descriptor ) /*++ Routine Description: This function deletes a security object that was created by calling NetpCreateSecurityObject() function. Arguments: Descriptor - Returns a pointer to the self-relative security descriptor which represents the user-mode object. Return Value: STATUS_SUCCESS - if successful --*/ { return( RtlDeleteSecurityObject( Descriptor ) ); } STATIC NTSTATUS NetpInitializeAllowedAce( IN PACCESS_ALLOWED_ACE AllowedAce, IN USHORT AceSize, IN UCHAR InheritFlags, IN UCHAR AceFlags, IN ACCESS_MASK Mask, IN PSID AllowedSid ) /*++ Routine Description: This function assigns the specified ACE values into an allowed type ACE. Arguments: AllowedAce - Supplies a pointer to the ACE that is initialized. AceSize - Supplies the size of the ACE in bytes. InheritFlags - Supplies ACE inherit flags. AceFlags - Supplies ACE type specific control flags. Mask - Supplies the allowed access masks. AllowedSid - Supplies the pointer to the SID of user/group which is allowed the specified access. Return Value: Returns status from RtlCopySid. --*/ { AllowedAce->Header.AceType = ACCESS_ALLOWED_ACE_TYPE; AllowedAce->Header.AceSize = AceSize; AllowedAce->Header.AceFlags = AceFlags | InheritFlags; AllowedAce->Mask = Mask; return RtlCopySid( RtlLengthSid(AllowedSid), &(AllowedAce->SidStart), AllowedSid ); } STATIC NTSTATUS NetpInitializeDeniedAce( IN PACCESS_DENIED_ACE DeniedAce, IN USHORT AceSize, IN UCHAR InheritFlags, IN UCHAR AceFlags, IN ACCESS_MASK Mask, IN PSID DeniedSid ) /*++ Routine Description: This function assigns the specified ACE values into a denied type ACE. Arguments: DeniedAce - Supplies a pointer to the ACE that is initialized. AceSize - Supplies the size of the ACE in bytes. InheritFlags - Supplies ACE inherit flags. AceFlags - Supplies ACE type specific control flags. Mask - Supplies the denied access masks. AllowedSid - Supplies the pointer to the SID of user/group which is denied the specified access. Return Value: Returns status from RtlCopySid. --*/ { DeniedAce->Header.AceType = ACCESS_DENIED_ACE_TYPE; DeniedAce->Header.AceSize = AceSize; DeniedAce->Header.AceFlags = AceFlags | InheritFlags; DeniedAce->Mask = Mask; return RtlCopySid( RtlLengthSid(DeniedSid), &(DeniedAce->SidStart), DeniedSid ); } STATIC NTSTATUS NetpInitializeAuditAce( IN PACCESS_ALLOWED_ACE AuditAce, IN USHORT AceSize, IN UCHAR InheritFlags, IN UCHAR AceFlags, IN ACCESS_MASK Mask, IN PSID AuditSid ) /*++ Routine Description: This function assigns the specified ACE values into an audit type ACE. Arguments: AuditAce - Supplies a pointer to the ACE that is initialized. AceSize - Supplies the size of the ACE in bytes. InheritFlags - Supplies ACE inherit flags. AceFlags - Supplies ACE type specific control flags. Mask - Supplies the allowed access masks. AuditSid - Supplies the pointer to the SID of user/group which is to be audited. Return Value: Returns status from RtlCopySid. --*/ { AuditAce->Header.AceType = SYSTEM_AUDIT_ACE_TYPE; AuditAce->Header.AceSize = AceSize; AuditAce->Header.AceFlags = AceFlags | InheritFlags; AuditAce->Mask = Mask; return RtlCopySid( RtlLengthSid(AuditSid), &(AuditAce->SidStart), AuditSid ); } #if DBG STATIC VOID DumpAcl( IN PACL Acl ) /*++ Routine Description: This routine dumps via (NetpKdPrint) an Acl for debug purposes. It is specialized to dump standard aces. Arguments: Acl - Supplies the Acl to dump Return Value: None --*/ { ULONG i; PSTANDARD_ACE Ace; IF_DEBUG(SECURITY) { NetpKdPrint(("DumpAcl @%08lx\n", Acl)); // // Check if the Acl is null // if (Acl == NULL) { return; } // // Dump the Acl header // NetpKdPrint((" Revision: %02x", Acl->AclRevision)); NetpKdPrint((" Size: %04x", Acl->AclSize)); NetpKdPrint((" AceCount: %04x\n", Acl->AceCount)); // // Now for each Ace we want do dump it // for (i = 0, Ace = FirstAce(Acl); i < Acl->AceCount; i++, Ace = NextAce(Ace) ) { // // print out the ace header // NetpKdPrint((" AceHeader: %08lx ", *(PULONG)Ace)); // // special case on the standard ace types // if ((Ace->Header.AceType == ACCESS_ALLOWED_ACE_TYPE) || (Ace->Header.AceType == ACCESS_DENIED_ACE_TYPE) || (Ace->Header.AceType == SYSTEM_AUDIT_ACE_TYPE) || (Ace->Header.AceType == SYSTEM_ALARM_ACE_TYPE)) { // // The following array is indexed by ace types and must // follow the allowed, denied, audit, alarm seqeuence // static PCHAR AceTypes[] = { "Access Allowed", "Access Denied ", "System Audit ", "System Alarm " }; NetpKdPrint((AceTypes[Ace->Header.AceType])); NetpKdPrint(("\nAccess Mask: %08lx ", Ace->Mask)); } else { NetpKdPrint(("Unknown Ace Type\n")); } NetpKdPrint(("\n")); NetpKdPrint(("AceSize = %d\n",Ace->Header.AceSize)); NetpKdPrint(("Ace Flags = ")); if (Ace->Header.AceFlags & OBJECT_INHERIT_ACE) { NetpKdPrint(("OBJECT_INHERIT_ACE\n")); NetpKdPrint((" ")); } if (Ace->Header.AceFlags & CONTAINER_INHERIT_ACE) { NetpKdPrint(("CONTAINER_INHERIT_ACE\n")); NetpKdPrint((" ")); } if (Ace->Header.AceFlags & NO_PROPAGATE_INHERIT_ACE) { NetpKdPrint(("NO_PROPAGATE_INHERIT_ACE\n")); NetpKdPrint((" ")); } if (Ace->Header.AceFlags & INHERIT_ONLY_ACE) { NetpKdPrint(("INHERIT_ONLY_ACE\n")); NetpKdPrint((" ")); } if (Ace->Header.AceFlags & SUCCESSFUL_ACCESS_ACE_FLAG) { NetpKdPrint(("SUCCESSFUL_ACCESS_ACE_FLAG\n")); NetpKdPrint((" ")); } if (Ace->Header.AceFlags & FAILED_ACCESS_ACE_FLAG) { NetpKdPrint(("FAILED_ACCESS_ACE_FLAG\n")); NetpKdPrint((" ")); } NetpKdPrint(("\n")); } } } #endif // if DBG