/*++ Copyright (c) 1991-1992 Microsoft Corporation Module Name: secobj.c Abstract: This module provides support routines to simplify the creation of security descriptors for user-mode objects. Adapted the code from \nt\private\net\netlib\secobj.h Author: Rita Wong (ritaw) 27-Feb-1991 Environment: Contains NT specific code. Revision History: 16-Apr-1991 JohnRo Include header files for . 14 Apr 1992 RichardW Changed for modified ACE_HEADER struct. 19 Sep. 1995 MadanA Adapted the code for the internet project and made to use WIN32 APIs instead RTL functions. --*/ #include #include #include #include #if DBG #define STATIC #else #define STATIC static #endif // DBG //-------------------------------------------------------------------// // // // Global variables // // // //-------------------------------------------------------------------// // // NT well-known SIDs // PSID NullSid = NULL; // No members SID PSID WorldSid = NULL; // All users SID PSID LocalSid = NULL; // NT local users SID PSID NetworkSid = NULL; // NT remote users SID PSID LocalSystemSid = NULL; // NT system processes SID PSID BuiltinDomainSid = NULL; // Domain Id of the Builtin Domain // // Well Known Aliases. // // These are aliases that are relative to the built-in domain. // PSID LocalAdminSid = NULL; // NT local admins SID PSID AliasAdminsSid = NULL; PSID AliasUsersSid = NULL; PSID AliasGuestsSid = NULL; PSID AliasPowerUsersSid = NULL; PSID AliasAccountOpsSid = NULL; PSID AliasSystemOpsSid = NULL; PSID AliasPrintOpsSid = NULL; PSID AliasBackupOpsSid = NULL; STATIC struct _SID_DATA { PSID *Sid; SID_IDENTIFIER_AUTHORITY IdentifierAuthority; ULONG SubAuthority; } SidData[] = { {&NullSid, SECURITY_NULL_SID_AUTHORITY, SECURITY_NULL_RID}, {&WorldSid, SECURITY_WORLD_SID_AUTHORITY, SECURITY_WORLD_RID}, {&LocalSid, SECURITY_LOCAL_SID_AUTHORITY, SECURITY_LOCAL_RID}, {&NetworkSid, SECURITY_NT_AUTHORITY, SECURITY_NETWORK_RID}, {&LocalSystemSid, SECURITY_NT_AUTHORITY, SECURITY_LOCAL_SYSTEM_RID}, {&BuiltinDomainSid, SECURITY_NT_AUTHORITY, SECURITY_BUILTIN_DOMAIN_RID} }; STATIC struct _BUILTIN_DOMAIN_SID_DATA { PSID *Sid; ULONG RelativeId; } BuiltinDomainSidData[] = { { &LocalAdminSid, DOMAIN_ALIAS_RID_ADMINS}, { &AliasAdminsSid, DOMAIN_ALIAS_RID_ADMINS }, { &AliasUsersSid, DOMAIN_ALIAS_RID_USERS }, { &AliasGuestsSid, DOMAIN_ALIAS_RID_GUESTS }, { &AliasPowerUsersSid, DOMAIN_ALIAS_RID_POWER_USERS }, { &AliasAccountOpsSid, DOMAIN_ALIAS_RID_ACCOUNT_OPS }, { &AliasSystemOpsSid, DOMAIN_ALIAS_RID_SYSTEM_OPS }, { &AliasPrintOpsSid, DOMAIN_ALIAS_RID_PRINT_OPS }, { &AliasBackupOpsSid, DOMAIN_ALIAS_RID_BACKUP_OPS } }; PVOID INetpMemoryAllocate( DWORD Size ) /*++ Routine Description: This function allocates the required size of memory by calling LocalAlloc. Arguments: Size - size of the memory block required. Return Value: Pointer to the allocated block. --*/ { LPVOID NewPointer; NewPointer = LocalAlloc( LMEM_FIXED | LMEM_ZEROINIT, Size ); #if DBG // ASSERT( NewPointer != NULL ); #endif return( NewPointer ); } VOID INetpMemoryFree( PVOID Memory ) /*++ Routine Description: This function frees up the memory that was allocated by InternetAllocateMemory. Arguments: Memory - pointer to the memory block that needs to be freed up. Return Value: none. --*/ { LPVOID Ptr; #if DBG // ASSERT( Memory != NULL ); #endif Ptr = LocalFree( Memory ); #if DBG // ASSERT( Ptr == NULL ); #endif } DWORD INetpInitializeAllowedAce( IN PACCESS_ALLOWED_ACE AllowedAce, IN USHORT AceSize, IN BYTE InheritFlags, IN BYTE AceFlags, IN ACCESS_MASK Mask, IN PSID AllowedSid ) /*++ Routine Description: This function assigns the specified ACE values into an allowed type ACE. Arguments: AllowedAce - Supplies a pointer to the ACE that is initialized. AceSize - Supplies the size of the ACE in bytes. InheritFlags - Supplies ACE inherit flags. AceFlags - Supplies ACE type specific control flags. Mask - Supplies the allowed access masks. AllowedSid - Supplies the pointer to the SID of user/group which is allowed the specified access. Return Value: WIN32 Error Code. --*/ { AllowedAce->Header.AceType = ACCESS_ALLOWED_ACE_TYPE; AllowedAce->Header.AceSize = AceSize; AllowedAce->Header.AceFlags = AceFlags | InheritFlags; AllowedAce->Mask = Mask; if( CopySid( GetLengthSid(AllowedSid), // should be valid SID ?? &(AllowedAce->SidStart), AllowedSid ) == FALSE ) { return( GetLastError() ); } return( ERROR_SUCCESS ); } DWORD INetpInitializeDeniedAce( IN PACCESS_DENIED_ACE DeniedAce, IN USHORT AceSize, IN BYTE InheritFlags, IN BYTE AceFlags, IN ACCESS_MASK Mask, IN PSID DeniedSid ) /*++ Routine Description: This function assigns the specified ACE values into a denied type ACE. Arguments: DeniedAce - Supplies a pointer to the ACE that is initialized. AceSize - Supplies the size of the ACE in bytes. InheritFlags - Supplies ACE inherit flags. AceFlags - Supplies ACE type specific control flags. Mask - Supplies the denied access masks. AllowedSid - Supplies the pointer to the SID of user/group which is denied the specified access. Return Value: WIN32 Error Code. --*/ { DeniedAce->Header.AceType = ACCESS_DENIED_ACE_TYPE; DeniedAce->Header.AceSize = AceSize; DeniedAce->Header.AceFlags = AceFlags | InheritFlags; DeniedAce->Mask = Mask; if( CopySid( GetLengthSid(DeniedSid), // should be valid SID ?? &(DeniedAce->SidStart), DeniedSid ) == FALSE ) { return( GetLastError() ); } return( ERROR_SUCCESS ); } DWORD INetpInitializeAuditAce( IN PACCESS_ALLOWED_ACE AuditAce, IN USHORT AceSize, IN BYTE InheritFlags, IN BYTE AceFlags, IN ACCESS_MASK Mask, IN PSID AuditSid ) /*++ Routine Description: This function assigns the specified ACE values into an audit type ACE. Arguments: AuditAce - Supplies a pointer to the ACE that is initialized. AceSize - Supplies the size of the ACE in bytes. InheritFlags - Supplies ACE inherit flags. AceFlags - Supplies ACE type specific control flags. Mask - Supplies the allowed access masks. AuditSid - Supplies the pointer to the SID of user/group which is to be audited. Return Value: WIN32 Error Code. --*/ { AuditAce->Header.AceType = SYSTEM_AUDIT_ACE_TYPE; AuditAce->Header.AceSize = AceSize; AuditAce->Header.AceFlags = AceFlags | InheritFlags; AuditAce->Mask = Mask; if( CopySid( GetLengthSid(AuditSid), &(AuditAce->SidStart), AuditSid ) == FALSE ) { return( GetLastError() ); } return( ERROR_SUCCESS ); } DWORD INetpAllocateAndInitializeSid( OUT PSID *Sid, IN PSID_IDENTIFIER_AUTHORITY IdentifierAuthority, IN ULONG SubAuthorityCount ) /*++ Routine Description: This function allocates memory for a SID and initializes it. Arguments: None. Return Value: WIN32 Error Code. --*/ { *Sid = (PSID) INetpMemoryAllocate( GetSidLengthRequired( (BYTE)SubAuthorityCount) ); if (*Sid == NULL) { return ERROR_NOT_ENOUGH_MEMORY; } InitializeSid( *Sid, IdentifierAuthority, (BYTE)SubAuthorityCount ); return( ERROR_SUCCESS ); } DWORD INetpDomainIdToSid( IN PSID DomainId, IN ULONG RelativeId, OUT PSID *Sid ) /*++ Routine Description: Given a domain Id and a relative ID create a SID Arguments: DomainId - The template SID to use. RelativeId - The relative Id to append to the DomainId. Sid - Returns a pointer to an allocated buffer containing the resultant Sid. Free this buffer using NetpMemoryFree. Return Value: WIN32 Error Code. --*/ { DWORD Error; BYTE DomainIdSubAuthorityCount; // Number of sub authorities in domain ID ULONG SidLength; // Length of newly allocated SID // // Allocate a Sid which has one more sub-authority than the domain ID. // DomainIdSubAuthorityCount = *(GetSidSubAuthorityCount( DomainId )); SidLength = GetSidLengthRequired( (BYTE)(DomainIdSubAuthorityCount+1) ); if ((*Sid = (PSID) INetpMemoryAllocate( SidLength )) == NULL ) { return ERROR_NOT_ENOUGH_MEMORY; } // // Initialize the new SID to have the same inital value as the // domain ID. // if( CopySid(SidLength, *Sid, DomainId) == FALSE ) { Error = GetLastError(); INetpMemoryFree( *Sid ); return( Error ); } // // Adjust the sub-authority count and // add the relative Id unique to the newly allocated SID // (*(GetSidSubAuthorityCount( *Sid ))) ++; *GetSidSubAuthority( *Sid, DomainIdSubAuthorityCount ) = RelativeId; return( ERROR_SUCCESS ); } DWORD INetpCreateSecurityDescriptor( IN PACE_DATA AceData, IN ULONG AceCount, IN PSID OwnerSid OPTIONAL, IN PSID GroupSid OPTIONAL, OUT PSECURITY_DESCRIPTOR *NewDescriptor ) /*++ Routine Description: This function creates an absolutes security descriptor containing the supplied ACE information. A sample usage of this function: // // Order matters! These ACEs are inserted into the DACL in the // following order. Security access is granted or denied based on // the order of the ACEs in the DACL. // ACE_DATA AceData[4] = { {ACCESS_ALLOWED_ACE_TYPE, 0, 0, GENERIC_ALL, &LocalAdminSid}, {ACCESS_DENIED_ACE_TYPE, 0, 0, GENERIC_ALL, &NetworkSid}, {ACCESS_ALLOWED_ACE_TYPE, 0, 0, WKSTA_CONFIG_GUEST_INFO_GET | WKSTA_CONFIG_USER_INFO_GET, &DomainUsersSid}, {ACCESS_ALLOWED_ACE_TYPE, 0, 0, WKSTA_CONFIG_GUEST_INFO_GET, &DomainGuestsSid} }; return NetpCreateSecurityDescriptor( AceData, 4, NullSid, LocalSystemSid, &ConfigurationInfoSd ); Arguments: AceData - Supplies the structure of information that describes the DACL. AceCount - Supplies the number of entries in AceData structure. OwnerSid - Supplies the pointer to the SID of the security descriptor owner. If not specified, a security descriptor with no owner will be created. GroupSid - Supplies the pointer to the SID of the security descriptor primary group. If not specified, a security descriptor with no primary group will be created. NewDescriptor - Returns a pointer to the absolute secutiry descriptor allocated using NetpMemoryAllocate. Return Value: WIN32 Error Code. --*/ { DWORD Error; DWORD i; // // Pointer to memory dynamically allocated by this routine to hold // the absolute security descriptor, the DACL, the SACL, and all the ACEs. // // +---------------------------------------------------------------+ // | Security Descriptor | // +-------------------------------+-------+---------------+-------+ // | DACL | ACE 1 | . . . | ACE n | // +-------------------------------+-------+---------------+-------+ // | SACL | ACE 1 | . . . | ACE n | // +-------------------------------+-------+---------------+-------+ // PSECURITY_DESCRIPTOR AbsoluteSd = NULL; PACL Dacl = NULL; // Pointer to the DACL portion of above buffer PACL Sacl = NULL; // Pointer to the SACL portion of above buffer DWORD DaclSize = sizeof(ACL); DWORD SaclSize = sizeof(ACL); DWORD MaxAceSize = 0; PVOID MaxAce = NULL; LPBYTE CurrentAvailable; DWORD Size; // ASSERT( AceCount > 0 ); // // Compute the total size of the DACL and SACL ACEs and the maximum // size of any ACE. // for (i = 0; i < AceCount; i++) { DWORD AceSize; AceSize = GetLengthSid( *(AceData[i].Sid) ); switch (AceData[i].AceType) { case ACCESS_ALLOWED_ACE_TYPE: AceSize += sizeof(ACCESS_ALLOWED_ACE); DaclSize += AceSize; break; case ACCESS_DENIED_ACE_TYPE: AceSize += sizeof(ACCESS_DENIED_ACE); DaclSize += AceSize; break; case SYSTEM_AUDIT_ACE_TYPE: AceSize += sizeof(SYSTEM_AUDIT_ACE); SaclSize += AceSize; break; default: return( ERROR_INVALID_PARAMETER ); } MaxAceSize = max( MaxAceSize, AceSize ); } // // Allocate a chunk of memory large enough the security descriptor // the DACL, the SACL and all ACEs. // // A security descriptor is of opaque data type but // SECURITY_DESCRIPTOR_MIN_LENGTH is the right size. // Size = SECURITY_DESCRIPTOR_MIN_LENGTH; if ( DaclSize != sizeof(ACL) ) { Size += DaclSize; } if ( SaclSize != sizeof(ACL) ) { Size += SaclSize; } if ((AbsoluteSd = INetpMemoryAllocate( Size )) == NULL) { Error = ERROR_NOT_ENOUGH_MEMORY; goto Cleanup; } // // Initialize the Dacl and Sacl // CurrentAvailable = (LPBYTE)AbsoluteSd + SECURITY_DESCRIPTOR_MIN_LENGTH; if ( DaclSize != sizeof(ACL) ) { Dacl = (PACL)CurrentAvailable; CurrentAvailable += DaclSize; if( InitializeAcl( Dacl, DaclSize, ACL_REVISION ) == FALSE ) { Error = GetLastError(); goto Cleanup; } } if ( SaclSize != sizeof(ACL) ) { Sacl = (PACL)CurrentAvailable; CurrentAvailable += SaclSize; if( InitializeAcl( Sacl, SaclSize, ACL_REVISION ) == FALSE ) { Error = GetLastError(); goto Cleanup; } } // // Allocate a temporary buffer big enough for the biggest ACE. // if ((MaxAce = INetpMemoryAllocate( MaxAceSize )) == NULL ) { Error = ERROR_NOT_ENOUGH_MEMORY; goto Cleanup; } // // Initialize each ACE, and append it into the end of the DACL or SACL. // for (i = 0; i < AceCount; i++) { DWORD AceSize; PACL CurrentAcl; AceSize = GetLengthSid( *(AceData[i].Sid) ); switch (AceData[i].AceType) { case ACCESS_ALLOWED_ACE_TYPE: AceSize += sizeof(ACCESS_ALLOWED_ACE); CurrentAcl = Dacl; Error = INetpInitializeAllowedAce( MaxAce, (USHORT) AceSize, AceData[i].InheritFlags, AceData[i].AceFlags, AceData[i].Mask, *(AceData[i].Sid) ); break; case ACCESS_DENIED_ACE_TYPE: AceSize += sizeof(ACCESS_DENIED_ACE); CurrentAcl = Dacl; Error = INetpInitializeDeniedAce( MaxAce, (USHORT) AceSize, AceData[i].InheritFlags, AceData[i].AceFlags, AceData[i].Mask, *(AceData[i].Sid) ); break; case SYSTEM_AUDIT_ACE_TYPE: AceSize += sizeof(SYSTEM_AUDIT_ACE); CurrentAcl = Sacl; Error = INetpInitializeAuditAce( MaxAce, (USHORT) AceSize, AceData[i].InheritFlags, AceData[i].AceFlags, AceData[i].Mask, *(AceData[i].Sid) ); break; } if ( Error != ERROR_SUCCESS ) { goto Cleanup; } // // Append the initialized ACE to the end of DACL or SACL // if ( AddAce( CurrentAcl, ACL_REVISION, MAXDWORD, MaxAce, AceSize ) == FALSE ) { Error = GetLastError(); goto Cleanup; } } // // Create the security descriptor with absolute pointers to SIDs // and ACLs. // // Owner = OwnerSid // Group = GroupSid // Dacl = Dacl // Sacl = Sacl // if ( InitializeSecurityDescriptor( AbsoluteSd, SECURITY_DESCRIPTOR_REVISION ) == FALSE ) { Error = GetLastError(); goto Cleanup; } if ( SetSecurityDescriptorOwner( AbsoluteSd, OwnerSid, FALSE ) == FALSE ) { Error = GetLastError(); goto Cleanup; } if ( SetSecurityDescriptorGroup( AbsoluteSd, GroupSid, FALSE ) == FALSE ) { Error = GetLastError(); goto Cleanup; } if ( SetSecurityDescriptorDacl( AbsoluteSd, TRUE, Dacl, FALSE ) == FALSE ) { Error = GetLastError(); goto Cleanup; } if ( SetSecurityDescriptorSacl( AbsoluteSd, FALSE, Sacl, FALSE ) == FALSE ) { Error = GetLastError(); goto Cleanup; } // // Done // *NewDescriptor = AbsoluteSd; AbsoluteSd = NULL; Error = ERROR_SUCCESS; // // Clean up // Cleanup: if( AbsoluteSd != NULL ) { // // delete the partially made SD if we are not completely // successful // INetpMemoryFree( AbsoluteSd ); } // // Delete the temporary ACE // if ( MaxAce != NULL ) { INetpMemoryFree( MaxAce ); } return( Error ); } DWORD INetCreateWellKnownSids( VOID ) /*++ Routine Description: This function creates some well-known SIDs and store them in global variables. Arguments: none. Return Value: WIN32 Error Code. --*/ { DWORD Error; DWORD i; // // Allocate and initialize well-known SIDs which aren't relative to // the domain Id. // for (i = 0; i < (sizeof(SidData) / sizeof(SidData[0])) ; i++) { Error = INetpAllocateAndInitializeSid( SidData[i].Sid, &(SidData[i].IdentifierAuthority), 1); if ( Error != ERROR_SUCCESS ) { return Error; } *(GetSidSubAuthority(*(SidData[i].Sid), 0)) = SidData[i].SubAuthority; } // // Build each SID which is relative to the Builtin Domain Id. // for ( i = 0; i < (sizeof(BuiltinDomainSidData) / sizeof(BuiltinDomainSidData[0])); i++) { Error = INetpDomainIdToSid( BuiltinDomainSid, BuiltinDomainSidData[i].RelativeId, BuiltinDomainSidData[i].Sid ); if ( Error != ERROR_SUCCESS ) { return Error; } } return ERROR_SUCCESS; } VOID INetFreeWellKnownSids( VOID ) /*++ Routine Description: This function frees up the dynamic memory consumed by the well-known SIDs. Arguments: none. Return Value: none --*/ { DWORD i; // // free up memory allocated for well-known SIDs // for (i = 0; i < (sizeof(SidData) / sizeof(SidData[0])) ; i++) { if( *SidData[i].Sid != NULL ) { INetpMemoryFree( *SidData[i].Sid ); *SidData[i].Sid = NULL; } } // // free up memory allocated for Builtin Domain SIDs // for (i = 0; i < (sizeof(BuiltinDomainSidData) / sizeof(BuiltinDomainSidData[0])) ; i++) { if( *BuiltinDomainSidData[i].Sid != NULL ) { INetpMemoryFree( *BuiltinDomainSidData[i].Sid ); *BuiltinDomainSidData[i].Sid = NULL; } } } DWORD INetCreateSecurityObject( IN PACE_DATA AceData, IN ULONG AceCount, IN PSID OwnerSid, IN PSID GroupSid, IN PGENERIC_MAPPING GenericMapping, OUT PSECURITY_DESCRIPTOR *NewDescriptor ) /*++ Routine Description: This function creates the DACL for the security descriptor based on on the ACE information specified, and creates the security descriptor which becomes the user-mode security object. A sample usage of this function: // // Structure that describes the mapping of Generic access rights to // object specific access rights for the ConfigurationInfo object. // GENERIC_MAPPING WsConfigInfoMapping = { STANDARD_RIGHTS_READ | // Generic read WKSTA_CONFIG_GUEST_INFO_GET | WKSTA_CONFIG_USER_INFO_GET | WKSTA_CONFIG_ADMIN_INFO_GET, STANDARD_RIGHTS_WRITE | // Generic write WKSTA_CONFIG_INFO_SET, STANDARD_RIGHTS_EXECUTE, // Generic execute WKSTA_CONFIG_ALL_ACCESS // Generic all }; // // Order matters! These ACEs are inserted into the DACL in the // following order. Security access is granted or denied based on // the order of the ACEs in the DACL. // ACE_DATA AceData[4] = { {ACCESS_ALLOWED_ACE_TYPE, 0, 0, GENERIC_ALL, &LocalAdminSid}, {ACCESS_DENIED_ACE_TYPE, 0, 0, GENERIC_ALL, &NetworkSid}, {ACCESS_ALLOWED_ACE_TYPE, 0, 0, WKSTA_CONFIG_GUEST_INFO_GET | WKSTA_CONFIG_USER_INFO_GET, &DomainUsersSid}, {ACCESS_ALLOWED_ACE_TYPE, 0, 0, WKSTA_CONFIG_GUEST_INFO_GET, &DomainGuestsSid} }; return INetCreateSecurityObject( AceData, 4, NullSid, LocalSystemSid, &WsConfigInfoMapping, &ConfigurationInfoSd ); Arguments: AceData - Supplies the structure of information that describes the DACL. AceCount - Supplies the number of entries in AceData structure. OwnerSid - Supplies the pointer to the SID of the security descriptor owner. GroupSid - Supplies the pointer to the SID of the security descriptor primary group. GenericMapping - Supplies the pointer to a generic mapping array denoting the mapping between each generic right to specific rights. NewDescriptor - Returns a pointer to the self-relative security descriptor which represents the user-mode object. Return Value: WIN32 Error Code. NOTE : the security object created by calling this function may be freed up by calling INetDeleteSecurityObject(). --*/ { DWORD Error; PSECURITY_DESCRIPTOR AbsoluteSd = NULL; HANDLE TokenHandle = NULL; Error = INetpCreateSecurityDescriptor( AceData, AceCount, OwnerSid, GroupSid, &AbsoluteSd ); if( Error != ERROR_SUCCESS ) { return( Error ); } if( OpenProcessToken( GetCurrentProcess(), TOKEN_QUERY, &TokenHandle ) == FALSE ) { TokenHandle = INVALID_HANDLE_VALUE; Error = GetLastError(); goto Cleanup; } // // Create the security object (a user-mode object is really a pseudo- // object represented by a security descriptor that have relative // pointers to SIDs and ACLs). This routine allocates the memory to // hold the relative security descriptor so the memory allocated for the // DACL, ACEs, and the absolute descriptor can be freed. // if( CreatePrivateObjectSecurity( NULL, // Parent descriptor AbsoluteSd, // Creator descriptor NewDescriptor, // Pointer to new descriptor FALSE, // Is directory object TokenHandle, // Token GenericMapping // Generic mapping ) == FALSE ) { Error = GetLastError(); goto Cleanup; } Error = ERROR_SUCCESS; Cleanup: if( TokenHandle != NULL ) { CloseHandle( TokenHandle ); } // // Free dynamic memory before returning // if( AbsoluteSd != NULL ) { INetpMemoryFree( AbsoluteSd ); } return( Error ); } DWORD INetDeleteSecurityObject( IN PSECURITY_DESCRIPTOR *Descriptor ) /*++ Routine Description: This function deletes a security object that was created by calling INetCreateSecurityObject() function. Arguments: Descriptor - Returns a pointer to the self-relative security descriptor which represents the user-mode object. Return Value: WIN32 Error Code. --*/ { if( DestroyPrivateObjectSecurity( Descriptor ) == FALSE ) { return( GetLastError() ); } return( ERROR_SUCCESS ); } DWORD INetAccessCheckAndAuditW( IN LPCWSTR SubsystemName, IN LPWSTR ObjectTypeName, IN PSECURITY_DESCRIPTOR SecurityDescriptor, IN ACCESS_MASK DesiredAccess, IN PGENERIC_MAPPING GenericMapping ) /*++ Routine Description: This function impersonates the caller so that it can perform access validation using NtAccessCheckAndAuditAlarm; and reverts back to itself before returning. Arguments: SubsystemName - Supplies a name string identifying the subsystem calling this routine. ObjectTypeName - Supplies the name of the type of the object being accessed. SecurityDescriptor - A pointer to the Security Descriptor against which acccess is to be checked. DesiredAccess - Supplies desired acccess mask. This mask must have been previously mapped to contain no generic accesses. GenericMapping - Supplies a pointer to the generic mapping associated with this object type. Return Value: NET_API_STATUS - NERR_Success or reason for failure. --*/ { DWORD Error; ACCESS_MASK GrantedAccess; BOOL GenerateOnClose; BOOL AccessStatus; Error = RpcImpersonateClient( NULL ) ; if( Error != ERROR_SUCCESS ) { return( Error ); } if( AccessCheckAndAuditAlarmW( SubsystemName, NULL, // No handle for object ObjectTypeName, NULL, SecurityDescriptor, DesiredAccess, GenericMapping, FALSE, // open existing object. &GrantedAccess, &AccessStatus, &GenerateOnClose ) == FALSE ) { Error = GetLastError(); goto Cleanup; } if ( AccessStatus == FALSE ) { Error = ERROR_ACCESS_DENIED; goto Cleanup; } Error = ERROR_SUCCESS; Cleanup: RpcRevertToSelf(); return( Error ); } DWORD INetAccessCheckAndAuditA( IN LPCSTR SubsystemName, IN LPSTR ObjectTypeName, IN PSECURITY_DESCRIPTOR SecurityDescriptor, IN ACCESS_MASK DesiredAccess, IN PGENERIC_MAPPING GenericMapping ) /*++ Routine Description: This function impersonates the caller so that it can perform access validation using NtAccessCheckAndAuditAlarm; and reverts back to itself before returning. Arguments: SubsystemName - Supplies a name string identifying the subsystem calling this routine. ObjectTypeName - Supplies the name of the type of the object being accessed. SecurityDescriptor - A pointer to the Security Descriptor against which acccess is to be checked. DesiredAccess - Supplies desired acccess mask. This mask must have been previously mapped to contain no generic accesses. GenericMapping - Supplies a pointer to the generic mapping associated with this object type. Return Value: NET_API_STATUS - NERR_Success or reason for failure. --*/ { DWORD Error; ACCESS_MASK GrantedAccess; BOOL GenerateOnClose; BOOL AccessStatus; Error = RpcImpersonateClient( NULL ) ; if( Error != ERROR_SUCCESS ) { return( Error ); } if( AccessCheckAndAuditAlarmA( SubsystemName, NULL, // No handle for object ObjectTypeName, NULL, SecurityDescriptor, DesiredAccess, GenericMapping, FALSE, // open existing object. &GrantedAccess, &AccessStatus, &GenerateOnClose ) == FALSE ) { Error = GetLastError(); goto Cleanup; } if ( AccessStatus == FALSE ) { Error = ERROR_ACCESS_DENIED; goto Cleanup; } Error = ERROR_SUCCESS; Cleanup: RpcRevertToSelf(); return( Error ); } DWORD INetAccessCheck( IN PSECURITY_DESCRIPTOR SecurityDescriptor, IN ACCESS_MASK DesiredAccess, IN PGENERIC_MAPPING GenericMapping ) /*++ Routine Description: This function impersonates the caller so that it can perform access validation using NtAccessCheck; and reverts back to itself before returning. This routine differs from NetpAccessCheckAndAudit in that it doesn't require the caller to have SE_AUDIT_PRIVILEGE nor does it generate audits. That is typically fine since the passed in security descriptor typically doesn't have a SACL requesting an audit. Arguments: SecurityDescriptor - A pointer to the Security Descriptor against which acccess is to be checked. DesiredAccess - Supplies desired acccess mask. This mask must have been previously mapped to contain no generic accesses. GenericMapping - Supplies a pointer to the generic mapping associated with this object type. Return Value: NET_API_STATUS - NERR_Success or reason for failure. --*/ { DWORD Error; HANDLE ClientToken = NULL; DWORD GrantedAccess = 0; BOOL AccessStatus; BYTE PrivilegeSet[500]; // Large buffer DWORD PrivilegeSetSize; // // Impersonate the client. // Error = RpcImpersonateClient(NULL); if ( Error != ERROR_SUCCESS ) { return( Error ); } // // Open the impersonated token. // if ( OpenThreadToken( GetCurrentThread(), TOKEN_QUERY, TRUE, // use process security context to open token &ClientToken ) == FALSE ) { Error = GetLastError(); goto Cleanup; } // // Check if the client has the required access. // PrivilegeSetSize = sizeof(PrivilegeSet); if ( AccessCheck( SecurityDescriptor, ClientToken, DesiredAccess, GenericMapping, (PPRIVILEGE_SET)&PrivilegeSet, &PrivilegeSetSize, &GrantedAccess, &AccessStatus ) == FALSE ) { Error = GetLastError(); goto Cleanup; } if ( AccessStatus == FALSE ) { Error = ERROR_ACCESS_DENIED; goto Cleanup; } // // Success // Error = ERROR_SUCCESS; Cleanup: RpcRevertToSelf(); if ( ClientToken != NULL ) { CloseHandle( ClientToken ); } return( Error ); }