//==========================================================================; // // THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY // KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR // PURPOSE. // // Copyright (c) 1992 - 1998 Microsoft Corporation. All Rights Reserved. // //--------------------------------------------------------------------------; // Base class hierachy for creating COM objects, December 1994 #include "dmocom.h" #include #pragma warning( disable : 4514 ) // Disable warnings re unused inline functions /* Constructor */ // We know we use "this" in the initialization list, we also know we don't modify *phr. #pragma warning( disable : 4355 4100 ) CComBase::CComBase(IUnknown* pUnk) : /* Start the object with a reference count of zero - when the */ /* object is queried for it's first interface this may be */ /* incremented depending on whether or not this object is */ /* currently being aggregated upon */ m_cRef(0) /* Set our pointer to our IUnknown interface. */ /* If we have an outer, use its, otherwise use ours. */ /* This pointer effectivly points to the owner of */ /* this object and can be accessed by the GetOwner() method. */ , m_pUnknown( pUnk != 0 ? pUnk : reinterpret_cast( static_cast(this) ) ) /* Why the double cast? Well, the inner cast is a type-safe cast */ /* to pointer to a type from which we inherit. The second is */ /* type-unsafe but works because INDUnknown "behaves */ /* like" IUnknown. (Only the names on the methods change.) */ { // Everything we need to do has been done in the initializer list } // This does the same as above except it has a useless HRESULT argument // use the previous constructor, this is just left for compatibility... CComBase::CComBase(IUnknown* pUnk,HRESULT *phr) : m_cRef(0), m_pUnknown( pUnk != 0 ? pUnk : reinterpret_cast( static_cast(this) ) ) { } #pragma warning( default : 4355 4100 ) /* QueryInterface */ STDMETHODIMP CComBase::NDQueryInterface(REFIID riid, void ** ppv) { CheckPointer(ppv,E_POINTER); //ValidateReadWritePtr(ppv,sizeof(PVOID)); /* We know only about IUnknown */ if (riid == IID_IUnknown) { GetInterface((IUnknown*) (INDUnknown*) this, ppv); return NOERROR; } else { *ppv = NULL; return E_NOINTERFACE; } } /* We have to ensure that we DON'T use a max macro, since these will typically */ /* lead to one of the parameters being evaluated twice. Since we are worried */ /* about concurrency, we can't afford to access the m_cRef twice since we can't */ /* afford to run the risk that its value having changed between accesses. */ #ifdef max #undef max #endif template inline static T max( const T & a, const T & b ) { return a > b ? a : b; } /* AddRef */ STDMETHODIMP_(ULONG) CComBase::NDAddRef() { LONG lRef = InterlockedIncrement( &m_cRef ); _ASSERTE(lRef > 0); /* DbgLog((LOG_MEMORY,3,TEXT(" Obj %d ref++ = %d"), m_dwCookie, m_cRef)); */ return max(ULONG(m_cRef), 1ul); } /* Release */ STDMETHODIMP_(ULONG) CComBase::NDRelease() { /* If the reference count drops to zero delete ourselves */ LONG lRef = InterlockedDecrement( &m_cRef ); _ASSERTE(lRef >= 0); /* DbgLog((LOG_MEMORY,3,TEXT(" Object %d ref-- = %d"), m_dwCookie, m_cRef)); */ if (lRef == 0) { // COM rules say we must protect against re-entrancy. // If we are an aggregator and we hold our own interfaces // on the aggregatee, the QI for these interfaces will // addref ourselves. So after doing the QI we must release // a ref count on ourselves. Then, before releasing the // private interface, we must addref ourselves. When we do // this from the destructor here it will result in the ref // count going to 1 and then back to 0 causing us to // re-enter the destructor. Hence we add an extra refcount here // once we know we will delete the object. // for an example aggregator see filgraph\distrib.cpp. m_cRef++; delete this; return ULONG(0); } else { return max(ULONG(m_cRef), 1ul); } } /* Return an interface pointer to a requesting client performing a thread safe AddRef as necessary */ STDAPI GetInterface(IUnknown* pUnk, void **ppv) { CheckPointer(ppv, E_POINTER); *ppv = pUnk; pUnk->AddRef(); return NOERROR; } /* Compares two interfaces and returns TRUE if they are on the same object */ BOOL WINAPI IsEqualObject(IUnknown *pFirst, IUnknown *pSecond) { /* Different objects can't have the same interface pointer for any interface */ if (pFirst == pSecond) { return TRUE; } /* OK - do it the hard way - check if they have the same IUnknown pointers - a single object can only have one of these */ IUnknown* pUnknown1; // Retrieve the IUnknown interface IUnknown* pUnknown2; // Retrieve the other IUnknown interface HRESULT hr; // General OLE return code _ASSERTE(pFirst); _ASSERTE(pSecond); /* See if the IUnknown pointers match */ hr = pFirst->QueryInterface(IID_IUnknown,(void **) &pUnknown1); _ASSERTE(SUCCEEDED(hr)); _ASSERTE(pUnknown1); hr = pSecond->QueryInterface(IID_IUnknown,(void **) &pUnknown2); _ASSERTE(SUCCEEDED(hr)); _ASSERTE(pUnknown2); /* Release the extra interfaces we hold */ pUnknown1->Release(); pUnknown2->Release(); return (pUnknown1 == pUnknown2); }