/* (C) 1997-1998 Microsoft Corp. * * CBC64 - 64-bit hashing algorithm * * CBC64 is part of a Microsoft Research project to create a fast encryption * algorithm for the NT5 NTFS-EFS encrypted disk subsystem. Though * originally intended for encryption use, CBC64 makes a fast hash * and checksum function with known probabilities for failure and known * good variability based on input. * * CBC64 takes as input four seed values a, b, c, and d. The bits of a and * c MUST correspond to the coefficients of an irreducible polynomial. * Associated code (RandomIrreduciblePolynomial(), which is included in this * file but ifdef-ed out) will take a random number as seed value and * converge to a usable value (or zero if the seed cannot be converged, * in which case a new random seed must be tried). * * In an encryption context, a, b, c, and d would correspond to "secrets" * held by the encrypter and decrypter. For our purposes -- use as a hash * function -- we can simply hardcode all four -- a and c with values from * RandomIrreduciblePolynomial() on two random numbers, b and d with * simple random numbers. * * For a set of N inputs (e.g. bitmaps) the probability of duplicate hash * value creation has been proven to be (N^2)/(2^64). * * Original algorithm notes: * From "Chain& Sum primitive and its applications to * Stream Ciphers and MACs" * Ramarathnam Venkatesan (Microsoft Research) * Mariusz Jackubowski (Princeton/MS Research) * * To Appear in Advances in Cryptology EuroCrypt 98, Springer Verlag. * Patent rights being applied for by Microsoft. * * Extracted from the algorithm for simulating CBC-Encryption and its * message integrity properties using much faster stream ciphers. Its * analysis appears in the above paper. * * Algorithm is a MAC with input preprocessing by ((Alpha)x + (Beta)) * mod 2^32, followed by forward (ax + b) and (cx + d) in field GF(2^32). */ #include "cbchash.h" #define CBC_a 0xBB40E665 #define CBC_b 0x544B2FBA #define CBC_c 0xDC3F08DD #define CBC_d 0x39D589AE #define CBC_bXORa (CBC_b ^ CBC_a) #define CBC_dXORc (CBC_d ^ CBC_c) // For removal of branches in main loop -- over twice as fast as the code // with branches. const UINT32 CBC_AB[2] = { CBC_b, CBC_bXORa }; const UINT32 CBC_CD[2] = { CBC_d, CBC_dXORc }; void __fastcall SHCLASS NextCBC64( CBC64Context *pContext, UINT32 *pData, unsigned NumDWORDBlocks) { while (NumDWORDBlocks--) { // Checksum is used to overcome known collision characteristics of // CBC64. It is a low-tech solution that simply decreases the // probability of collision where used. pContext->Checksum += *pData; pContext->Datum = CBC_RandomOddAlpha * (*pData + pContext->Datum) + CBC_RandomBeta; pContext->Key1 ^= pContext->Datum; pContext->Key1 = (pContext->Key1 << 1) ^ (CBC_CD[(pContext->Key1 & 0x80000000) >> 31]); pContext->Key2 ^= pContext->Datum; pContext->Key2 = (pContext->Key2 << 1) ^ (CBC_AB[(pContext->Key2 & 0x80000000) >> 31]); pData++; } } /* * * Support functions for determining irreducible a and c. * */ #if 0 // Original CBC64 from which the First()-Next() algorithm was derived. // Returns the first part of the key value; second key part is last param. UINT32 __fastcall SHCLASS CBC64( UINT32 *Data, unsigned NumDWORDBlocks, UINT32 *pKey2) { int i; UINT32 abMAC, cdMAC, Datum; // For removal of branches in main loops -- over twice as fast as the code // with branches. const UINT32 AB[2] = { CBC_b, CBC_bXORa }; const UINT32 CD[2] = { CBC_d, CBC_dXORc }; // Block 0. abMAC = cdMAC = Datum = *Data * CBC_RandomOddAlpha + CBC_RandomBeta; abMAC = (abMAC << 1) ^ (AB[(cdMAC & 0x80000000) >> 31]); cdMAC = (cdMAC << 1) ^ (CD[(cdMAC & 0x80000000) >> 31]); // Blocks 1 through nblocks - 2 i = NumDWORDBlocks - 1; while (--i) { Data++; Datum = CBC_RandomOddAlpha * (*Data + Datum) + CBC_RandomBeta; cdMAC ^= Datum; cdMAC = (cdMAC << 1) ^ (CD[(cdMAC & 0x80000000) >> 31]); abMAC ^= Datum; abMAC = (abMAC << 1) ^ (AB[(abMAC & 0x80000000) >> 31]); } // Last block (nblocks - 1) Data++; Datum = CBC_RandomOddAlpha * (*Data + Datum) + CBC_RandomBeta; cdMAC ^= Datum; cdMAC = (cdMAC << 1) ^ (CD[(cdMAC & 0x80000000) >> 31]); abMAC ^= Datum; *pKey2 = (abMAC << 1) ^ (AB[(abMAC & 0x80000000) >> 31]); return cdMAC; } #include #include #include #include // multiply y by x mod x^32+p __inline UINT32 Multiply(UINT32 y, UINT32 p) { return (y & 0x80000000) ? (y<<1)^p : y<<1; } // divide y by x mod x^32+p __inline UINT32 Divide(UINT32 y, UINT32 p) { return (y & 1) ? 0x80000000^((y^p)>>1) : y>>1; } // compute (x^32+p) mod qq[i] __inline UINT32 PolyMod(UINT32 p, UINT32 i) { static const UINT32 qq[2]={18<<2, 127}; static const UINT32 rt[2][256] = { 0,32,8,40,16,48,24,56,32,0,40,8,48,16,56,24,8,40,0,32, 24,56,16,48,40,8,32,0,56,24,48,16,16,48,24,56,0,32,8,40, 48,16,56,24,32,0,40,8,24,56,16,48,8,40,0,32,56,24,48,16, 40,8,32,0,32,0,40,8,48,16,56,24,0,32,8,40,16,48,24,56, 40,8,32,0,56,24,48,16,8,40,0,32,24,56,16,48,48,16,56,24, 32,0,40,8,16,48,24,56,0,32,8,40,56,24,48,16,40,8,32,0, 24,56,16,48,8,40,0,32,8,40,0,32,24,56,16,48,40,8,32,0, 56,24,48,16,0,32,8,40,16,48,24,56,32,0,40,8,48,16,56,24, 24,56,16,48,8,40,0,32,56,24,48,16,40,8,32,0,16,48,24,56, 0,32,8,40,48,16,56,24,32,0,40,8,40,8,32,0,56,24,48,16, 8,40,0,32,24,56,16,48,32,0,40,8,48,16,56,24,0,32,8,40, 16,48,24,56,56,24,48,16,40,8,32,0,24,56,16,48,8,40,0,32, 48,16,56,24,32,0,40,8,16,48,24,56,0,32,8,40, 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38, 40,42,44,46,48,50,52,54,56,58,60,62,63,61,59,57,55,53,51,49, 47,45,43,41,39,37,35,33,31,29,27,25,23,21,19,17,15,13,11,9, 7,5,3,1,1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31, 33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,62,60,58,56, 54,52,50,48,46,44,42,40,38,36,34,32,30,28,26,24,22,20,18,16, 14,12,10,8,6,4,2,0,2,0,6,4,10,8,14,12,18,16,22,20, 26,24,30,28,34,32,38,36,42,40,46,44,50,48,54,52,58,56,62,60, 61,63,57,59,53,55,49,51,45,47,41,43,37,39,33,35,29,31,25,27, 21,23,17,19,13,15,9,11,5,7,1,3,3,1,7,5,11,9,15,13, 19,17,23,21,27,25,31,29,35,33,39,37,43,41,47,45,51,49,55,53, 59,57,63,61,60,62,56,58,52,54,48,50,44,46,40,42,36,38,32,34, 28,30,24,26,20,22,16,18,12,14,8,10,4,6,0,2}; p ^= qq[i]<<(32-6); p ^= rt[i][p>>24]<<16; p ^= rt[i][(p>>16)&0xff]<<8; p ^= rt[i][(p>>8)&0xff]; if (p&(1<<7)) p ^= qq[i]<<1; if (p&(1<<6)) p ^= qq[i]; return p % (1<<6); } // do an analogue of Fermat test on x^32+p BOOL Irreducible(UINT32 p) { static const UINT32 expand[256] = { 0x0, 0x1, 0x4, 0x5, 0x10, 0x11, 0x14, 0x15, 0x40, 0x41, 0x44, 0x45, 0x50, 0x51, 0x54, 0x55, 0x100, 0x101, 0x104, 0x105, 0x110, 0x111, 0x114, 0x115, 0x140, 0x141, 0x144, 0x145, 0x150, 0x151, 0x154, 0x155, 0x400, 0x401, 0x404, 0x405, 0x410, 0x411, 0x414, 0x415, 0x440, 0x441, 0x444, 0x445, 0x450, 0x451, 0x454, 0x455, 0x500, 0x501, 0x504, 0x505, 0x510, 0x511, 0x514, 0x515, 0x540, 0x541, 0x544, 0x545, 0x550, 0x551, 0x554, 0x555, 0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015, 0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055, 0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115, 0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155, 0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415, 0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455, 0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515, 0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555, 0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015, 0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055, 0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115, 0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155, 0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415, 0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455, 0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515, 0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555, 0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015, 0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055, 0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115, 0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155, 0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415, 0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455, 0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515, 0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555}; // tables used for fast squaring UINT32 pp[4], ph[16], pl[4][16]; UINT32 g, v; int i; pp[0] = 0; pp[1] = p; if (p&0x80000000) { pp[2] = p ^ (p<<1); pp[3] = p<<1; } else { pp[2] = p<<1; pp[3] = p ^ (p<<1); } v = 0x40000000; for (i=0; i<16; i++) ph[i] = v = (v<<2) ^ pp[v >> 30]; for (i=0; i<4; i++) { pl[i][0] = 0; pl[i][1] = ph[4*i+0]; pl[i][2] = ph[4*i+1]; pl[i][3] = ph[4*i+0] ^ ph[4*i+1]; pl[i][4] = ph[4*i+2]; pl[i][5] = ph[4*i+2] ^ ph[4*i+0]; pl[i][6] = ph[4*i+2] ^ ph[4*i+1]; pl[i][7] = pl[i][5] ^ ph[4*i+1]; pl[i][8] = ph[4*i+3]; pl[i][9] = ph[4*i+3] ^ ph[4*i+0]; pl[i][10] = ph[4*i+3] ^ ph[4*i+1]; pl[i][11] = pl[i][9] ^ ph[4*i+1]; pl[i][12] = ph[4*i+3] ^ ph[4*i+2]; pl[i][13] = pl[i][12] ^ ph[4*i+0]; pl[i][14] = pl[i][10] ^ ph[4*i+2]; pl[i][15] = pl[i][14] ^ ph[4*i+0]; } // compute x^(2^16) mod x^32+p // x^32 mod x^32+p = p g = p; // square g g = expand[g&0xff] ^ (expand[(g>>8)&0xff]<<16) ^ pl[0][(g>>16)&0xf] ^ pl[1][(g>>20)&0xf] ^ pl[2][(g>>24)&0xf] ^ pl[3][(g>>28)&0xf]; // square g 10 more times to get x^(2^16) for (i=0; i<2; i++) { g = expand[g&0xff] ^ (expand[(g>>8)&0xff]<<16) ^ pl[0][(g>>16)&0xf] ^ pl[1][(g>>20)&0xf] ^ pl[2][(g>>24)&0xf] ^ pl[3][(g>>28)&0xf]; g = expand[g&0xff] ^ (expand[(g>>8)&0xff]<<16) ^ pl[0][(g>>16)&0xf] ^ pl[1][(g>>20)&0xf] ^ pl[2][(g>>24)&0xf] ^ pl[3][(g>>28)&0xf]; g = expand[g&0xff] ^ (expand[(g>>8)&0xff]<<16) ^ pl[0][(g>>16)&0xf] ^ pl[1][(g>>20)&0xf] ^ pl[2][(g>>24)&0xf] ^ pl[3][(g>>28)&0xf]; g = expand[g&0xff] ^ (expand[(g>>8)&0xff]<<16) ^ pl[0][(g>>16)&0xf] ^ pl[1][(g>>20)&0xf] ^ pl[2][(g>>24)&0xf] ^ pl[3][(g>>28)&0xf]; g = expand[g&0xff] ^ (expand[(g>>8)&0xff]<<16) ^ pl[0][(g>>16)&0xf] ^ pl[1][(g>>20)&0xf] ^ pl[2][(g>>24)&0xf] ^ pl[3][(g>>28)&0xf]; } // if x^(2^16) mod x^32+p = x then x^32+p has a divisor whose degree is a power of 2 if (g==2) return FALSE; // compute x^(2^32) mod x^32+p for (i=0; i<4; i++) { g = expand[g&0xff] ^ (expand[(g>>8)&0xff]<<16) ^ pl[0][(g>>16)&0xf] ^ pl[1][(g>>20)&0xf] ^ pl[2][(g>>24)&0xf] ^ pl[3][(g>>28)&0xf]; g = expand[g&0xff] ^ (expand[(g>>8)&0xff]<<16) ^ pl[0][(g>>16)&0xf] ^ pl[1][(g>>20)&0xf] ^ pl[2][(g>>24)&0xf] ^ pl[3][(g>>28)&0xf]; g = expand[g&0xff] ^ (expand[(g>>8)&0xff]<<16) ^ pl[0][(g>>16)&0xf] ^ pl[1][(g>>20)&0xf] ^ pl[2][(g>>24)&0xf] ^ pl[3][(g>>28)&0xf]; g = expand[g&0xff] ^ (expand[(g>>8)&0xff]<<16) ^ pl[0][(g>>16)&0xf] ^ pl[1][(g>>20)&0xf] ^ pl[2][(g>>24)&0xf] ^ pl[3][(g>>28)&0xf]; } // x^32+p is irreducible iff x^(2^16) mod x^32+p != x and // x^(2^32) mod x^32+p = x return (g == 2); } // Take as input a random 32-bit value // If successful, output is the lowest 32 bits of a degree 32 irreducible // polynomial otherwise output is 0, in which case try again with a different // random input. UINT32 RandomIrreduciblePolynomial(UINT32 p) { #define interval (1 << 6) BYTE sieve[interval]; UINT32 r; int i; memset(sieve, 0, interval); p ^= p % interval; r = PolyMod(p, 0); sieve[r] = 1; sieve[r^3] = 1; sieve[r^5] = 1; sieve[r^15] = 1; sieve[r^9] = 1; sieve[r^27] = 1; sieve[r^29] = 1; sieve[r^23] = 1; sieve[r^17] = 1; sieve[r^51] = 1; sieve[r^53] = 1; sieve[r^63] = 1; sieve[r^57] = 1; sieve[r^43] = 1; sieve[r^45] = 1; sieve[r^39] = 1; sieve[r^33] = 1; sieve[r^7] = 1; sieve[r^21] = 1; sieve[r^49] = 1; sieve[r^35] = 1; r = PolyMod(p, 1); sieve[r] = 1; sieve[r^11] = 1; sieve[r^22] = 1; sieve[r^29] = 1; sieve[r^44] = 1; sieve[r^39] = 1; sieve[r^58] = 1; sieve[r^49] = 1; sieve[r^13] = 1; sieve[r^26] = 1; sieve[r^23] = 1; sieve[r^52] = 1; sieve[r^57] = 1; sieve[r^46] = 1; sieve[r^35] = 1; for (i=1; i