//++ // // Module name: // // i64fwasm.s // // Author: // // Arad Rostampour (arad@fc.hp.com) Mar-21-99 // // Description: // // Assembly routines for calling into SAL, PAL, and setting up translation registers // //-- #include "ksia64.h" .sdata // // HalpSalSpinLock: // // HAL private spinlock protecting generic SAL calls. // .align 128 HalpSalSpinLock:: data8 0 // // HalpSalStateInfoSpinLock: // // HAL private spinlock protecting specific SAL STATE_INFO calls. // .align 128 HalpSalStateInfoSpinLock:: data8 0 // // HalpMcaSpinLock // // HAL private spinlock protecting HAL internal MCA data structures and operations. // Including operations at IRQL DISPATCH_LEVEL and higher. // .align 128 HalpMcaSpinLock:: data8 0 // // HalpInitSpinLock // // HAL private spinlock protecting HAL internal INIT data structures and operations. // Including operations at IRQL DISPATCH_LEVEL and higher. // .align 128 HalpInitSpinLock:: data8 0 // // HalpCmcSpinLock // // HAL private spinlock protecting HAL internal CMC data structures and operations. // Including operations at IRQL DISPATCH_LEVEL and higher. // .align 128 HalpCmcSpinLock:: data8 0 // // HalpCpeSpinLock // // HAL private spinlock protecting HAL internal CPE data structures and operations. // Including operations at IRQL DISPATCH_LEVEL and higher. // .align 128 HalpCpeSpinLock:: data8 0 // // Definitions used in this file // // Bits to set for the Mode argument in the HalpSetupTranslationRegisters call #define SET_DTR_BIT 1 #define SET_ITR_BIT 0 // TR for PAL is: // ed=1, PPN=0 (to be ORed in), RWX privledge only for ring 0, dirty/accessed bit set, // cacheable memory, present bit set. #define HAL_SAL_PAL_TR_ATTRIB TR_VALUE(1,0,3,0,1,1,0,1) #define HAL_TR_ATTRIBUTE_PPN_MASK 0x0000FFFFFFFFF000 .file "i64fwasm.s" // These globals are defined in i64fw.c .global HalpSalProcPointer .global HalpSalProcGlobalPointer .global HalpPhysSalProcPointer .global HalpPhysSalProcGlobalPointer .global HalpVirtPalProcPointer .global HalpPhysPalProcPointer //++ // // SAL_PAL_RETURN_VALUES // HalpSalProc( // LONGLONG a0, /* SAL function ID */ // LONGLONG a1, /* SAL argument */ // LONGLONG a2, /* SAL argument */ // LONGLONG a3, /* SAL argument */ // LONGLONG a4, /* SAL argument */ // LONGLONG a5, /* SAL argument */ // LONGLONG a6, /* SAL argument */ // LONGLONG a7 /* SAL argument */ // ); // // Routine Description: // This is a simple assembly wrapper that jumps directly to the SAL code. The ONLY // caller should be HalpSalCall. Other users must use the HalpSalCall API for // calling into the SAL. // // Return Values: // r8->r11 contain the 4 64-bit return values for SAL, r8 is the status //-- NESTED_ENTRY(HalpSalProc) NESTED_SETUP(8,3,8,0) // copy args to outs mov out0 = a0 mov out1 = a1 mov out2 = a2 mov out3 = a3 mov out4 = a4 mov out5 = a5 mov out6 = a6 mov out7 = a7 ;; // Simply load the address and branch to it addl t1 = @gprel(HalpSalProcPointer), gp addl t2 = @gprel(HalpSalProcGlobalPointer), gp ;; mov loc2 = gp ld8 t0 = [t1] ;; ld8 gp = [t2] mov bt0 = t0 rsm 1 << PSR_I // disable interrupts ;; // br.sptk.many bt0 br.call.sptk brp = bt0 ;; mov gp = loc2 ssm 1 << PSR_I // enable interrupts ;; NESTED_RETURN NESTED_EXIT(HalpSalProc) //++ // // SAL_PAL_RETURN_VALUES // HalpSalProcPhysicalEx( // LONGLONG a0, /* SAL function ID */ // LONGLONG a1, /* SAL argument */ // LONGLONG a2, /* SAL argument */ // LONGLONG a3, /* SAL argument */ // LONGLONG a4, /* SAL argument */ // LONGLONG a5, /* SAL argument */ // LONGLONG a6, /* SAL argument */ // LONGLONG a7, /* SAL argument */ // LONGLONG stack, // LONGLONG bsp // ); // // Routine Description // This routine calls SAL in physical mode. The only caller should be // HalpSalCall. // //-- NESTED_ENTRY(HalpSalProcPhysicalEx) NESTED_SETUP(8,2,8,0) // // Define our register aliases. // rSaveGP = t22 rSaveEP = t21 rSaveA7 = t20 rSaveA6 = t19 rSaveA5 = t18 rSaveA4 = t17 rSaveA3 = t16 rSaveA2 = t15 rSaveA1 = t14 rSaveA0 = t13 rSaveSp = t12 rSaveBSP = t11 rSavePfs = t10 rSaveBrp = t9 rSaveRSC = t8 rSaveRNAT = t7 rSavePSR = t6 rNewSp = t5 rNewBSP = t4 rT3 = t3 rT2 = t2 rT1 = t1 // // Pull the sp and bsp arguments off of the stack. // add rT1 = 24, sp add rT2 = 16, sp ;; ld8 rNewBSP = [rT1] ld8 rNewSp = [rT2] ;; // // Move our arguments off of the register stack and into static // registers. // mov rSaveA0 = a0 mov rSaveA1 = a1 mov rSaveA2 = a2 mov rSaveA3 = a3 mov rSaveA4 = a4 mov rSaveA5 = a5 mov rSaveA6 = a6 mov rSaveA7 = a7 // // Save copies of a few registers that will be overwritten later on. // mov rSaveSp = sp mov rSavePfs = ar.pfs mov rSaveBrp = brp // // Load the physical addresses of the SAL entry point and gp. // add rT1 = @gprel(HalpPhysSalProcPointer), gp add rT2 = @gprel(HalpPhysSalProcGlobalPointer), gp ;; ld8 rSaveEP = [rT1] ld8 rSaveGP = [rT2] ;; // // Allocate a zero sized frame so that flushrs will move the current // register stack out to memory. // alloc rT1 = 0,0,0,0 ;; // // Flush the RSE. // flushrs ;; // // Save bits [31:0] and [36:35] of the current psr value. // mov rSavePSR = psr // // The .bn bit of the current psr wasn't copied to rSavePSR by the // above operation. Manually set it here so that we don't rfi // to the wrong register bank. // movl rT2 = (1 << PSR_BN) ;; or rSavePSR = rT2, rSavePSR // // Disable interrupts. // rsm (1 << PSR_I) // // Move the RSE into enforced lazy mode by manipulating ar.rsc. // mov rSaveRSC = ar.rsc mov rT1 = RSC_KERNEL_DISABLED ;; mov ar.rsc = rT1 ;; // // Save the current backing store pointer (BSP) and RSE NAT collection // value. // mov rSaveBSP = ar.bsp mov rSaveRNAT = ar.rnat ;; // // Turn off psr.ic in preparation for the rfi. // rsm (1 << PSR_IC) ;; // // Build a new psr value in rT1 by using our original psr value with // .it, .dt, .rt, and .i disabled. // movl rT1 = (1 << PSR_IT) \ | (1 << PSR_RT) \ | (1 << PSR_DT) \ | (1 << PSR_I) movl rT2 = 0xffffffffffffffff ;; xor rT1 = rT1, rT2 ;; and rT1 = rT1, rSavePSR // // Make sure all of our previous psr changes take effect. // srlz.i ;; // // Load our physical mode psr into cr.ipsr. // mov cr.ipsr = rT1 // // Make sure the cfm isn't corrupted when we do the rfi. // mov cr.ifs = zero ;; // // Load the physical address of our continuation label into cr.iip. // movl rT2 = HalpSalProcContinuePhysical ;; tpa rT2 = rT2 ;; mov cr.iip = rT2 ;; // // Do an rfi to physical mode. // rfi ;; HalpSalProcContinuePhysical: // // Switch to the physical mode stack and backing store. Note that // bspstore can only be written when the RSE is in enforced lazy // mode. // mov sp = rNewSp mov ar.bspstore = rNewBSP ;; mov ar.rnat = zero ;; // // Restore the default kernel rsc mode. // mov ar.rsc = RSC_KERNEL ;; // // Allocate a new stack frame on the new bsp. // alloc rT1 = ar.pfs,0,8,8,0 // // Save the registers that aren't preserved across the procedure // call on the register stack. // mov loc0 = rSavePSR mov loc1 = rSaveRNAT mov loc2 = rSaveRSC mov loc3 = rSaveBrp mov loc4 = rSavePfs mov loc5 = rSaveBSP mov loc6 = rSaveSp mov loc7 = gp ;; // // Load the arguments for SAL_PROC. // mov out0 = rSaveA0 mov out1 = rSaveA1 mov out2 = rSaveA2 mov out3 = rSaveA3 mov out4 = rSaveA4 mov out5 = rSaveA5 mov out6 = rSaveA6 mov out7 = rSaveA7 // // Load the physical address of our return label into brp. // movl rT1 = HalpSalProcPhysicalReturnAddress ;; tpa rT1 = rT1 ;; mov brp = rT1 // // Load the entry point and gp of SAL_PROC. // mov bt0 = rSaveEP mov gp = rSaveGP ;; // // Call the SAL. // br.call.sptk brp = bt0 ;; HalpSalProcPhysicalReturnAddress: // // Move our saved state off of the register stack and back to // static registers. // mov rSavePSR = loc0 mov rSaveRNAT = loc1 mov rSaveRSC = loc2 mov rSaveBrp = loc3 mov rSavePfs = loc4 mov rSaveBSP = loc5 mov rSaveSp = loc6 mov gp = loc7 ;; // // Stop all RSE accesses and create an empty frame on top of the // current one. // mov ar.rsc = RSC_KERNEL_DISABLED ;; alloc rT1 = 0,0,0,0 ;; // // Restore our saved bspstore and rnat values. // mov ar.bspstore = rSaveBSP ;; mov ar.rnat = rSaveRNAT // // Restore the stack pointer. // mov sp = rSaveSp ;; // // Turn off psr.ic in preparation for the rfi back to virtual // mode. // rsm (1 << PSR_IC) ;; movl rT1 = HalpSalProcCompletePhysical ;; // // Make sure our psr change has taken effect. // srlz.i ;; // // Load our continuation label address into cr.iip and our saved // psr value into cr.ipsr. Also set cr.ifs so that CFM won't be // corrupted by the rfi. // mov cr.iip = rT1 mov cr.ipsr = rSavePSR mov cr.ifs = zero ;; // // Do an rfi back to virtual mode. // rfi ;; HalpSalProcCompletePhysical: // // Restore our RSC state. // mov ar.rsc = rSaveRSC ;; // // Restore our saved PFS value along with our return pointer and // return to the caller. // mov ar.pfs = rSavePfs mov brp = rSaveBrp ;; br.ret.sptk brp NESTED_EXIT(HalpSalProcPhysicalEx) //++ // // SAL_PAL_RETURN_VALUES // HalpPalProc( // LONGLONG a0, /* PAL function ID */ // LONGLONG a1, /* PAL argument */ // LONGLONG a2, /* PAL argument */ // LONGLONG a3 /* PAL argument */ // ); // // Routine Description // This routine sets up the correct registers for input into PAL depending on // if the call uses static or stacked registers, turns off interrupts, ensures // the correct bank registers are being used and calls into the PAL. The ONLY // caller should be HalpPalCall. Other users must use the HalpPalCall API for // calling into the PAL. // // Return Values: // r8->r11 contain the 4 64-bit return values for PAL, r8 is the status //-- NESTED_ENTRY(HalpPalProc) NESTED_SETUP(4,3,4,0) PROLOGUE_END // For both the static and stacked register conventions, load r28 with FunctionID mov r28 = a0 // If static register calling convention (1-255, 512-767), copy arguments to r29->r31 // Otherwise, copy to out0->out3 so they are in r32->r35 in PAL_PROC mov t0 = a0 ;; shr t0 = t0, 8 ;; tbit.z pt0, pt1 = t0, 0 ;; // // Static proc: do br not call // (pt0) mov r29 = a1 (pt0) mov r30 = a2 (pt0) mov r31 = a3 // // Stacked call // (pt1) mov out0 = a0 (pt1) mov out1 = a1 (pt1) mov out2 = a2 (pt1) mov out3 = a3 // Load up the address of PAL_PROC and call it addl t1 = @gprel(HalpVirtPalProcPointer), gp ;; ld8 t0 = [t1] ;; mov bt0 = t0 // Call into PAL_PROC (pt0) addl t1 = @ltoff(PalReturn), gp ;; (pt0) ld8 t0 = [t1] ;; (pt0) mov brp = t0 ;; // Disable interrupts DISABLE_INTERRUPTS(loc2) ;; srlz.d ;; (pt0) br.sptk.many bt0 ;; (pt1) br.call.sptk brp = bt0 ;; PalReturn: // Restore the interrupt state RESTORE_INTERRUPTS(loc2) ;; NESTED_RETURN NESTED_EXIT(HalpPalProc) //++ // // SAL_PAL_RETURN_VALUES // HalpPalProcPhysicalStatic( // LONGLONG a0, /* PAL function ID */ // LONGLONG a1, /* PAL argument */ // LONGLONG a2, /* PAL argument */ // LONGLONG a3 /* PAL argument */ // ); // // Routine Description // This routine sets up the correct registers for input into PAL turns off interrupts, // ensures the correct bank registers are being used and calls into the PAL in PHYSICAL // mode since some of the calls require it. The ONLY caller should be HalpPalCall. // Other users must use the HalpPalCall API for calling into the PAL. // // Return Values: // r8->r11 contain the 4 64-bit return values for PAL, r8 is the status //-- NESTED_ENTRY(HalpPalProcPhysicalStatic) NESTED_SETUP(4,5,0,0) // // Aliases // rSaveGP = t21 rSaveEP = t20 // r28 = t19 is reserved for PAL calling convention. rSavePSR = t18 rSaveRSC = loc3 rT3 = t3 rT2 = t2 rT1 = t1 add rT3 = @gprel(HalpPhysPalProcPointer), gp ;; ld8 rSaveEP = [rT3] ;; // // Flush RSE and Turn Off interrupts // flushrs mov rSavePSR = psr movl rT2 = (1 << PSR_BN) mov rSaveRSC = ar.rsc mov rT1 = RSC_KERNEL_DISABLED ;; or rSavePSR = rT2, rSavePSR // psr.bn stays on rsm (1 << PSR_I) mov ar.rsc = rT1 ;; // Turn Off Interrupt Collection rsm (1 << PSR_IC) // // IC = 0; I = 0; // // // IIP = HalpPalProcContinuePhysicalStatic: IPSR is physical // movl rT1 = (1 << PSR_IT) | (1 << PSR_RT) | (1 << PSR_DT) | (1 << PSR_I) movl rT2 = 0xffffffffffffffff ;; xor rT1 = rT1, rT2 ;; and rT1 = rT1, rSavePSR // rT1 = old PSR & zero it, dt, rt, i srlz.i ;; mov cr.ipsr = rT1 mov cr.ifs = zero ;; movl rT2 = HalpPalProcContinuePhysicalStatic ;; tpa rT2 = rT2 // phys address of new ip ;; mov cr.iip = rT2 ;; rfi ;; // // Now in physical mode, ic = 1, i = 0 // HalpPalProcContinuePhysicalStatic: // Setup Arguments mov bt0 = rSaveEP mov loc2 = rSavePSR // save PSR value mov r28 = a0 mov r29 = a1 mov r30 = a2 mov r31 = a3 ;; movl rT1 = HalpPalProcPhysicalStaticReturnAddress ;; tpa rT1 = rT1 ;; mov brp = rT1 ;; br.cond.sptk bt0 ;; HalpPalProcPhysicalStaticReturnAddress: rsm (1 << PSR_IC) ;; movl rT1 = HalpPalProcCompletePhysicalStatic ;; srlz.i ;; mov ar.rsc = rSaveRSC mov cr.iip = rT1 mov cr.ipsr = loc2 mov cr.ifs = zero ;; rfi ;; // // Now in virtual mode, ic = 1, i = 1 // HalpPalProcCompletePhysicalStatic: // // Restore pfs, brp and return // NESTED_RETURN NESTED_EXIT(HalpPalProcPhysicalStatic) //++ // // SAL_PAL_RETURN_VALUES // HalpPalProcPhysicalStacked( // LONGLONG a0, /* PAL function ID */ // LONGLONG a1, /* PAL argument */ // LONGLONG a2, /* PAL argument */ // LONGLONG a3, /* PAL argument */ // LONGLONG StackPointer, // LONGLONG BackingStorePointer // ); // // Routine Description // This routine calls PAL in physical mode for the stacked calling // convention. The ONLY caller should be HalpPalCall. Other users must // use the HalpPalCall API for calling into the PAL. // //-- NESTED_ENTRY(HalpPalProcPhysicalStacked) NESTED_SETUP(6,2,0,0) // // Aliases // rSaveGP = t21 rSaveEP = t20 // r28 = t19 is reserved for PAL calling convention. rSaveA3 = t18 rSaveA2 = t17 rSaveA1 = t16 rSaveA0 = t15 rSaveSp = t14 rSaveBSP = t13 rSavePfs = t12 rSaveBrp = t11 rSaveRSC = t10 rSaveRNAT = t9 rSavePSR = t8 rNewSp = t7 rNewBSP = t6 rT3 = t3 rT2 = t2 rT1 = t1 // Save Arguments in static Registers mov rSaveA0 = a0 mov rSaveA1 = a1 mov rSaveA2 = a2 mov rSaveA3 = a3 mov rSaveSp = sp mov rSavePfs = ar.pfs mov rSaveBrp = brp // // Setup Physical sp, bsp // add rT3 = @gprel(HalpPhysPalProcPointer), gp ;; mov rNewSp = a4 mov rNewBSP = a5 ld8 rSaveEP = [rT3] ;; // tpa rSaveEP = rSaveEP // Allocate a zero-sized frame // ;; alloc rT1 = 0,0,0,0 // Flush RSE and Turn Off interrupts ;; flushrs ;; mov rSavePSR = psr movl rT2 = (1 << PSR_BN) ;; or rSavePSR = rT2, rSavePSR // psr.bn stays on rsm (1 << PSR_I) mov rSaveRSC = ar.rsc // Flush RSE to enforced lazy mode by clearing both RSC.mode bits mov rT1 = RSC_KERNEL_DISABLED ;; mov ar.rsc = rT1 ;; // // save RSC, RNAT, BSP, PSR, SP in the allocated space during initialization // mov rSaveBSP = ar.bsp mov rSaveRNAT = ar.rnat ;; // Turn Off Interrupt Collection rsm (1 << PSR_IC) ;; // // IC = 0; I = 0; // // // IIP = HalpPalProcContinuePhysicalStacked: IPSR is physical // movl rT1 = (1 << PSR_IT) | (1 << PSR_RT) | (1 << PSR_DT) | (1 << PSR_I) movl rT2 = 0xffffffffffffffff ;; xor rT1 = rT1, rT2 ;; and rT1 = rT1, rSavePSR // rT1 = old PSR & zero it, dt, rt, i srlz.i ;; mov cr.ipsr = rT1 mov cr.ifs = zero ;; movl rT2 = HalpPalProcContinuePhysicalStacked ;; tpa rT2 = rT2 // phys address of new ip ;; mov cr.iip = rT2 ;; rfi ;; // // Now in physical mode, ic = 1, i = 0 // HalpPalProcContinuePhysicalStacked: // // Switch to new bsp, sp // mov sp = rNewSp mov ar.bspstore = rNewBSP ;; mov ar.rnat = zero ;; // // Enable RSC // mov ar.rsc = RSC_KERNEL ;; // // Allocate frame on new bsp // alloc rT1 = ar.pfs,0,7,4,0 // // Save caller's state in register stack // mov loc0 = rSaveRNAT mov loc1 = rSaveSp mov loc2 = rSaveBSP mov loc3 = rSaveRSC mov loc4 = rSaveBrp mov loc5 = rSavePfs mov loc6 = rSavePSR ;; // Setup Arguments mov r28 = rSaveA0 mov out0 = rSaveA0 mov out1 = rSaveA1 mov out2 = rSaveA2 mov out3 = rSaveA3 movl rT1 = HalpPalProcPhysicalStackedReturnAddress ;; tpa rT1 = rT1 ;; mov brp = rT1 // mov gp = rSaveGP mov bt0 = rSaveEP ;; br.call.sptk brp = bt0 ;; HalpPalProcPhysicalStackedReturnAddress: // // In physical mode: switch to virtual // // // Restore saved state // mov rSaveRNAT = loc0 mov rSaveSp = loc1 mov rSaveBSP = loc2 mov rSaveRSC = loc3 mov rSaveBrp = loc4 mov rSavePfs = loc5 mov rSavePSR = loc6 ;; // // Restore BSP, SP // ;; mov ar.rsc = RSC_KERNEL_DISABLED ;; alloc rT1 = 0,0,0,0 ;; mov ar.bspstore = rSaveBSP ;; mov ar.rnat = rSaveRNAT mov sp = rSaveSp ;; rsm (1 << PSR_IC) ;; movl rT1 = HalpPalProcCompletePhysicalStacked ;; srlz.i ;; mov cr.iip = rT1 mov cr.ipsr = rSavePSR mov cr.ifs = zero ;; rfi ;; // // Now in virtual mode, ic = 1, i = 1 // HalpPalProcCompletePhysicalStacked: // // Restore psf, brp and return // mov ar.rsc = rSaveRSC ;; mov ar.pfs = rSavePfs mov brp = rSaveBrp ;; br.ret.sptk brp NESTED_EXIT(HalpPalProcPhysicalStacked)