/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Copyright (c) 1993-2000 Microsoft Corporation Module Name : bufsize.c Abstract : This file contains the routines called by MIDL 2.0 stubs and the interpreter for computing the buffer size needed for a parameter. Author : David Kays dkays September 1993. Revision History : ---------------------------------------------------------------------*/ #include "ndrp.h" #include "ndrole.h" #include "attack.h" #include "pointerq.h" RPCRTAPI void RPC_ENTRY NdrUDTSimpleTypeSize( PMIDL_STUB_MESSAGE pStubMsg, unsigned char * pMemory, PFORMAT_STRING pFormat ); extern const PSIZE_ROUTINE SizeRoutinesTable[] = { NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrUDTSimpleTypeSize, NdrPointerBufferSize, NdrPointerBufferSize, NdrPointerBufferSize, NdrPointerBufferSize, NdrSimpleStructBufferSize, NdrSimpleStructBufferSize, NdrConformantStructBufferSize, NdrConformantStructBufferSize, NdrConformantVaryingStructBufferSize, NdrComplexStructBufferSize, NdrConformantArrayBufferSize, NdrConformantVaryingArrayBufferSize, NdrFixedArrayBufferSize, NdrFixedArrayBufferSize, NdrVaryingArrayBufferSize, NdrVaryingArrayBufferSize, NdrComplexArrayBufferSize, NdrConformantStringBufferSize, NdrConformantStringBufferSize, NdrConformantStringBufferSize, NdrConformantStringBufferSize, NdrNonConformantStringBufferSize, NdrNonConformantStringBufferSize, NdrNonConformantStringBufferSize, NdrNonConformantStringBufferSize, NdrEncapsulatedUnionBufferSize, NdrNonEncapsulatedUnionBufferSize, NdrByteCountPointerBufferSize, NdrXmitOrRepAsBufferSize, // transmit as NdrXmitOrRepAsBufferSize, // represent as NdrPointerBufferSize, NdrContextHandleSize, // New Post NT 3.5 token serviced from here on. 0, // NdrHardStructBufferSize, NdrXmitOrRepAsBufferSize, // transmit as ptr NdrXmitOrRepAsBufferSize, // represent as ptr NdrUserMarshalBufferSize, 0, // FC_PIPE 0, // FC_BLK_HOLE NdrpRangeBufferSize, 0, // FC_INT3264 0, // FC_UINT3264 0, // NdrCsArrayBufferSize, 0, // NdrCsTagBufferSize }; const PSIZE_ROUTINE * pfnSizeRoutines = SizeRoutinesTable; void NdrpInterfacePointerBufferSize ( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ); RPCRTAPI void RPC_ENTRY NdrTypeSize( PMIDL_STUB_MESSAGE pStubMsg, unsigned char * pMemory, PFORMAT_STRING pFormat ) { (*pfnSizeRoutines[ROUTINE_INDEX(*pFormat)])( pStubMsg, pMemory, pFormat ); } void RPC_ENTRY NdrUDTSimpleTypeSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Get the size a top level or embedded simple type. Used for VT_USERDEFINED but in fact simple types, like TKIND_ENUM and TKIND_ALIAS Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the data being sized. pFormat - Pointer's format string description. Return : None. --*/ { LENGTH_ALIGN( pStubMsg->BufferLength, SIMPLE_TYPE_ALIGNMENT(*pFormat) ); pStubMsg->BufferLength += SIMPLE_TYPE_BUFSIZE(*pFormat); pMemory += SIMPLE_TYPE_MEMSIZE(*pFormat); } void RPC_ENTRY NdrPointerBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the needed buffer size for a top level pointer to anything. Pointers embedded in structures, arrays, or unions call NdrpPointerBufferSize directly. Used for FC_RP, FC_UP, FC_FP, FC_OP. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the data being sized. pFormat - Pointer's format string description. Return : None. --*/ { // // Add 4 bytes for a unique or full pointer. // if ( *pFormat != FC_RP ) { LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += PTR_WIRE_SIZE; } NdrpPointerBufferSize( pStubMsg, pMemory, pFormat ); } __forceinline void NdrpPointerBufferSizeInternal( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Private routine for sizing a pointee. This is the entry point for pointers embedded in structures, arrays, or unions. Used for FC_RP, FC_UP, FC_FP, FC_OP. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the data being sized. pFormat - Pointer's format string description. pStubMsg->BufferLength - ready for the pointee. Return : None. --*/ { if ( FC_IP == *pFormat ) { if ( IS_BROKEN_INTERFACE_POINTER(pStubMsg->uFlags) ) { // The pointee is effectivly both the pointer // and the pointee. NdrInterfacePointerBufferSize( pStubMsg, pMemory, pFormat ); return; } if ( ! pMemory ) return; NdrpInterfacePointerBufferSize( pStubMsg, pMemory, pFormat ); return; } uchar uFlagsSave; if ( ! pMemory ) return; if ( *pFormat == FC_FP ) { // // Check if we have already sized this full pointer. // if ( NdrFullPointerQueryPointer( pStubMsg->FullPtrXlatTables, pMemory, FULL_POINTER_BUF_SIZED, 0 ) ) return; } if ( ! SIMPLE_POINTER(pFormat[1]) ) { // // Pointer to complex type. // if ( POINTER_DEREF(pFormat[1]) ) pMemory = *((uchar **)pMemory); pFormat += 2; pFormat += *((signed short *)pFormat); } else { switch ( pFormat[2] ) { case FC_C_CSTRING : case FC_C_BSTRING : case FC_C_WSTRING : case FC_C_SSTRING : // Increment to the string description. pFormat += 2; break; default : // // Pointer to simple type. Make an upper bound estimate. // SIMPLE_TYPE_BUF_INCREMENT(pStubMsg->BufferLength, pFormat[2]); return; } } uFlagsSave = pStubMsg->uFlags; RESET_CONF_FLAGS_TO_STANDALONE(pStubMsg->uFlags); (*pfnSizeRoutines[ROUTINE_INDEX(*pFormat)])( pStubMsg, pMemory, pFormat ); pStubMsg->uFlags = uFlagsSave; } NDR_BUFSIZE_POINTER_QUEUE_ELEMENT::NDR_BUFSIZE_POINTER_QUEUE_ELEMENT( MIDL_STUB_MESSAGE *pStubMsg, uchar * const pMemoryNew, const PFORMAT_STRING pFormatNew) : pMemory(pMemoryNew), pFormat(pFormatNew), Memory(pStubMsg->Memory), uFlags(pStubMsg->uFlags) { } void NDR_BUFSIZE_POINTER_QUEUE_ELEMENT::Dispatch( MIDL_STUB_MESSAGE *pStubMsg) { SAVE_CONTEXT MemorySave( pStubMsg->Memory, Memory ); SAVE_CONTEXT uFlagsSave( pStubMsg->uFlags, uFlags ); NDR_ASSERT( !pStubMsg->PointerBufferMark, "PointerBufferMark is not 0\n"); NdrpPointerBufferSizeInternal( pStubMsg, pMemory, pFormat ); } #if defined(DBG) void NDR_BUFSIZE_POINTER_QUEUE_ELEMENT::Print() { DbgPrint("NDR_BUFSIZE_POINTER_QUEUE_ELEMENT\n"); DbgPrint("pNext: %p\n", pNext ); DbgPrint("pMemory: %p\n", pMemory ); DbgPrint("pFormat: %p\n", pFormat ); DbgPrint("Memory: %p\n", Memory ); DbgPrint("uFlags: %x\n", uFlags ); } #endif void NdrpEnquePointerBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) { NDR32_POINTER_CONTEXT PointerContext( pStubMsg ); RpcTryFinally { NDR_BUFSIZE_POINTER_QUEUE_ELEMENT *pElement = new(PointerContext.GetActiveState()) NDR_BUFSIZE_POINTER_QUEUE_ELEMENT(pStubMsg, pMemory, pFormat); PointerContext.Enque( pElement ); PointerContext.DispatchIfRequired(); } RpcFinally { PointerContext.EndContext(); } RpcEndFinally } void NdrpPointerBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) { if ( !NdrIsLowStack( pStubMsg ) ) { NdrpPointerBufferSizeInternal( pStubMsg, pMemory, pFormat ); return; } NdrpEnquePointerBufferSize( pStubMsg, pMemory, pFormat ); } void RPC_ENTRY NdrpRangeBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a simple type with range on it. Used for FC_RANGE. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the structure being sized. pFormat - Structure's format string description. Return : None. --*/ { // This routine is needed because the precomputed buf size is missing in some cases. // So it is cheaper to have the routine than to change code paths elsewhere. FORMAT_CHARACTER FcType = (FORMAT_CHARACTER)(pFormat[1] & 0x0f); LENGTH_ALIGN( pStubMsg->BufferLength, SIMPLE_TYPE_ALIGNMENT(FcType) ); pStubMsg->BufferLength += SIMPLE_TYPE_BUFSIZE(FcType); } void RPC_ENTRY NdrSimpleStructBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a simple structure. Used for FC_STRUCT and FC_PSTRUCT. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the structure being sized. pFormat - Structure's format string description. Return : None. --*/ { LENGTH_ALIGN(pStubMsg->BufferLength,pFormat[1]); // Add size of the structure. pStubMsg->BufferLength += (ulong) *((ushort *)(pFormat + 2)); // // Add size of embedded pointers. // if ( *pFormat == FC_PSTRUCT ) { NdrpEmbeddedPointerBufferSize( pStubMsg, pMemory, pFormat + 4 ); } } void RPC_ENTRY NdrConformantStructBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a conformant structure. Used for FC_CSTRUCT and FC_CPSTRUCT. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the structure being sized. pFormat - Structure's format string description. Return : None. --*/ { PFORMAT_STRING pFormatArray; ulong FlatSize; // set by the embedding complex struct uchar fIsEmbeddedStructSave = IS_EMBED_CONF_STRUCT( pStubMsg->uFlags ); // accounted for by the outermost embedding complex struct if ( !fIsEmbeddedStructSave ) { // Align and add size for conformance count. LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += 4; } // Align LENGTH_ALIGN(pStubMsg->BufferLength, pFormat[1] ); FlatSize = (ulong) *((ushort *)(pFormat + 2)); pStubMsg->BufferLength += FlatSize; // Increment to the offset to array description. pFormat += 4; pFormatArray = pFormat + *((signed short *)pFormat); // // Size our array - pass a memory pointer to the conformant array. // NdrpConformantArrayBufferSize( pStubMsg, pMemory + FlatSize, pFormatArray ); pFormat += 2; if ( *pFormat == FC_PP ) { NdrpEmbeddedPointerBufferSize( pStubMsg, pMemory, pFormat ); } // Set the reverse flag to signal that array has been marshaled. if ( fIsEmbeddedStructSave ) SET_CONF_ARRAY_DONE( pStubMsg->uFlags ); } void RPC_ENTRY NdrConformantVaryingStructBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a conformant varying structure. Used for FC_CVSTRUCT. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the structure being sized. pFormat - Structure's format string description. Return : None. --*/ { PPRIVATE_SIZE_ROUTINE pfnSize; PFORMAT_STRING pFormatArray; ulong FlatSize; // set by the outermost embedding complex struct uchar fIsEmbeddedStructSave = IS_EMBED_CONF_STRUCT( pStubMsg->uFlags ); // accounted for by the outermost embedding complex struct if ( !fIsEmbeddedStructSave ) { // Align LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += 4; } // Align LENGTH_ALIGN(pStubMsg->BufferLength, pFormat[1] ); FlatSize = (ulong) *((ushort *)(pFormat + 2)); pStubMsg->BufferLength += FlatSize; // Increment to the offset to array description. pFormat += 4; pFormatArray = pFormat + *((signed short *)pFormat); switch ( *pFormatArray ) { case FC_CVARRAY : pfnSize = NdrpConformantVaryingArrayBufferSize; break; default : pfnSize = NdrpConformantStringBufferSize; break; } (*pfnSize)( pStubMsg, pMemory + FlatSize, pFormatArray ); pFormat += 2; if ( *pFormat == FC_PP ) { pStubMsg->MaxCount = pStubMsg->ActualCount; NdrpEmbeddedPointerBufferSize( pStubMsg, pMemory, pFormat ); } // Set the reverse flag to signal that array has been marshaled. if ( fIsEmbeddedStructSave ) SET_CONF_ARRAY_DONE( pStubMsg->uFlags ); } #if 0 void RPC_ENTRY NdrHardStructBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a hard structure. Used for FC_HARD_STRUCT. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the structure being sized. pFormat - Structure's format string description. Return : None. --*/ { LENGTH_ALIGN(pStubMsg->BufferLength,pFormat[1]); pStubMsg->BufferLength += *((ushort *)&pFormat[10]); if ( *((short *)&pFormat[14]) ) { pFormat += 12; pMemory += *((ushort *)pFormat)++; pFormat += *((short *)pFormat); (*pfnSizeRoutines[ROUTINE_INDEX(*pFormat)])( pStubMsg, pMemory, pFormat ); } } #endif // 0 void RPC_ENTRY NdrComplexStructBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a complex structure. Used for FC_BOGUS_STRUCT. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the structure being sized. pFormat - Structure's format string description. Return : None. --*/ { PFORMAT_STRING pFormatPointers; PFORMAT_STRING pFormatArray; PFORMAT_STRING pFormatComplex; long Alignment; long Align8Mod; BOOL fEmbedConfStructContext; uchar* pMemoryLoop; PFORMAT_STRING pFormatLoop; uchar fIsEmbeddedStructSave = IS_EMBED_CONF_STRUCT( pStubMsg->uFlags ); uchar * pMemorySave = pStubMsg->Memory; // // If were not ignoring pointees and the the stub message PointerBufferMark field is 0, // then determine the position in the buffer where pointees will be marshalled. // // We have to do this to handle embedded pointers. // bool fSetPointerBufferMark = !pStubMsg->IgnoreEmbeddedPointers && !pStubMsg->PointerBufferMark; if ( fSetPointerBufferMark ) { pStubMsg->IgnoreEmbeddedPointers = TRUE; ulong BufferLengthSave = pStubMsg->BufferLength; NdrComplexStructBufferSize( pStubMsg, pMemory, pFormat ); // If the size of the flat part is zero and this is the first item to be // marshalled, add a small offset to the buffer so that we can continue // to use PointerBufferMark as an is embedded flag. if ( !pStubMsg->BufferLength) { pStubMsg->BufferLength += NDR_MAX_BUFFER_ALIGNMENT; BufferLengthSave += NDR_MAX_BUFFER_ALIGNMENT; } pStubMsg->IgnoreEmbeddedPointers = FALSE; pStubMsg->PointerBufferMark = (uchar *) UlongToPtr(pStubMsg->BufferLength); pStubMsg->BufferLength = BufferLengthSave; } // // This is used when computing the count(s) for size_is or length_is // pointers. // pStubMsg->Memory = pMemory; Alignment = pFormat[1]; // // This is used for support of structs with doubles passed on an // i386 stack, and of struct with longs on 16 bit platforms. // // A cast to long is what we need. Align8Mod = 0x7 & PtrToLong( pMemory ); pFormat += 4; fEmbedConfStructContext = fIsEmbeddedStructSave; // Get conformant array description. if ( *((ushort *)pFormat) ) { pFormatArray = pFormat + *((signed short *)pFormat); // mark Complex struct embedding Conformant struct case if ( FixWireRepForDComVerGTE54( pStubMsg ) ) fEmbedConfStructContext = TRUE; // accounted for by the outermost embedding complex struct if ( !fIsEmbeddedStructSave ) { // // Align and add size of conformance count(s). // LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += 4 * NdrpArrayDimensions( pStubMsg, pFormatArray, FALSE); } } else pFormatArray = 0; RESET_EMBED_CONF_STRUCT( pStubMsg->uFlags ); pFormat += 2; // Get pointer layout description. if ( *((ushort *)pFormat) ) pFormatPointers = pFormat + *((ushort *)pFormat); else pFormatPointers = 0; pFormat += 2; // save variables for second loop pMemoryLoop = pMemory; pFormatLoop = pFormat; LENGTH_ALIGN(pStubMsg->BufferLength,Alignment); // // size the structure member by member. // for ( ; *pFormat != FC_END; pFormat++ ) { switch ( *pFormat ) { // // simple types // case FC_CHAR : case FC_BYTE : case FC_SMALL : case FC_WCHAR : case FC_SHORT : case FC_LONG : #if defined(__RPC_WIN64__) case FC_INT3264: case FC_UINT3264: #endif case FC_FLOAT : case FC_HYPER : case FC_DOUBLE : case FC_ENUM16 : case FC_ENUM32 : case FC_IGNORE : LENGTH_ALIGN( pStubMsg->BufferLength, SIMPLE_TYPE_ALIGNMENT(*pFormat) ); pStubMsg->BufferLength += SIMPLE_TYPE_BUFSIZE(*pFormat); pMemory += SIMPLE_TYPE_MEMSIZE(*pFormat); break; case FC_POINTER : LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += PTR_WIRE_SIZE; if ( !pStubMsg->IgnoreEmbeddedPointers ) { POINTER_BUFFERLENGTH_SWAP_CONTEXT SwapContext( pStubMsg ); NdrpPointerBufferSize( pStubMsg, *((uchar **)pMemory), pFormatPointers ); } pFormatPointers += 4; pMemory += PTR_MEM_SIZE; break; // // Embedded complex types. // case FC_EMBEDDED_COMPLEX : // Add padding. pMemory += pFormat[1]; pFormat += 2; // Get the type's description. pFormatComplex = pFormat + *((signed short UNALIGNED *)pFormat); if ( FC_IP == *pFormatComplex ) { // Treat embedded interface pointers the same as regular pointers. LENGTH_ALIGN( pStubMsg->BufferLength, 0x3 ); pStubMsg->BufferLength += PTR_WIRE_SIZE; if ( !pStubMsg->IgnoreEmbeddedPointers ) { POINTER_BUFFERLENGTH_SWAP_CONTEXT SwapContext( pStubMsg ); NdrpPointerBufferSize( pStubMsg, *((uchar **)pMemory), pFormatComplex); } pMemory += PTR_MEM_SIZE; pFormat++; break; } // Needed for embedded conf structs // if ( fEmbedConfStructContext ) SET_EMBED_CONF_STRUCT( pStubMsg->uFlags ); (*pfnSizeRoutines[ROUTINE_INDEX(*pFormatComplex)]) ( pStubMsg, pMemory, pFormatComplex ); pMemory = NdrpMemoryIncrement( pStubMsg, pMemory, pFormatComplex ); RESET_EMBED_CONF_STRUCT( pStubMsg->uFlags ); // // Increment the main format string one byte. The loop // will increment it one more byte past the offset field. // pFormat++; break; case FC_ALIGNM2 : ALIGN( pMemory, 0x1 ); break; case FC_ALIGNM4 : ALIGN( pMemory, 0x3 ); break; case FC_ALIGNM8 : // // We have to play some tricks for the i386 to handle the case // when an 8 byte aligned structure is passed by value. The // alignment of the struct on the stack is not guaranteed to be // on an 8 byte boundary. // pMemory -= Align8Mod; ALIGN( pMemory, 0x7 ); pMemory += Align8Mod; break; case FC_STRUCTPAD1 : case FC_STRUCTPAD2 : case FC_STRUCTPAD3 : case FC_STRUCTPAD4 : case FC_STRUCTPAD5 : case FC_STRUCTPAD6 : case FC_STRUCTPAD7 : pMemory += (*pFormat - FC_STRUCTPAD1) + 1; break; case FC_STRUCTPADN : // FC_STRUCTPADN 0 pMemory += *(((unsigned short *)pFormat) + 1); pFormat += 3; break; case FC_PAD : break; // // Done with layout. // case FC_END : break; default : NDR_ASSERT(0,"NdrComplexStructBufferSize : bad format char"); RpcRaiseException( RPC_S_INTERNAL_ERROR ); return; } // switch } // for // // Size any conformant array. // // accounted for by the outermost embedding complex struct // .. but not when embedded and not when array done by an embeded conf struct. if ( pFormatArray && !fIsEmbeddedStructSave && ! IS_CONF_ARRAY_DONE( pStubMsg->uFlags ) ) { PPRIVATE_SIZE_ROUTINE pfnSize; switch ( *pFormatArray ) { case FC_CARRAY : pfnSize = NdrpConformantArrayBufferSize; break; case FC_CVARRAY : pfnSize = NdrpConformantVaryingArrayBufferSize; break; case FC_BOGUS_ARRAY : pfnSize = NdrpComplexArrayBufferSize; break; // case FC_C_WSTRING : // case FC_C_CSTRING : // case FC_C_BSTRING : // case FC_C_SSTRING : default : pfnSize = NdrpConformantStringBufferSize; break; } (*pfnSize)( pStubMsg, pMemory, pFormatArray ); } if ( fIsEmbeddedStructSave ) SET_EMBED_CONF_STRUCT( pStubMsg->uFlags ); else RESET_CONF_ARRAY_DONE( pStubMsg->uFlags ); pStubMsg->Memory = pMemorySave; if ( fSetPointerBufferMark ) { pStubMsg->BufferLength = PtrToUlong(pStubMsg->PointerBufferMark); pStubMsg->PointerBufferMark = NULL; } } void RPC_ENTRY NdrFixedArrayBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a fixed array of any number of dimensions. Used for FC_SMFARRAY and FC_LGFARRAY. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. --*/ { LENGTH_ALIGN(pStubMsg->BufferLength,pFormat[1]); if ( *pFormat == FC_SMFARRAY ) { pFormat += 2; pStubMsg->BufferLength += *((ushort *&)pFormat)++; } else { pFormat += 2; pStubMsg->BufferLength += *((ulong UNALIGNED *&)pFormat)++; } if ( *pFormat == FC_PP ) { NdrpEmbeddedPointerBufferSize( pStubMsg, pMemory, pFormat ); } } void RPC_ENTRY NdrConformantArrayBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a top level one dimensional conformant array. Used for FC_CARRAY. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. --*/ { // // Align and add size for conformance count. // LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += 4; NdrpConformantArrayBufferSize( pStubMsg, pMemory, pFormat ); } void NdrpConformantArrayBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Private routine for computing the buffer size needed for a one dimensional conformant array. This is the entry point for unmarshalling an embedded conformant array. Used for FC_CARRAY. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. --*/ { ulong ConformanceCount; ConformanceCount = (ulong) NdrpComputeConformance( pStubMsg, pMemory, pFormat ); if ( ((long)ConformanceCount) < 0 ) RpcRaiseException( RPC_X_INVALID_BOUND ); if ( ! ConformanceCount ) return; LENGTH_ALIGN(pStubMsg->BufferLength,pFormat[1]); pFormat += 2; // Add array size. pStubMsg->BufferLength += *((ushort *)pFormat) * ConformanceCount; pFormat += 6; CORRELATION_DESC_INCREMENT( pFormat ); if ( *pFormat == FC_PP ) { NdrpEmbeddedPointerBufferSize( pStubMsg, pMemory, pFormat ); } } void RPC_ENTRY NdrConformantVaryingArrayBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a top level one dimensional conformant varying array. Used for FC_CVARRAY. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. --*/ { // // Align and add size for conformance count. // LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += 4; NdrpConformantVaryingArrayBufferSize( pStubMsg, pMemory, pFormat ); } void NdrpConformantVaryingArrayBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Private routine for computing the buffer size needed for a one dimensional conformant varying array. This is the entry point for buffer sizing an embedded conformant varying array. Used for FC_CVARRAY. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. --*/ { ulong ConformanceCount; // // Align and add size for offset and actual count. // LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += 8; NdrpComputeVariance( pStubMsg, pMemory, pFormat ); // Check if the bounds are valid ConformanceCount = (ulong) NdrpComputeConformance( pStubMsg, pMemory, pFormat ); if ( ( ((long)ConformanceCount) < 0 ) || ( ((long)pStubMsg->ActualCount) < 0 ) || ( ((long)pStubMsg->Offset) < 0 ) || ( (pStubMsg->Offset + pStubMsg->ActualCount) > ConformanceCount ) ) RpcRaiseException( RPC_X_INVALID_BOUND ); if ( ! pStubMsg->ActualCount ) return; LENGTH_ALIGN(pStubMsg->BufferLength, pFormat[1]); pFormat += 2; // Add array size. pStubMsg->BufferLength += *((ushort *)pFormat) * pStubMsg->ActualCount; pFormat += 10; CORRELATION_DESC_INCREMENT( pFormat ); CORRELATION_DESC_INCREMENT( pFormat ); if ( *pFormat == FC_PP ) { // // MaxCount must contain the number of shipped elements in the array // before sizing embedded pointers. // pStubMsg->MaxCount = pStubMsg->ActualCount; NdrpEmbeddedPointerBufferSize( pStubMsg, pMemory, pFormat ); } } void RPC_ENTRY NdrVaryingArrayBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a top level or embedded one dimensional varying array. Used for FC_SMVARRAY and FC_LGVARRAY. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. Arguments : pMemory - pointer to the parameter to size pFormat - pointer to the format string description of the parameter --*/ { ulong Elements; ulong ElementSize; // // Align and add size for offset and actual count. // LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += 8; NdrpComputeVariance( pStubMsg, pMemory, pFormat ); // Check if the bounds are valid Elements = (*pFormat == FC_SMVARRAY) ? *((ushort *)(pFormat + 4)) : *((ulong UNALIGNED *)(pFormat + 6)); if ( ( ((long)pStubMsg->ActualCount) < 0 ) || ( ((long)pStubMsg->Offset) < 0 ) || ( (pStubMsg->Offset + pStubMsg->ActualCount) > Elements ) ) RpcRaiseException( RPC_X_INVALID_BOUND ); if ( ! pStubMsg->ActualCount ) return; LENGTH_ALIGN(pStubMsg->BufferLength, pFormat[1]); if (*pFormat == FC_SMVARRAY) { ElementSize = *((ushort *)(pFormat + 6)); pFormat += 12; } else { ElementSize = *((ushort *)(pFormat + 10)); pFormat += 16; } CORRELATION_DESC_INCREMENT( pFormat ); pStubMsg->BufferLength += ElementSize * pStubMsg->ActualCount; if ( *pFormat == FC_PP ) { // // MaxCount must contain the number of shipped elements in the array // before sizing embedded pointers. // pStubMsg->MaxCount = pStubMsg->ActualCount; NdrpEmbeddedPointerBufferSize( pStubMsg, pMemory, pFormat ); } } void RPC_ENTRY NdrComplexArrayBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a top level complex array. Used for FC_BOGUS_STRUCT. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. Note. Array of ref pointers does not have wire representation for the pointers themselves, regardless whether array is top level or embedded in a struct. --*/ { bool fSetPointerBufferMark = !pStubMsg->IgnoreEmbeddedPointers && (! pStubMsg->PointerBufferMark ); if ( fSetPointerBufferMark ) { // // Save the current conformance and variance fields. The sizing // routine can overwrite them. // ULONG_PTR MaxCountSave = pStubMsg->MaxCount; ulong OffsetSave = pStubMsg->Offset; ulong ActualCountSave = pStubMsg->ActualCount; ulong BufferLengthSave = pStubMsg->BufferLength; pStubMsg->IgnoreEmbeddedPointers = TRUE; NdrComplexArrayBufferSize( pStubMsg, pMemory, pFormat ); // If the size of the flat part is zero and this is the first item to be // marshalled, add a small offset to the buffer so that we can continue // to use PointerBufferMark as an is embedded flag. if ( !pStubMsg->BufferLength) { pStubMsg->BufferLength += NDR_MAX_BUFFER_ALIGNMENT; BufferLengthSave += NDR_MAX_BUFFER_ALIGNMENT; } pStubMsg->PointerBufferMark = (uchar *) UlongToPtr(pStubMsg->BufferLength); pStubMsg->IgnoreEmbeddedPointers = FALSE; // Restore conformance and variance fields. pStubMsg->MaxCount = MaxCountSave; pStubMsg->Offset = OffsetSave; pStubMsg->ActualCount = ActualCountSave; pStubMsg->BufferLength = BufferLengthSave; } // // Add in conformance sizes if we are the outermost dimension. // if ( pStubMsg->pArrayInfo == 0 ) { // // Align and add size for any conformance count(s). // if ( *((long UNALIGNED *)(pFormat + 4)) != 0xffffffff ) { LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += NdrpArrayDimensions( pStubMsg, pFormat, FALSE ) * 4; } } NdrpComplexArrayBufferSize( pStubMsg, pMemory, pFormat ); if ( fSetPointerBufferMark ) { pStubMsg->BufferLength = PtrToUlong(pStubMsg->PointerBufferMark); pStubMsg->PointerBufferMark = NULL; } } void NdrpComplexArrayBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Private routine for determing the buffer size of a complex array. This is the entry point for buffer sizing an embedded complex array. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. --*/ { ARRAY_INFO ArrayInfo; PARRAY_INFO pArrayInfo; PSIZE_ROUTINE pfnSize; PFORMAT_STRING pFormatStart; ulong Elements; ulong Offset, Count; ulong MemoryElementSize; long Dimension; uchar Alignment; // // Lots of setup if we are the outer dimension. // if ( ! pStubMsg->pArrayInfo ) { NdrpInitArrayInfo(pStubMsg, &ArrayInfo ); // // Set this to 0 so that NdrpMemoryIncrement will know to call // NdrpComputeConformance when computing our size. // pStubMsg->pArrayInfo->BufferConformanceMark = 0; } pFormatStart = pFormat; pArrayInfo = pStubMsg->pArrayInfo; Dimension = pArrayInfo->Dimension; // Get the array alignment. Alignment = pFormat[1]; pFormat += 2; // Get the number of elements (0 if conformance present). Elements = *((ushort *&)pFormat)++; // // Check for conformance description. // if ( *((long UNALIGNED *)pFormat) != 0xffffffff ) { Elements = (ulong) NdrpComputeConformance( pStubMsg, pMemory, pFormatStart ); } pFormat += 4; CORRELATION_DESC_INCREMENT( pFormat ); // // Check for variance description. // if ( *((long UNALIGNED *)pFormat) != 0xffffffff ) { NdrpComputeVariance( pStubMsg, pMemory, pFormatStart ); Offset = pStubMsg->Offset; Count = pStubMsg->ActualCount; if ( Dimension == 0 ) { // // Align and add in size of variance count(s). // LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += NdrpArrayDimensions( pStubMsg, pFormatStart, TRUE ) * 8; } } else { Offset = 0; Count = Elements; } pFormat += 4; CORRELATION_DESC_INCREMENT( pFormat ); // Check bounds if ( ( ((long)Elements) < 0 ) || ( ((long)Count) < 0 ) || ( ((long)Offset) < 0 ) || ( (Offset + Count) > Elements ) ) RpcRaiseException( RPC_X_INVALID_BOUND ); if ( Count ) { LENGTH_ALIGN( pStubMsg->BufferLength, Alignment ); if ( *pFormat == FC_EMBEDDED_COMPLEX ) { ulong CountSave; uchar* pMemorySave; PFORMAT_STRING pFormatSave; pFormat += 2; pFormat += *((signed short *)pFormat); if ( FC_IP == *pFormat ) goto PointerSizing; pfnSize = pfnSizeRoutines[ROUTINE_INDEX(*pFormat)]; pArrayInfo->Dimension = Dimension + 1; MemoryElementSize = (ulong) ( NdrpMemoryIncrement( pStubMsg, pMemory, pFormat ) - pMemory ); if ( ! IS_ARRAY_OR_STRING(*pFormat) ) pStubMsg->pArrayInfo = 0; // // If there is variance then increment the memory pointer to the first // element actually being sized. // if ( Offset ) pMemory += Offset * MemoryElementSize; pFormatSave = pFormat; pMemorySave = pMemory; CountSave = Count; for ( ; Count--; ) { // Keep track of multidimensional array dimension. if ( IS_ARRAY_OR_STRING(*pFormat) ) pArrayInfo->Dimension = Dimension + 1; (*pfnSize)( pStubMsg, pMemory, pFormat ); pMemory += MemoryElementSize; } pMemory += MemoryElementSize; } else if ( *pFormat == FC_UP || *pFormat == FC_FP || *pFormat == FC_OP || *pFormat == FC_RP || *pFormat == FC_IP ) { PointerSizing: // // Shallow size the array // if ( *pFormat != FC_RP ) { pStubMsg->BufferLength += Count * PTR_WIRE_SIZE; } // // If there is variance then increment the memory pointer to the first // element actually being sized. // if ( Offset ) pMemory += Offset * PTR_MEM_SIZE; // // size the pointees // if ( !pStubMsg->IgnoreEmbeddedPointers ) { bool UseBrokenInterfacePointerRep = (FC_IP == *pFormat) && !FixWireRepForDComVerGTE54( pStubMsg ); // If this is the broken interface pointer format, make sure we // have enough space for both the pointer and pointee where // the pointer should have been. if ( UseBrokenInterfacePointerRep ) SET_BROKEN_INTERFACE_POINTER( pStubMsg->uFlags ); // Need this in case we have a variant offset. pStubMsg->pArrayInfo = 0; // Switch to the pointee buffer. POINTER_BUFFERLENGTH_SWAP_CONTEXT SwapContext( pStubMsg ); for ( ; Count--; ) { NdrpPointerBufferSize( pStubMsg, *((uchar **&)pMemory)++, pFormat ); } if ( UseBrokenInterfacePointerRep ) RESET_BROKEN_INTERFACE_POINTER( pStubMsg->uFlags ); } } else if (*pFormat == FC_RANGE ) { pStubMsg->BufferLength += Count * SIMPLE_TYPE_BUFSIZE( pFormat[1] ); } else { NDR_ASSERT( IS_SIMPLE_TYPE(*pFormat), "NdrpComplexArrayBufferSize : bad format char" ); pStubMsg->BufferLength += Count * SIMPLE_TYPE_BUFSIZE(*pFormat); } } // pArrayInfo must be zero when not valid. pStubMsg->pArrayInfo = (Dimension == 0) ? 0 : pArrayInfo; } void RPC_ENTRY NdrNonConformantStringBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a non conformant string. Used for FC_CSTRING, FC_WSTRING, FC_SSTRING, and FC_BSTRING (NT Beta2 compatability only). Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. --*/ { long MaxSize; long Length; // Align and add size for variance counts. LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += 8; switch ( *pFormat ) { case FC_CSTRING : case FC_BSTRING : Length = strlen((char*)pMemory) + 1; break; case FC_WSTRING : Length = (wcslen((wchar_t *)pMemory) + 1) * sizeof(wchar_t); break; case FC_SSTRING : Length = NdrpStringStructLen( pMemory, pFormat[1] ) + 1; Length *= pFormat[1]; break; default : NDR_ASSERT(0,"NdrNonConformantStringBufferSize : Bad format type"); RpcRaiseException( RPC_S_INTERNAL_ERROR ); return; } // Check bounds MaxSize = *((ushort *)(pFormat + 2)); switch ( *pFormat ) { case FC_WSTRING : MaxSize *= sizeof(wchar_t); break; case FC_SSTRING : MaxSize *= pFormat[1]; break; default : break; } if ( Length > MaxSize ) RpcRaiseException(RPC_X_INVALID_BOUND); pStubMsg->BufferLength += Length; } void RPC_ENTRY NdrConformantStringBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a top level conformant string. Used for FC_C_CSTRING, FC_C_WSTRING, FC_C_SSTRING, and FC_C_BSTRING (NT Beta2 compatability only). Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. --*/ { // // Add in size for conformance marshalling only if this string is not // in a multidimensional array. // if ( pStubMsg->pArrayInfo == 0 ) { // Align and add size for conformance count. LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += 4; } NdrpConformantStringBufferSize( pStubMsg, pMemory, pFormat ); } void NdrpConformantStringBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Private routine for computing the buffer size needed for a conformant string. This is the entry point for an embedded conformant string. Used for FC_C_CSTRING, FC_C_WSTRING, FC_C_SSTRING, and FC_C_BSTRING (NT Beta2 compatability only). Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the array being sized. pFormat - Array's format string description. Return : None. --*/ { long MaxSize; long Length; // Align and add size for variance. LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += 8; switch ( *pFormat ) { case FC_C_CSTRING : case FC_C_BSTRING : Length = strlen((char*)pMemory) + 1; break; case FC_C_WSTRING : Length = (wcslen((wchar_t *)pMemory) + 1) * sizeof(wchar_t); break; case FC_C_SSTRING : Length = NdrpStringStructLen( pMemory, pFormat[1] ) + 1; Length *= pFormat[1]; break; default : NDR_ASSERT(0,"NdrpConformantStringBufferSize : Bad format type"); RpcRaiseException( RPC_S_INTERNAL_ERROR ); return; } // // Do bounds checking. // if ( ((*pFormat != FC_C_SSTRING) && (pFormat[1] == FC_STRING_SIZED)) || ((*pFormat == FC_C_SSTRING) && (pFormat[2] == FC_STRING_SIZED)) ) { MaxSize = (ulong) NdrpComputeConformance( pStubMsg, pMemory, pFormat ); switch ( *pFormat ) { case FC_C_WSTRING : MaxSize *= sizeof(wchar_t); break; case FC_C_SSTRING : MaxSize *= pFormat[1]; break; default : break; } if ( (MaxSize < 0) || (Length > MaxSize) ) RpcRaiseException(RPC_X_INVALID_BOUND); } pStubMsg->BufferLength += Length; } void RPC_ENTRY NdrEncapsulatedUnionBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for an encapsulated union. Used for FC_ENCAPSULATED_UNION. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the union being sized. pFormat - Union's format string description. Return : None. --*/ { long SwitchIs; uchar SwitchType; NO_CORRELATION; SwitchType = LOW_NIBBLE(pFormat[1]); switch ( SwitchType ) { case FC_SMALL : case FC_CHAR : SwitchIs = (long) *((char *)pMemory); break; case FC_USMALL : SwitchIs = (long) *((uchar *)pMemory); break; case FC_ENUM16 : case FC_SHORT : SwitchIs = (long) *((short *)pMemory); break; case FC_USHORT : case FC_WCHAR : SwitchIs = (long) *((ushort *)pMemory); break; case FC_LONG : case FC_ULONG : case FC_ENUM32 : // FC_INT3264 is mapped to FC_LONG. SwitchIs = *((long *)pMemory); break; default : NDR_ASSERT(0,"NdrEncapsulatedBufferSize : bad switch type"); RpcRaiseException( RPC_S_INTERNAL_ERROR ); return; } // Increment memory pointer to the union. pMemory += HIGH_NIBBLE(pFormat[1]); NdrpUnionBufferSize( pStubMsg, pMemory, pFormat + 2, SwitchIs, SwitchType ); } void RPC_ENTRY NdrNonEncapsulatedUnionBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a non encapsulated union. Used for FC_NON_ENCAPSULATED_UNION. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the union being sized. pFormat - Union's format string description. Return : None. --*/ { long SwitchIs; uchar SwitchType; SwitchType = pFormat[1]; SwitchIs = (ulong) NdrpComputeSwitchIs( pStubMsg, pMemory, pFormat ); // // Set the format string to the memory size and arm description. // pFormat += 6; CORRELATION_DESC_INCREMENT( pFormat ); pFormat += *((signed short *)pFormat); NdrpUnionBufferSize( pStubMsg, pMemory, pFormat, SwitchIs, SwitchType ); } void NdrpUnionBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat, long SwitchIs, uchar SwitchType ) /*++ Routine Description : Private routine for computing the buffer size needed for a union. This routine is used for sizing both encapsulated and non-encapsulated unions. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the union being sized. pFormat - Union's format string description. SwitchIs - The union's switch is. SwitchType - The union's switch type. Return : None. --*/ { long Arms; long Alignment; // // Size the switch_is. // LENGTH_ALIGN(pStubMsg->BufferLength,SIMPLE_TYPE_ALIGNMENT(SwitchType)); pStubMsg->BufferLength += SIMPLE_TYPE_BUFSIZE(SwitchType); // Skip the memory size field. pFormat += 2; // // Get the union alignment (0 if this is a DCE union) and align the // buffer on this alignment. // Alignment = (uchar) ( *((ushort *)pFormat) >> 12 ); LENGTH_ALIGN(pStubMsg->BufferLength,Alignment); Arms = (long) ( *((ushort *&)pFormat)++ & 0x0fff ); // // Search for the arm. // for ( ; Arms; Arms-- ) { if ( *((long UNALIGNED *&)pFormat)++ == SwitchIs ) { // // Found the right arm, break out. // break; } // Else increment format string. pFormat += 2; } // // Check if we took the default arm and no default arm is specified. // if ( ! Arms && (*((ushort *)pFormat) == (ushort) 0xffff) ) { RpcRaiseException( RPC_S_INVALID_TAG ); } // // Return if the arm is empty. // if ( ! *((ushort *)pFormat) ) return; // // Get the arm's description. // // We need a real solution after beta for simple type arms. This could // break if we have a format string larger than about 32K. // if ( IS_MAGIC_UNION_BYTE(pFormat) ) { // Re-align again, only does something usefull for DCE unions. unsigned char FcType = pFormat[0]; LENGTH_ALIGN( pStubMsg->BufferLength, SIMPLE_TYPE_ALIGNMENT( FcType )); pStubMsg->BufferLength += SIMPLE_TYPE_BUFSIZE( FcType ); } else { pFormat += *((signed short *)pFormat); // // If the union arm we take is a pointer, we have to dereference the // current memory pointer since we're passed a pointer to the union // (regardless of whether the actual parameter was a by-value union // or a pointer to a union). // if ( IS_POINTER_TYPE(*pFormat) ) { if ( pStubMsg->IgnoreEmbeddedPointers ) { // // If we're ignoring pointers then just add in the size of a pointer // here and return. // LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += PTR_WIRE_SIZE; return; } pMemory = *((uchar **)pMemory); if ( pStubMsg->PointerBufferMark ) { // If the union is embedded, tread it specially LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += PTR_WIRE_SIZE; if ( !pStubMsg->IgnoreEmbeddedPointers ) { POINTER_BUFFERLENGTH_SWAP_CONTEXT SwapContext(pStubMsg); NdrpPointerBufferSize( pStubMsg, pMemory, pFormat ); } return; } } // Call the appropriate sizing routine (*pfnSizeRoutines[ROUTINE_INDEX(*pFormat)])( pStubMsg, pMemory, pFormat ); } } void RPC_ENTRY NdrByteCountPointerBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a byte count pointer. Arguments : pStubMsg - Pointer to the stub message. pMemory - The byte count pointer being sized. pFormat - Byte count pointer's format string description. Return : None. --*/ { // // We don't do anything special here. Just pass things on to the // right sizing routine. // if ( pFormat[1] != FC_PAD ) { SIMPLE_TYPE_BUF_INCREMENT(pStubMsg->BufferLength, pFormat[1]); } else { pFormat += 6; CORRELATION_DESC_INCREMENT( pFormat ); pFormat += *((signed short *)pFormat); (*pfnSizeRoutines[ROUTINE_INDEX(*pFormat)])( pStubMsg, pMemory, pFormat ); } } void RPC_ENTRY NdrXmitOrRepAsBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a transmit as or represent as object. See mrshl.c for the description of the FC layout. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the transmit/represent as object being sized. pFormat - Object's format string description. Return : None. --*/ { const XMIT_ROUTINE_QUINTUPLE * pQuintuple; unsigned short QIndex, XmitTypeSize; BOOL fXmitByPtr = *pFormat == FC_TRANSMIT_AS_PTR || *pFormat == FC_REPRESENT_AS_PTR; // Fetch the QuintupleIndex. QIndex = *(unsigned short *)(pFormat + 2); // We size the transmitted object, of course. pFormat += 6; XmitTypeSize = *((unsigned short *)pFormat); pQuintuple = pStubMsg->StubDesc->aXmitQuintuple; if ( XmitTypeSize ) { // lower nibble of the flag word has the alignment unsigned long Align = LOW_NIBBLE(*(pFormat - 5)); LENGTH_ALIGN( pStubMsg->BufferLength, Align ); pStubMsg->BufferLength += XmitTypeSize; } else { // We have to create an object to size it. unsigned char * pTransmittedType; // First translate the presented type into the transmitted type. // This includes an allocation of a transmitted type object. pStubMsg->pPresentedType = pMemory; pStubMsg->pTransmitType = NULL; pQuintuple[ QIndex ].pfnTranslateToXmit( pStubMsg ); // bufsize the transmitted type. pFormat += 2; pFormat = pFormat + *(short *)pFormat; pTransmittedType = pStubMsg->pTransmitType; // If transmitted type is a pointer, dereference it. { // Set the current queue to NULL so that all the embedded // pointers in the transmitted type will be sized together uchar *PointerBufferMarkSave = pStubMsg->PointerBufferMark; pStubMsg->PointerBufferMark = 0; NDR_POINTER_QUEUE *pOldQueue = NULL; if ( pStubMsg->pPointerQueueState ) { pOldQueue = pStubMsg->pPointerQueueState->GetActiveQueue(); pStubMsg->pPointerQueueState->SetActiveQueue(NULL); } RpcTryFinally { (*pfnSizeRoutines[ ROUTINE_INDEX(*pFormat) ]) ( pStubMsg, fXmitByPtr ? *(uchar **)pTransmittedType : pTransmittedType, pFormat ); } RpcFinally { pStubMsg->PointerBufferMark = PointerBufferMarkSave; if ( pStubMsg->pPointerQueueState ) { pStubMsg->pPointerQueueState->SetActiveQueue(pOldQueue); } } RpcEndFinally } pStubMsg->pTransmitType = pTransmittedType; // Free the temporary transmitted object (it was alloc'ed by the user). pQuintuple[ QIndex ].pfnFreeXmit( pStubMsg ); } } void NdrpUserMarshalBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a usr_marshall object. See mrshl.c for the description of the FC layout and wire layout. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the usr_marshall object to buffer size. pFormat - Object's format string description. Return : None. --*/ { const USER_MARSHAL_ROUTINE_QUADRUPLE * pQuadruple; unsigned short QIndex; unsigned long UserOffset; USER_MARSHAL_CB UserMarshalCB; if ( pFormat[1] & USER_MARSHAL_POINTER ) { // This is an overestimate to correct the size generated // by MIDL's state machine for sizing arguments. // The maximum alignment gap VARIANT might consume is 11: // 4 for the leading pad between unique pointer and wireVARIANT, // and 7 bytes if variant is a BSTR, and following parameter is // a CY (stuff that's aligned to 8). // MZ: Since were overcompensating here, just make this something // reasonable like 0x10 which is probably a good max alignment. pStubMsg->BufferLength += 0x10; } // We are here to size a flat object or a pointee object. // Optimization: if we know the wire size, don't call the user to size it. if ( *(unsigned short *)(pFormat + 6) != 0 ) { pStubMsg->BufferLength += *(unsigned short *)(pFormat + 6); } else { // Unknown wire size: Call the user to size his stuff. NdrpInitUserMarshalCB( pStubMsg, pFormat, USER_MARSHAL_CB_BUFFER_SIZE, & UserMarshalCB); UserOffset = pStubMsg->BufferLength; QIndex = *(unsigned short *)(pFormat + 2); pQuadruple = pStubMsg->StubDesc->aUserMarshalQuadruple; UserOffset = pQuadruple[ QIndex ].pfnBufferSize( (ulong*) &UserMarshalCB, UserOffset, pMemory ); pStubMsg->BufferLength = UserOffset; } } void NDR_USR_MRSHL_BUFSIZE_POINTER_QUEUE_ELEMENT::Dispatch(MIDL_STUB_MESSAGE *pStubMsg) { NdrpUserMarshalBufferSize( pStubMsg, pMemory, pFormat ); } #if defined(DBG) void NDR_USR_MRSHL_BUFSIZE_POINTER_QUEUE_ELEMENT::Print() { DbgPrint("NDR_USR_MRSHL_BUFSIZE_POINTER_QUEUE_ELEMENT\n"); DbgPrint("pMemory: %p\n", pMemory ); DbgPrint("pFormat: %p\n", pFormat ); } #endif void RPC_ENTRY NdrUserMarshalBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) { // Check if the object is embedded. // Pointer buffer mark is set only when in a complex struct or array. // For unions, when the union is embedded in a complex struct or array. // If the union is top level, it's the same like a top level object. // For unique pointers we don't have to check embedding, we always add 4. // For ref pointer we need to check embedding. // Align for the flat object or a pointer to the user object. LENGTH_ALIGN( pStubMsg->BufferLength, LOW_NIBBLE(pFormat[1]) ); if ( pFormat[1] & USER_MARSHAL_POINTER ) { if ( (pFormat[1] & USER_MARSHAL_UNIQUE) || ((pFormat[1] & USER_MARSHAL_REF) && pStubMsg->PointerBufferMark) ) { pStubMsg->BufferLength += PTR_WIRE_SIZE; } if ( pStubMsg->IgnoreEmbeddedPointers ) return; POINTER_BUFFERLENGTH_SWAP_CONTEXT SwapContext( pStubMsg ); if ( !pStubMsg->pPointerQueueState || !pStubMsg->pPointerQueueState->GetActiveQueue() ) { NdrpUserMarshalBufferSize( pStubMsg, pMemory, pFormat ); } else { NDR_USR_MRSHL_BUFSIZE_POINTER_QUEUE_ELEMENT*pElement = new(pStubMsg->pPointerQueueState) NDR_USR_MRSHL_BUFSIZE_POINTER_QUEUE_ELEMENT(pMemory, pFormat); pStubMsg->pPointerQueueState->GetActiveQueue()->Enque( pElement ); } return; } NdrpUserMarshalBufferSize( pStubMsg, pMemory, pFormat ); } void NdrpInterfacePointerBufferSize ( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for an interface pointer. Arguments : pStubMsg - Pointer to the stub message. pMemory - The interface pointer being sized. pFormat - Interface pointer's format string description. Return : None. --*/ { IID iid; IID *piid; unsigned long size = 0; HRESULT hr; // // Get an IID pointer. // if ( pFormat[1] != FC_CONSTANT_IID ) { // // We do it same way as we compute variance with a long. // piid = (IID *) NdrpComputeIIDPointer( pStubMsg, pMemory, pFormat ); if(piid == 0) RpcRaiseException( RPC_S_INVALID_ARG ); } else { // // The IID may not be aligned properly in the format string, // so we copy it to a local variable. // piid = &iid; RpcpMemoryCopy( &iid, &pFormat[2], sizeof(iid) ); } // Allocate space for the length and array bounds. LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += sizeof(unsigned long) + sizeof(unsigned long); hr = (*pfnCoGetMarshalSizeMax)(&size, *piid, (IUnknown *)pMemory, pStubMsg->dwDestContext, pStubMsg->pvDestContext, 0); if(FAILED(hr)) { RpcRaiseException(hr); } pStubMsg->BufferLength += size; } void RPC_ENTRY NdrInterfacePointerBufferSize ( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) { // This function is called only for toplevel interface pointers and // backward compatibity LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += PTR_WIRE_SIZE; if ( pStubMsg->IgnoreEmbeddedPointers ) return; // If the pointer is null, we counted everything. if ( pMemory == 0 ) return; NdrpInterfacePointerBufferSize( pStubMsg, pMemory, pFormat ); } void NdrpEmbeddedPointerBufferSize ( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Private routine for computing the buffer size needed for a structure's or array's embedded pointers. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the embedding structure or array. pFormat - Format string pointer layout description. Return : None. --*/ { if ( pStubMsg->IgnoreEmbeddedPointers ) return; POINTER_BUFFERLENGTH_SWAP_CONTEXT SwapContext( pStubMsg ); void ** ppMemPtr; uchar * pMemorySave; ULONG_PTR MaxCountSave; long OffsetSave; MaxCountSave = pStubMsg->MaxCount; OffsetSave = pStubMsg->Offset; pMemorySave = pStubMsg->Memory; // Set new memory context. pStubMsg->Memory = pMemory; // // Increment past the FC_PP and pad. // pFormat += 2; for (;;) { if ( *pFormat == FC_END ) { pStubMsg->Memory = pMemorySave; break; } // // Check for FC_FIXED_REPEAT or FC_VARIABLE_REPEAT. // if ( *pFormat != FC_NO_REPEAT ) { pStubMsg->MaxCount = MaxCountSave; pStubMsg->Offset = OffsetSave; NdrpEmbeddedRepeatPointerBufferSize( pStubMsg, pMemory, &pFormat ); // Continue to the next pointer. continue; } // Compute the pointer to the pointer in memory to size. ppMemPtr = (void **) (pMemory + *((signed short *)(pFormat + 2))); // Increment to the pointer description. pFormat += 6; NdrpPointerBufferSize( pStubMsg, (uchar*)*ppMemPtr, pFormat ); // Increment past pointer description. pFormat += 4; } } void NdrpEmbeddedRepeatPointerBufferSize ( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING * ppFormat ) /*++ Routine Description : Private routine for computing the buffer size needed for an array's embedded pointers. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the embedding array. pFormat - The array's format string pointer layout description. Return : None. --*/ { uchar ** ppMemPtr; PFORMAT_STRING pFormat; PFORMAT_STRING pFormatSave; uchar * pMemorySave; ulong RepeatCount,RepeatIncrement, Pointers, PointersSave; pMemorySave = pStubMsg->Memory; // Get current format string pointer. pFormat = *ppFormat; switch ( *pFormat ) { case FC_FIXED_REPEAT : // Increment past the FC_FIXED_REPEAT and FC_PAD. pFormat += 2; // Get the total number of times to repeat the pointer marshall. RepeatCount = *((ushort *&)pFormat)++; break; case FC_VARIABLE_REPEAT : // Get the total number of times to repeat the pointer marshall. RepeatCount = (ulong)pStubMsg->MaxCount; // // Check if this variable repeat instance also has a variable // offset (this would be the case for a conformant varying array // of pointers). If so then increment the memory pointer to point // to the actual first array element which is being marshalled. // if ( pFormat[1] == FC_VARIABLE_OFFSET ) pMemory += *((ushort *)(pFormat + 2)) * pStubMsg->Offset; // else pFormat[1] == FC_FIXED_OFFSET - do nothing // Increment past the FC_VARIABLE_REPEAT and FC_PAD. pFormat += 2; break; default : NDR_ASSERT(0,"NdrpEmbeddedRepeatPointerMarshall : bad format char"); RpcRaiseException( RPC_S_INTERNAL_ERROR ); return; } // Get the increment amount between successive pointers. RepeatIncrement = *((ushort *&)pFormat)++; // // Add the offset to the beginning of this array to the Memory // pointer. This is the offset from any currently embedding structure // to the array whose pointers we're marshalling. // pStubMsg->Memory += *((ushort *&)pFormat)++; // Get the number of pointers in this repeat instance. PointersSave = Pointers = *((ushort *&)pFormat)++; pFormatSave = pFormat; // // Loop over the number of elements in the array. // for ( ; RepeatCount--; pMemory += RepeatIncrement, pStubMsg->Memory += RepeatIncrement ) { pFormat = pFormatSave; Pointers = PointersSave; // // Loop over the number of pointers in each array element (this can // be greater than one if we have an array of structures). // for ( ; Pointers--; ) { // Pointer to the pointer in memory. ppMemPtr = (uchar **)(pMemory + *((signed short *)pFormat)); // Increment to pointer description. pFormat += 4; NdrpPointerBufferSize( pStubMsg, (uchar*)*ppMemPtr, pFormat ); // Increment to the next pointer description. pFormat += 4; } } // Update format string pointer past this repeat pointer description. *ppFormat = pFormatSave + PointersSave * 8; pStubMsg->Memory = pMemorySave; } void RPC_ENTRY NdrContextHandleSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a context handle. Arguments : pStubMsg - Pointer to the stub message. pMemory - Ignored. pFormat - Ignored. Return : None. --*/ { LENGTH_ALIGN(pStubMsg->BufferLength,0x3); pStubMsg->BufferLength += CONTEXT_HANDLE_WIRE_SIZE; } #ifdef _CS_CHAR_ void RPC_ENTRY NdrCsTagBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a cs tag param. Also copies the sending tag value to the stub message for use by NdrCsArrayXXX. Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the embedding array. pFormat - Pointer to the FC_CSTAG entry in the format string. Return : None. --*/ { // We need to set the tag in the stub message so that we can properly // size subsequent cs_char arrays. NdrpGetSetCSTagMarshall( pStubMsg, pMemory, (NDR_CS_TAG_FORMAT *) pFormat); LENGTH_ALIGN( pStubMsg->BufferLength, 3 ); pStubMsg->BufferLength += sizeof( unsigned long ); } void RPC_ENTRY NdrCsArrayBufferSize( PMIDL_STUB_MESSAGE pStubMsg, uchar * pMemory, PFORMAT_STRING pFormat ) /*++ Routine Description : Computes the buffer size needed for a cs_char array Arguments : pStubMsg - Pointer to the stub message. pMemory - Pointer to the embedding array. pFormat - Pointer to the FC_CSARRAY entry in the format string. Return : None. --*/ { NDR_CS_ARRAY_FORMAT *pCSFormat = (NDR_CS_ARRAY_FORMAT *) pFormat; ulong Size; ulong Length; ulong WireSize; NDR_ASSERT( NULL != pStubMsg->pCSInfo, "cs_char stub info not set up"); // Skip pFormat to the underlying array descriptor pFormat += pCSFormat->DescriptionOffset; // Leave room for the max count / offset / actual count if ( NdrpIsVaryingArray( pFormat ) ) { LENGTH_ALIGN( pStubMsg->BufferLength, 3 ); pStubMsg->BufferLength += 8; } if ( NdrpIsConformantArray( pFormat ) ) { LENGTH_ALIGN( pStubMsg->BufferLength, 3 ); pStubMsg->BufferLength += 4; } // Get the base size and length NdrpGetArraySizeLength ( pStubMsg, pMemory, pFormat, 1, (long*)&Size, (long*)&Length, (long*)&WireSize ); // Call XXX_net_size to estimate the buffer space required to store this // array after conversion. For fixed or varying arrays the buffer // space is equal to the fixed upper bound specified in the idl file. if ( !NdrpIsVaryingArray( pFormat ) ) { NDR_CS_SIZE_CONVERT_ROUTINES *CSRoutines; CS_TYPE_NET_SIZE_ROUTINE SizingRoutine; IDL_CS_CONVERT ConversionType; error_status_t Status; CSRoutines = pStubMsg->StubDesc->CsRoutineTables->pSizeConvertRoutines; SizingRoutine = CSRoutines[ pCSFormat->CSRoutineIndex ].pfnNetSize; SizingRoutine( NULL, pStubMsg->pCSInfo->WireCodeset, Size, (IDL_CS_CONVERT*)&ConversionType, &Size, &Status); if (RPC_S_OK != Status) RpcRaiseException(Status); } pStubMsg->BufferLength += Size; } #endif // _CS_CHAR_ void NdrPartialIgnoreClientBufferSize( PMIDL_STUB_MESSAGE pStubMsg, void * pMemory ) { LENGTH_ALIGN( pStubMsg->BufferLength, 0x3 ); pStubMsg->Buffer += PTR_WIRE_SIZE; }