//+------------------------------------------------------------------------- // // Microsoft Windows // // Copyright (C) SCM Microsystems, 1998 - 1999 // // File: cbhndlr.c // //-------------------------------------------------------------------------- #if defined( SMCLIB_VXD ) #include "Driver98.h" #else #include "DriverNT.h" #endif #include "SerialIF.h" #include "STCCmd.h" #include "CBHndlr.h" #include "T0Hndlr.h" NTSTATUS CBCardPower( PSMARTCARD_EXTENSION SmartcardExtension ) /*++ CBCardPower: callback handler for SMCLIB RDF_CARD_POWER Arguments: SmartcardExtension context of call Return Value: STATUS_SUCCESS STATUS_NO_MEDIA STATUS_TIMEOUT STATUS_BUFFER_TOO_SMALL --*/ { NTSTATUS NTStatus = STATUS_SUCCESS; UCHAR ATRBuffer[ ATR_SIZE ]; ULONG ATRLength; PREADER_EXTENSION ReaderExtension; KIRQL irql; SERIAL_TIMEOUTS Timeouts; SmartcardDebug( DEBUG_TRACE, ("SCMSTCS!CBCardPower Enter\n" )); ReaderExtension = SmartcardExtension->ReaderExtension; // discard old ATR SmartcardExtension->CardCapabilities.ATR.Length = 0; SmartcardExtension->CardCapabilities.Protocol.Selected = SCARD_PROTOCOL_UNDEFINED; // set standard timeouts for the worker thread Timeouts.ReadIntervalTimeout = SR_READ_INTERVAL_TIMEOUT; Timeouts.ReadTotalTimeoutConstant = SR_READ_TOTAL_TIMEOUT_CONSTANT; Timeouts.ReadTotalTimeoutMultiplier = 0; Timeouts.WriteTotalTimeoutConstant = SR_WRITE_TOTAL_TIMEOUT_CONSTANT; Timeouts.WriteTotalTimeoutMultiplier = 0; NTStatus = IFSerialIoctl( ReaderExtension, IOCTL_SERIAL_SET_TIMEOUTS, &Timeouts, sizeof(Timeouts), NULL, 0 ); ASSERT(NTStatus == STATUS_SUCCESS); // set the ATR timeout in milli sec ReaderExtension->ReadTimeout = 1500; switch (SmartcardExtension->MinorIoControlCode) { case SCARD_WARM_RESET: // if the card was not powerd, fall through to cold reset KeAcquireSpinLock(&SmartcardExtension->OsData->SpinLock, &irql); if( SmartcardExtension->ReaderCapabilities.CurrentState > SCARD_SWALLOWED ) { KeReleaseSpinLock(&SmartcardExtension->OsData->SpinLock, irql); // reset the card ATRLength = ATR_SIZE; NTStatus = STCReset( ReaderExtension, 0, // not used: ReaderExtension->Device, TRUE, // warm reset ATRBuffer, &ATRLength ); break; } else { KeReleaseSpinLock(&SmartcardExtension->OsData->SpinLock, irql); } // warm reset not possible because card was not powerd case SCARD_COLD_RESET: // reset the card ATRLength = ATR_SIZE; NTStatus = STCReset( ReaderExtension, 0, // not used: ReaderExtension->Device, FALSE, // cold reset ATRBuffer, &ATRLength ); break; case SCARD_POWER_DOWN: // discard old card status ATRLength = 0; STCPowerOff( ReaderExtension ); NTStatus = STATUS_SUCCESS; CBUpdateCardState( SmartcardExtension, SCARD_PRESENT ); break; } // finish the request if( NTStatus == STATUS_SUCCESS ) { // update all neccessary data if an ATR was received if( ATRLength > 2 ) { // copy ATR to user buffer buffer if( ATRLength <= SmartcardExtension->IoRequest.ReplyBufferLength ) { SysCopyMemory( SmartcardExtension->IoRequest.ReplyBuffer, ATRBuffer, ATRLength ); *SmartcardExtension->IoRequest.Information = ATRLength; } else { NTStatus = STATUS_BUFFER_TOO_SMALL; } // copy ATR to card capability buffer if( ATRLength <= MAXIMUM_ATR_LENGTH ) { SysCopyMemory( SmartcardExtension->CardCapabilities.ATR.Buffer, ATRBuffer, ATRLength ); SmartcardExtension->CardCapabilities.ATR.Length = (UCHAR)ATRLength; // let the lib update the card capabilities NTStatus = SmartcardUpdateCardCapabilities( SmartcardExtension ); } else { NTStatus = STATUS_BUFFER_TOO_SMALL; } if( NTStatus == STATUS_SUCCESS ) { ULONG minWaitTime; // set the stc registers CBSynchronizeSTC( SmartcardExtension ); // now set the new - card specific - timeouts if( SmartcardExtension->CardCapabilities.Protocol.Selected == SCARD_PROTOCOL_T1 ) { ReaderExtension->ReadTimeout = Timeouts.ReadTotalTimeoutConstant = SmartcardExtension->CardCapabilities.T1.BWT / 1000; Timeouts.ReadIntervalTimeout = SmartcardExtension->CardCapabilities.T1.CWT / 1000; } else { ReaderExtension->ReadTimeout = Timeouts.ReadIntervalTimeout = Timeouts.ReadTotalTimeoutConstant = SmartcardExtension->CardCapabilities.T0.WT / 1000 * 5; } minWaitTime = (KeQueryTimeIncrement() / 10000) * 5; if (Timeouts.ReadTotalTimeoutConstant < minWaitTime) { Timeouts.ReadTotalTimeoutConstant = minWaitTime; } if (Timeouts.ReadIntervalTimeout < minWaitTime) { Timeouts.ReadIntervalTimeout = minWaitTime; } if (ReaderExtension->ReadTimeout < minWaitTime) { ReaderExtension->ReadTimeout = minWaitTime; } // set standard timeouts for the worker thread Timeouts.ReadTotalTimeoutMultiplier = 0; NTStatus = IFSerialIoctl( ReaderExtension, IOCTL_SERIAL_SET_TIMEOUTS, &Timeouts, sizeof(Timeouts), NULL, 0 ); ASSERT(NTStatus == STATUS_SUCCESS); } } } SmartcardDebug( DEBUG_TRACE, ( "SCMSTCS!CBCardPower Exit: %X\n", NTStatus ) ); return( NTStatus ); } NTSTATUS CBSetProtocol( PSMARTCARD_EXTENSION SmartcardExtension ) /*++ CBSetProtocol: callback handler for SMCLIB RDF_SET_PROTOCOL Arguments: SmartcardExtension context of call Return Value: STATUS_SUCCESS STATUS_NO_MEDIA STATUS_TIMEOUT STATUS_BUFFER_TOO_SMALL STATUS_INVALID_DEVICE_STATE STATUS_INVALID_DEVICE_REQUEST --*/ { NTSTATUS NTStatus = STATUS_PENDING; UCHAR PTSRequest[5], PTSReply[5]; ULONG NewProtocol; PREADER_EXTENSION ReaderExtension; KIRQL irql; SmartcardDebug( DEBUG_TRACE, ("SCMSTCS!CBSetProtocol Enter\n" )); ReaderExtension = SmartcardExtension->ReaderExtension; NewProtocol = SmartcardExtension->MinorIoControlCode; // check if the card is already in specific state KeAcquireSpinLock(&SmartcardExtension->OsData->SpinLock, &irql); if( ( SmartcardExtension->ReaderCapabilities.CurrentState == SCARD_SPECIFIC ) && ( SmartcardExtension->CardCapabilities.Protocol.Selected & NewProtocol )) { NTStatus = STATUS_SUCCESS; } KeReleaseSpinLock(&SmartcardExtension->OsData->SpinLock, irql); // protocol supported? if( !( SmartcardExtension->CardCapabilities.Protocol.Supported & NewProtocol ) || !( SmartcardExtension->ReaderCapabilities.SupportedProtocols & NewProtocol )) { NTStatus = STATUS_INVALID_DEVICE_REQUEST; } // send PTS while( NTStatus == STATUS_PENDING ) { // set initial character of PTS PTSRequest[0] = 0xFF; // set the format character if( NewProtocol & SCARD_PROTOCOL_T1 ) { PTSRequest[1] = 0x11; SmartcardExtension->CardCapabilities.Protocol.Selected = SCARD_PROTOCOL_T1; } else { PTSRequest[1] = 0x10; SmartcardExtension->CardCapabilities.Protocol.Selected = SCARD_PROTOCOL_T0; } // PTS1 codes Fl and Dl PTSRequest[2] = SmartcardExtension->CardCapabilities.PtsData.Fl << 4 | SmartcardExtension->CardCapabilities.PtsData.Dl; // check character PTSRequest[3] = PTSRequest[0] ^ PTSRequest[1] ^ PTSRequest[2]; // write PTSRequest NTStatus = STCWriteICC1( ReaderExtension, PTSRequest, 4 ); // get response if( NTStatus == STATUS_SUCCESS ) { ULONG BufferLength = sizeof(PTSReply); NTStatus = STCReadICC1( ReaderExtension, PTSReply, &BufferLength, 4 ); if(( NTStatus == STATUS_SUCCESS ) && !SysCompareMemory( PTSRequest, PTSReply, 4)) { // set the stc registers SmartcardExtension->CardCapabilities.Dl = SmartcardExtension->CardCapabilities.PtsData.Dl; SmartcardExtension->CardCapabilities.Fl = SmartcardExtension->CardCapabilities.PtsData.Fl; CBSynchronizeSTC( SmartcardExtension ); // the card replied correctly to the PTS-request break; } } // // The card did either NOT reply or it replied incorrectly // so try default values // SmartcardExtension->CardCapabilities.PtsData.Type = PTS_TYPE_DEFAULT; SmartcardExtension->MinorIoControlCode = SCARD_COLD_RESET; NTStatus = CBCardPower( SmartcardExtension ); if( NTStatus == STATUS_SUCCESS ) { NTStatus = STATUS_PENDING; } else { NTStatus = STATUS_DEVICE_PROTOCOL_ERROR; } } if( NTStatus == STATUS_TIMEOUT ) { NTStatus = STATUS_IO_TIMEOUT; } if( NTStatus == STATUS_SUCCESS ) { ULONG minWaitTime; SERIAL_TIMEOUTS Timeouts; if( SmartcardExtension->CardCapabilities.Protocol.Selected == SCARD_PROTOCOL_T1 ) { ReaderExtension->ReadTimeout = Timeouts.ReadTotalTimeoutConstant = SmartcardExtension->CardCapabilities.T1.BWT / 1000; Timeouts.ReadIntervalTimeout = SmartcardExtension->CardCapabilities.T1.CWT / 1000; } else { ReaderExtension->ReadTimeout = Timeouts.ReadIntervalTimeout = Timeouts.ReadTotalTimeoutConstant = SmartcardExtension->CardCapabilities.T0.WT / 1000 * 5; } minWaitTime = (KeQueryTimeIncrement() / 10000) * 5; if (Timeouts.ReadTotalTimeoutConstant < minWaitTime) { Timeouts.ReadTotalTimeoutConstant = minWaitTime; } if (Timeouts.ReadIntervalTimeout < minWaitTime) { Timeouts.ReadIntervalTimeout = minWaitTime; } if (ReaderExtension->ReadTimeout < minWaitTime) { ReaderExtension->ReadTimeout = minWaitTime; } Timeouts.WriteTotalTimeoutConstant = SR_WRITE_TOTAL_TIMEOUT_CONSTANT; Timeouts.WriteTotalTimeoutMultiplier = 0; Timeouts.ReadTotalTimeoutMultiplier = 0; NTStatus = IFSerialIoctl( ReaderExtension, IOCTL_SERIAL_SET_TIMEOUTS, &Timeouts, sizeof(Timeouts), NULL, 0 ); ASSERT(NTStatus == STATUS_SUCCESS); // indicate that the card is in specific mode KeAcquireSpinLock(&SmartcardExtension->OsData->SpinLock, &irql); SmartcardExtension->ReaderCapabilities.CurrentState = SCARD_SPECIFIC; KeReleaseSpinLock(&SmartcardExtension->OsData->SpinLock, irql); // return the selected protocol to the caller *(PULONG) SmartcardExtension->IoRequest.ReplyBuffer = SmartcardExtension->CardCapabilities.Protocol.Selected; *SmartcardExtension->IoRequest.Information = sizeof(SmartcardExtension->CardCapabilities.Protocol.Selected); } else { SmartcardExtension->CardCapabilities.Protocol.Selected = SCARD_PROTOCOL_UNDEFINED; *(PULONG) SmartcardExtension->IoRequest.ReplyBuffer = 0; *SmartcardExtension->IoRequest.Information = 0; } SmartcardDebug( DEBUG_TRACE, ("SCMSTCS!CBSetProtocol: Exit %X\n", NTStatus )); return( NTStatus ); } NTSTATUS CBTransmit( PSMARTCARD_EXTENSION SmartcardExtension ) /*++ CBTransmit: callback handler for SMCLIB RDF_TRANSMIT Arguments: SmartcardExtension context of call Return Value: STATUS_SUCCESS STATUS_NO_MEDIA STATUS_TIMEOUT STATUS_INVALID_DEVICE_REQUEST --*/ { NTSTATUS NTStatus = STATUS_SUCCESS; SmartcardDebug( DEBUG_TRACE, ("SCMSTCS!CBTransmit Enter\n" )); // dispatch on the selected protocol switch( SmartcardExtension->CardCapabilities.Protocol.Selected ) { case SCARD_PROTOCOL_T0: NTStatus = CBT0Transmit( SmartcardExtension ); break; case SCARD_PROTOCOL_T1: NTStatus = CBT1Transmit( SmartcardExtension ); break; case SCARD_PROTOCOL_RAW: NTStatus = CBRawTransmit( SmartcardExtension ); break; default: NTStatus = STATUS_INVALID_DEVICE_REQUEST; break; } SmartcardDebug( DEBUG_TRACE, ("SCMSTCS!CBTransmit Exit: %X\n", NTStatus )); return( NTStatus ); } NTSTATUS CBT0Transmit( PSMARTCARD_EXTENSION SmartcardExtension ) /*++ CBT0Transmit: finishes the callback RDF_TRANSMIT for the T0 protocol Arguments: SmartcardExtension context of call Return Value: STATUS_SUCCESS STATUS_NO_MEDIA STATUS_TIMEOUT STATUS_INVALID_DEVICE_REQUEST --*/ { NTSTATUS NTStatus = STATUS_SUCCESS; SmartcardDebug( DEBUG_TRACE, ("SCMSTCS!CBT0Transmit Enter\n" )); SmartcardExtension->SmartcardRequest.BufferLength = 0; SmartcardExtension->SmartcardReply.BufferLength = SmartcardExtension->SmartcardReply.BufferSize; // let the lib setup the T=1 APDU & check for errors NTStatus = SmartcardT0Request( SmartcardExtension ); if( NTStatus == STATUS_SUCCESS ) { NTStatus = T0_ExchangeData( SmartcardExtension->ReaderExtension, SmartcardExtension->SmartcardRequest.Buffer, SmartcardExtension->SmartcardRequest.BufferLength, SmartcardExtension->SmartcardReply.Buffer, &SmartcardExtension->SmartcardReply.BufferLength ); if( NTStatus == STATUS_SUCCESS ) { // let the lib evaluate the result & tansfer the data NTStatus = SmartcardT0Reply( SmartcardExtension ); } } SmartcardDebug( DEBUG_TRACE,("SCMSTCS!CBT0Transmit Exit: %X\n", NTStatus )); return( NTStatus ); } NTSTATUS CBT1Transmit( PSMARTCARD_EXTENSION SmartcardExtension ) /*++ CBT1Transmit: finishes the callback RDF_TRANSMIT for the T1 protocol Arguments: SmartcardExtension context of call Return Value: STATUS_SUCCESS STATUS_NO_MEDIA STATUS_TIMEOUT STATUS_INVALID_DEVICE_REQUEST --*/ { NTSTATUS NTStatus = STATUS_SUCCESS; ULONG BufferLength,AlreadyRead; SmartcardDebug( DEBUG_TRACE, ("SCMSTCS!CBT1Transmit Enter\n" )); //KJ RtlZeroMemory( SmartcardExtension->SmartcardReply.Buffer, sizeof(SmartcardExtension->SmartcardReply.Buffer)); // use the lib support to construct the T=1 packets do { // no header for the T=1 protocol SmartcardExtension->SmartcardRequest.BufferLength = 0; SmartcardExtension->T1.NAD = 0; // let the lib setup the T=1 APDU & check for errors NTStatus = SmartcardT1Request( SmartcardExtension ); if( NTStatus == STATUS_SUCCESS ) { // send command (don't calculate LRC because CRC may be used!) NTStatus = STCWriteICC1( SmartcardExtension->ReaderExtension, SmartcardExtension->SmartcardRequest.Buffer, SmartcardExtension->SmartcardRequest.BufferLength ); // // extend the timeout if a Wtx request was sent by the card. if the // card responds before the waiting time extension expires, the data are // buffered in the reader. A delay without polling the reader status // slows down the performance of the driver, but wtx is an exeption, // not the rule. // if (SmartcardExtension->T1.Wtx) { SysDelay( (( SmartcardExtension->T1.Wtx * SmartcardExtension->CardCapabilities.T1.BWT + 999L )/ 1000L) ); } // get response SmartcardExtension->SmartcardReply.BufferLength = 0; if( NTStatus == STATUS_SUCCESS ) { BufferLength = SmartcardExtension->SmartcardReply.BufferSize; NTStatus = STCReadICC1( SmartcardExtension->ReaderExtension, SmartcardExtension->SmartcardReply.Buffer, &BufferLength, 3 ); // if we have read more then 3 bytes if(BufferLength > 3) { AlreadyRead = BufferLength - 3; } else { AlreadyRead = 0; } if( NTStatus == STATUS_SUCCESS ) { ULONG Length; Length = (ULONG)SmartcardExtension->SmartcardReply.Buffer[ LEN_IDX ] + 1; if( Length + 3 < MIN_BUFFER_SIZE ) { BufferLength = SmartcardExtension->SmartcardReply.BufferSize - AlreadyRead - DATA_IDX; NTStatus = STCReadICC1( SmartcardExtension->ReaderExtension, (&SmartcardExtension->SmartcardReply.Buffer[ DATA_IDX ]) + AlreadyRead, &BufferLength, Length-AlreadyRead ); SmartcardExtension->SmartcardReply.BufferLength = Length + 3; } else { NTStatus = STATUS_BUFFER_TOO_SMALL; } } // // if STCRead detects an LRC error, ignore it (maybe CRC used). Timeouts will // be detected by the lib if len=0 // if(( NTStatus == STATUS_CRC_ERROR ) || ( NTStatus == STATUS_IO_TIMEOUT )) { NTStatus = STATUS_SUCCESS; } if( NTStatus == STATUS_SUCCESS ) { // let the lib evaluate the result & setup the next APDU NTStatus = SmartcardT1Reply( SmartcardExtension ); } } } // continue if the lib wants to send the next packet } while( NTStatus == STATUS_MORE_PROCESSING_REQUIRED ); if( NTStatus == STATUS_IO_TIMEOUT ) { NTStatus = STATUS_DEVICE_PROTOCOL_ERROR; } SmartcardDebug( DEBUG_TRACE,( "SCMSTCS!CBT1Transmit Exit: %X\n", NTStatus )); return ( NTStatus ); } NTSTATUS CBRawTransmit( PSMARTCARD_EXTENSION SmartcardExtension ) /*++ CBRawTransmit: finishes the callback RDF_TRANSMIT for the RAW protocol Arguments: SmartcardExtension context of call Return Value: STATUS_SUCCESS STATUS_NO_MEDIA STATUS_TIMEOUT STATUS_INVALID_DEVICE_REQUEST --*/ { NTSTATUS NTStatus = STATUS_SUCCESS; NTStatus = STATUS_UNSUCCESSFUL; SmartcardDebug( DEBUG_TRACE, ("SCMSTCS!CBRawTransmit Exit: %X\n", NTStatus )); return ( NTStatus ); } NTSTATUS CBCardTracking( PSMARTCARD_EXTENSION SmartcardExtension ) /*++ CBCardTracking: callback handler for SMCLIB RDF_CARD_TRACKING. the requested event was validated by the smclib (i.e. a card removal request will only be passed if a card is present). for a win95 build STATUS_PENDING will be returned without any other action. for NT the cancel routine for the irp will be set to the drivers cancel routine. Arguments: SmartcardExtension context of call Return Value: STATUS_PENDING --*/ { SmartcardDebug( DEBUG_TRACE, ("SCMSTCS!CBCardTracking Enter\n" )); #if defined( SMCLIB_VXD ) #else { KIRQL CurrentIrql; // set cancel routine IoAcquireCancelSpinLock( &CurrentIrql ); IoSetCancelRoutine( SmartcardExtension->OsData->NotificationIrp, DrvCancel ); IoReleaseCancelSpinLock( CurrentIrql ); } #endif SmartcardDebug( DEBUG_TRACE, ( "SCMSTCS!CBCardTracking Exit\n" )); return( STATUS_PENDING ); } VOID CBUpdateCardState( PSMARTCARD_EXTENSION SmartcardExtension, ULONG RequestedState ) /*++ CBUpdateCardState: updates the variable CurrentState in SmartcardExtension Arguments: SmartcardExtension context of call Return Value: STATUS_SUCCESS --*/ { NTSTATUS NTStatus = STATUS_SUCCESS; UCHAR Status; KIRQL Irql; BOOLEAN StateChanged = FALSE; ULONG NewState = RequestedState; if (RequestedState == SCARD_UNKNOWN) { // read card state from reader NTStatus = STCReadSTCRegister( SmartcardExtension->ReaderExtension, ADR_IO_CONFIG, 1, &Status ); ASSERT(NTStatus == STATUS_SUCCESS); if (NTStatus == STATUS_SUCCESS) { if ((Status & M_SD) == 0) { NewState = SCARD_ABSENT; } else { NewState = SCARD_SWALLOWED; } } } KeAcquireSpinLock(&SmartcardExtension->OsData->SpinLock, &Irql); if (SmartcardExtension->ReaderCapabilities.CurrentState == SCARD_UNKNOWN || SmartcardExtension->ReaderCapabilities.CurrentState > SCARD_ABSENT && NewState <= SCARD_ABSENT || SmartcardExtension->ReaderCapabilities.CurrentState <= SCARD_ABSENT && NewState > SCARD_ABSENT) { StateChanged = TRUE; } if(RequestedState != SCARD_UNKNOWN || NTStatus == STATUS_SUCCESS && StateChanged) { SmartcardExtension->ReaderCapabilities.CurrentState = NewState; } if(StateChanged && SmartcardExtension->OsData->NotificationIrp != NULL) { KIRQL CurrentIrql; IoAcquireCancelSpinLock( &CurrentIrql ); IoSetCancelRoutine( SmartcardExtension->OsData->NotificationIrp, NULL ); IoReleaseCancelSpinLock( CurrentIrql ); SmartcardExtension->OsData->NotificationIrp->IoStatus.Status = STATUS_SUCCESS; SmartcardExtension->OsData->NotificationIrp->IoStatus.Information = 0; IoCompleteRequest( SmartcardExtension->OsData->NotificationIrp, IO_NO_INCREMENT ); SmartcardExtension->OsData->NotificationIrp = NULL; } KeReleaseSpinLock(&SmartcardExtension->OsData->SpinLock, Irql); } NTSTATUS CBSynchronizeSTC( PSMARTCARD_EXTENSION SmartcardExtension ) /*++ CBSynchronizeSTC: updates the card dependend data of the stc (wait times, ETU...) Arguments: SmartcardExtension context of call Return Value: STATUS_SUCCESS --*/ { NTSTATUS NTStatus = STATUS_SUCCESS; PREADER_EXTENSION ReaderExtension; ULONG CWT, BWT, CGT, ETU; UCHAR Dl, Fl, N; PCLOCK_RATE_CONVERSION ClockRateConversion; PBIT_RATE_ADJUSTMENT BitRateAdjustment; ReaderExtension = SmartcardExtension->ReaderExtension; ClockRateConversion = SmartcardExtension->CardCapabilities.ClockRateConversion; BitRateAdjustment = SmartcardExtension->CardCapabilities.BitRateAdjustment; // cycle length Dl = SmartcardExtension->CardCapabilities.Dl; Fl = SmartcardExtension->CardCapabilities.Fl; ETU = ClockRateConversion[Fl & 0x0F].F; ETU /= BitRateAdjustment[ Dl & 0x0F ].DNumerator; ETU *= BitRateAdjustment[ Dl & 0x0F ].DDivisor; // ETU += (ETU % 2 == 0) ? 0 : 1; // a extra guard time of 0xFF means minimum delay in both directions N = SmartcardExtension->CardCapabilities.N; if( N == 0xFF ) { N = 0; } // set character waiting & guard time switch ( SmartcardExtension->CardCapabilities.Protocol.Selected ) { case SCARD_PROTOCOL_T0: CWT = 960 * SmartcardExtension->CardCapabilities.T0.WI; CGT = 14 + N; break; case SCARD_PROTOCOL_T1: CWT = 1000 + ( 0x01 << SmartcardExtension->CardCapabilities.T1.CWI ); BWT = 11 + ( 0x01 << SmartcardExtension->CardCapabilities.T1.BWI ) * 960; CGT = 15 + N; // 12 + N; sicrypt error NTStatus = STCSetBWT( ReaderExtension, BWT * ETU ); break; default: NTStatus = STATUS_UNSUCCESSFUL; break; } if(( NTStatus == STATUS_SUCCESS ) && ETU ) { NTStatus = STCSetETU( ReaderExtension, ETU ); if( NTStatus == STATUS_SUCCESS ) { NTStatus = STCSetCGT( ReaderExtension, CGT ); if( NTStatus == STATUS_SUCCESS ) { NTStatus = STCSetCWT( ReaderExtension, CWT * ETU ); } } } return( NTStatus ); }