/******************************Module*Header**********************************\ * * ******************* * * GDI SAMPLE CODE * * ******************* * * Module Name: fillpath.c * * Content: DrvFillPath support * * Copyright (c) 1994-1999 3Dlabs Inc. Ltd. All rights reserved. * Copyright (c) 1995-2003 Microsoft Corporation. All rights reserved. \*****************************************************************************/ //@@BEGIN_DDKSPLIT // LATER identify convex polygons and special-case? // LATER identify vertical edges and special-case? // LATER move pointed-to variables into automatics in search loops // LATER punt to the engine with segmented framebuffer callbacks // LATER handle complex clipping // LATER coalesce rectangles //@@END_DDKSPLIT #include "precomp.h" #include "glint.h" #define TAKING_ALLOC_STATS 0 #define NUM_BUFFER_POINTS 96 // Maximum number of points in a path // for which we'll attempt to join // all the path records so that the // path may still be drawn by FastFill #if TAKING_ALLOC_STATS ULONG BufferHitInFillpath = 0; ULONG BufferMissInFillpath = 0; #endif // Describe a single non-horizontal edge of a path to fill. typedef struct _EDGE { PVOID pNext; INT iScansLeft; INT X; INT Y; INT iErrorTerm; INT iErrorAdjustUp; INT iErrorAdjustDown; INT iXWhole; INT iXDirection; INT iWindingDirection; } EDGE, *PEDGE; // Maximum number of rects we'll fill per call to // the fill code #define MAX_PATH_RECTS 50 #define RECT_BYTES (MAX_PATH_RECTS * sizeof(RECTL)) #define EDGE_BYTES (TMP_BUFFER_SIZE - RECT_BYTES) #define MAX_EDGES (EDGE_BYTES/sizeof(EDGE)) VOID AdvanceAETEdges(EDGE *pAETHead); VOID XSortAETEdges(EDGE *pAETHead); VOID MoveNewEdges(EDGE *pGETHead, EDGE *pAETHead, INT iCurrentY); EDGE * AddEdgeToGET(EDGE *pGETHead, EDGE *pFreeEdge, POINTFIX *ppfxEdgeStart, POINTFIX *ppfxEdgeEnd, RECTL *pClipRect); BOOL ConstructGET(EDGE *pGETHead, EDGE *pFreeEdges, PATHOBJ *ppo, PATHDATA *pd, BOOL bMore, RECTL *pClipRect); void AdjustErrorTerm(INT *pErrorTerm, INT iErrorAdjustUp, INT iErrorAdjustDown, INT yJump, INT *pXStart, INT iXDirection); /******************************Public*Routine******************************\ * DrvFillPath * * Fill the specified path with the specified brush and ROP. * \**************************************************************************/ BOOL DrvFillPath( SURFOBJ* pso, PATHOBJ* ppo, CLIPOBJ* pco, BRUSHOBJ* pbo, POINTL* pptlBrush, MIX mix, FLONG flOptions) { BYTE jClipping; // clipping type EDGE *pCurrentEdge; EDGE AETHead; // dummy head/tail node & sentinel for Active Edge Table EDGE *pAETHead; // pointer to AETHead EDGE GETHead; // dummy head/tail node & sentinel for Global Edge Table EDGE *pGETHead; // pointer to GETHead ULONG ulNumRects; // # of rectangles to draw currently in rectangle list RECTL *prclRects; // pointer to start of rectangle draw list INT iCurrentY; // scan line for which we're currently scanning out the // fill EDGE *pFreeEdges = NULL; // pointer to memory free for use to store edges RBRUSH_COLOR rbc; // Realized brush or solid color ULONG iSolidColor; // Copy of pbo->iSolidColor GFNFILL *pfnFill; // Points to appropriate fill routine BOOL bMore; PATHDATA pd; RECTL ClipRect; PDEV *ppdev = (PDEV*) pso->dhpdev; DSURF *pdsurf; BOOL bRetVal=FALSE; // FALSE until proven TRUE BOOL bMemAlloced=FALSE; // FALSE until proven TRUE FLONG flFirstRecord; POINTFIX* pptfxTmp; ULONG cptfxTmp; POINTFIX aptfxBuf[NUM_BUFFER_POINTS]; ULONG logicop; ULONG bgLogicop; GLINT_DECL; DISPDBG((DBGLVL, "Entering Fill Path")); // Set up the clipping if (pco == (CLIPOBJ *) NULL) { // No CLIPOBJ provided, so we don't have to worry about clipping jClipping = DC_TRIVIAL; } else { // Use the CLIPOBJ-provided clipping jClipping = pco->iDComplexity; } // There's nothing to do if there are only one or two points if (ppo->cCurves <= 2) { goto ReturnTrue; } // Pass the surface off to GDI if it's a device bitmap that we've // converted to a DIB: pdsurf = (DSURF*) pso->dhsurf; if (pdsurf->dt & DT_DIB) { DISPDBG((DBGLVL, "Passing to GDI")); return(EngFillPath(pdsurf->pso, ppo, pco, pbo, pptlBrush, mix, flOptions)); } REMOVE_SWPOINTER(pso); VALIDATE_DD_CONTEXT; // We'll be drawing to the screen or an off-screen DFB; copy the surface's // offset now so that we won't need to refer to the DSURF again: //@@BEGIN_DDKSPLIT #if 1 //@@END_DDKSPLIT SETUP_PPDEV_OFFSETS(ppdev, pdsurf); //@@BEGIN_DDKSPLIT #else ppdev->DstPixelOrigin = pdsurf->poh->pixOffset; ppdev->xyOffsetDst = MAKEDWORD_XY( pdsurf->poh->x, pdsurf->poh->y ); ppdev->xOffset = pdsurf->poh->x; #endif //@@END_DDKSPLIT // It is too difficult to determine interaction between // multiple paths, if there is more than one, skip this bMore = PATHOBJ_bEnum(ppo, &pd); pfnFill = ppdev->pgfnFillSolid; logicop = GlintLogicOpsFromR2[mix & 0xFF]; bgLogicop = GlintLogicOpsFromR2[mix >> 8]; iSolidColor = pbo->iSolidColor; rbc.iSolidColor = iSolidColor; if (rbc.iSolidColor == -1) { rbc.prb = pbo->pvRbrush; if (rbc.prb == NULL) { DISPDBG((DBGLVL, "Realizing brush")); rbc.prb = BRUSHOBJ_pvGetRbrush(pbo); if (rbc.prb == NULL) { return(FALSE); } DISPDBG((DBGLVL, "Realized brush")); } if (rbc.prb->fl & RBRUSH_2COLOR) { pfnFill = ppdev->pgfnFillPatMono; } else { pfnFill = ppdev->pgfnFillPatColor; } } if (bMore) { // FastFill only knows how to take a single contiguous buffer // of points. Unfortunately, GDI sometimes hands us paths // that are split over multiple path data records. Convex // figures such as Ellipses, Pies and RoundRects are almost // always given in multiple records. Since probably 90% of // multiple record paths could still be done by FastFill, for // those cases we simply copy the points into a contiguous // buffer... // First make sure that the entire path would fit in the // temporary buffer, and make sure the path isn't comprised // of more than one subpath: if ((ppo->cCurves >= NUM_BUFFER_POINTS) || (pd.flags & PD_ENDSUBPATH)) { goto SkipFastFill; } pptfxTmp = &aptfxBuf[0]; RtlCopyMemory(pptfxTmp, pd.pptfx, sizeof(POINTFIX) * pd.count); pptfxTmp += pd.count; cptfxTmp = pd.count; flFirstRecord = pd.flags; // Remember PD_BEGINSUBPATH flag do { bMore = PATHOBJ_bEnum(ppo, &pd); RtlCopyMemory(pptfxTmp, pd.pptfx, sizeof(POINTFIX) * pd.count); cptfxTmp += pd.count; pptfxTmp += pd.count; } while (!(pd.flags & PD_ENDSUBPATH)); // Fake up the path data record: pd.pptfx = &aptfxBuf[0]; pd.count = cptfxTmp; pd.flags |= flFirstRecord; // If there's more than one subpath, we can't call FastFill: DISPDBG((DBGLVL, "More than one subpath!")); if (bMore) goto SkipFastFill; } if ((*ppdev->pgfnFillPolygon)(ppdev, pd.count, pd.pptfx, iSolidColor, logicop, bgLogicop, pco, rbc.prb, pptlBrush)) { DISPDBG((DBGLVL, "Fast Fill Succeeded")); return(TRUE); } SkipFastFill: DISPDBG((DBGLVL, "Fast Fill Skipped")); if (jClipping != DC_TRIVIAL) { if (jClipping != DC_RECT) { DISPDBG((DBGLVL, "Complex Clipping")); goto ReturnFalse; // there is complex clipping; let GDI fill the path } // Clip to the clip rectangle ClipRect = pco->rclBounds; } else { // So the y-clipping code doesn't do any clipping // /16 so we don't blow the values out when we scale up to GIQ ClipRect.top = (LONG_MIN + 1) / 16; // +1 to avoid compiler problem ClipRect.bottom = LONG_MAX / 16; } // Set up working storage in the temporary buffer prclRects = (RECTL*) ppdev->pvTmpBuffer; // storage for list of rectangles to draw if (!bMore) { RECTL *rectangle; INT cPoints = pd.count; // The count can't be less than three, because we got all the edges // in this subpath, and above we checked that there were at least // three edges // If the count is four, check to see if the polygon is really a // rectangle since we can really speed that up. We'll also check for // five with the first and last points the same, because under Win 3.1, // it was required to close polygons if ((cPoints == 4) || ((cPoints == 5) && (pd.pptfx[0].x == pd.pptfx[4].x) && (pd.pptfx[0].y == pd.pptfx[4].y))) { rectangle = prclRects; // We have to start somewhere so assume that most // applications specify the top left point first // // we want to check that the first two points are // either vertically or horizontally aligned. if // they are then we check that the last point [3] // is either horizontally or vertically aligned, // and finally that the 3rd point [2] is aligned // with both the first point and the last point. #define FIX_SHIFT 4L #define FIX_MASK (- (1 << FIX_SHIFT)) rectangle->top = pd.pptfx[0].y - 1 & FIX_MASK; rectangle->left = pd.pptfx[0].x - 1 & FIX_MASK; rectangle->right = pd.pptfx[1].x - 1 & FIX_MASK; if (rectangle->left ^ rectangle->right) { if (rectangle->top ^ (pd.pptfx[1].y - 1 & FIX_MASK)) goto not_rectangle; if (rectangle->left ^ (pd.pptfx[3].x - 1 & FIX_MASK)) goto not_rectangle; if (rectangle->right ^ (pd.pptfx[2].x - 1 & FIX_MASK)) goto not_rectangle; rectangle->bottom = pd.pptfx[2].y - 1 & FIX_MASK; if (rectangle->bottom ^ (pd.pptfx[3].y - 1 & FIX_MASK)) goto not_rectangle; } else { if (rectangle->top ^ (pd.pptfx[3].y - 1 & FIX_MASK)) goto not_rectangle; rectangle->bottom = pd.pptfx[1].y - 1 & FIX_MASK; if (rectangle->bottom ^ (pd.pptfx[2].y - 1 & FIX_MASK)) goto not_rectangle; rectangle->right = pd.pptfx[2].x - 1 & FIX_MASK; if (rectangle->right ^ (pd.pptfx[3].x - 1 & FIX_MASK)) goto not_rectangle; } // if the left is greater than the right then // swap them so the blt code doesn't wig out if (rectangle->left > rectangle->right) { FIX temp; temp = rectangle->left; rectangle->left = rectangle->right; rectangle->right = temp; } else { // if left == right there's nothing to draw if (rectangle->left == rectangle->right) { DISPDBG((DBGLVL, "Nothing to draw")); goto ReturnTrue; } } // shift the values to get pixel coordinates rectangle->left = (rectangle->left >> FIX_SHIFT) + 1; rectangle->right = (rectangle->right >> FIX_SHIFT) + 1; if (rectangle->top > rectangle->bottom) { FIX temp; temp = rectangle->top; rectangle->top = rectangle->bottom; rectangle->bottom = temp; } else { if (rectangle->top == rectangle->bottom) { DISPDBG((DBGLVL, "Nothing to draw")); goto ReturnTrue; } } // shift the values to get pixel coordinates rectangle->top = (rectangle->top >> FIX_SHIFT) + 1; rectangle->bottom = (rectangle->bottom >> FIX_SHIFT) + 1; // Finally, check for clipping if (jClipping == DC_RECT) { // Clip to the clip rectangle if (!bIntersect(rectangle, &ClipRect, rectangle)) { // Totally clipped, nothing to do DISPDBG((DBGLVL, "Nothing to draw")); goto ReturnTrue; } } // if we get here then the polygon is a rectangle, // set count to 1 and goto bottom to draw it ulNumRects = 1; goto draw_remaining_rectangles; } not_rectangle: ; } // Do we have enough memory for all the edges? // LATER does cCurves include closure? if (ppo->cCurves > MAX_EDGES) { #if TAKING_ALLOC_STATS BufferMissInFillpath++; #endif // // try to allocate enough memory // pFreeEdges = (EDGE *) ENGALLOCMEM(FL_ZERO_MEMORY, (ppo->cCurves * sizeof(EDGE)), ALLOC_TAG_GDI(6)); if (pFreeEdges == NULL) { DISPDBG((DBGLVL, "Too many edges")); goto ReturnFalse; // too many edges; let GDI fill the path } else { bMemAlloced = TRUE; } } else { #if TAKING_ALLOC_STATS BufferHitInFillpath++; #endif pFreeEdges = (EDGE*) ((BYTE*) ppdev->pvTmpBuffer + RECT_BYTES); // use our handy temporary buffer (it's big enough) } // Initialize an empty list of rectangles to fill ulNumRects = 0; // Enumerate the path edges and build a Global Edge Table (GET) from them // in YX-sorted order. pGETHead = &GETHead; if (!ConstructGET(pGETHead, pFreeEdges, ppo, &pd, bMore, &ClipRect)) { DISPDBG((DBGLVL, "Outside Range")); goto ReturnFalse; // outside GDI's 2**27 range } // Create an empty AET with the head node also a tail sentinel pAETHead = &AETHead; AETHead.pNext = pAETHead; // mark that the AET is empty AETHead.X = 0x7FFFFFFF; // this is greater than any valid X value, so // searches will always terminate // Top scan of polygon is the top of the first edge we come to iCurrentY = ((EDGE *)GETHead.pNext)->Y; // Loop through all the scans in the polygon, adding edges from the GET to // the Active Edge Table (AET) as we come to their starts, and scanning out // the AET at each scan into a rectangle list. Each time it fills up, the // rectangle list is passed to the filling routine, and then once again at // the end if any rectangles remain undrawn. We continue so long as there // are edges to be scanned out while (1) { // Advance the edges in the AET one scan, discarding any that have // reached the end (if there are any edges in the AET) if (AETHead.pNext != pAETHead) { AdvanceAETEdges(pAETHead); } // If the AET is empty, done if the GET is empty, else jump ahead to // the next edge in the GET; if the AET isn't empty, re-sort the AET if (AETHead.pNext == pAETHead) { if (GETHead.pNext == pGETHead) { // Done if there are no edges in either the AET or the GET break; } // There are no edges in the AET, so jump ahead to the next edge in // the GET iCurrentY = ((EDGE *)GETHead.pNext)->Y; } else { // Re-sort the edges in the AET by X coordinate, if there are at // least two edges in the AET (there could be one edge if the // balancing edge hasn't yet been added from the GET) if (((EDGE *)AETHead.pNext)->pNext != pAETHead) { XSortAETEdges(pAETHead); } } // Move any new edges that start on this scan from the GET to the AET; // bother calling only if there's at least one edge to add if (((EDGE *)GETHead.pNext)->Y == iCurrentY) { MoveNewEdges(pGETHead, pAETHead, iCurrentY); } // Scan the AET into rectangles to fill (there's always at least one // edge pair in the AET) pCurrentEdge = AETHead.pNext; // point to the first edge do { INT iLeftEdge; // The left edge of any given edge pair is easy to find; it's just // wherever we happen to be currently iLeftEdge = pCurrentEdge->X; // Find the matching right edge according to the current fill rule if ((flOptions & FP_WINDINGMODE) != 0) { INT iWindingCount; // Do winding fill; scan across until we've found equal numbers // of up and down edges iWindingCount = pCurrentEdge->iWindingDirection; do { pCurrentEdge = pCurrentEdge->pNext; iWindingCount += pCurrentEdge->iWindingDirection; } while (iWindingCount != 0); } else { // Odd-even fill; the next edge is the matching right edge pCurrentEdge = pCurrentEdge->pNext; } // See if the resulting span encompasses at least one pixel, and // add it to the list of rectangles to draw if so if (iLeftEdge < pCurrentEdge->X) { // We've got an edge pair to add to the list to be filled; see // if there's room for one more rectangle if (ulNumRects >= MAX_PATH_RECTS) { // No more room; draw the rectangles in the list and reset // it to empty (*pfnFill)(ppdev, ulNumRects, prclRects, logicop, bgLogicop, rbc, pptlBrush); // Reset the list to empty ulNumRects = 0; } // Add the rectangle representing the current edge pair if (jClipping == DC_RECT) { // Clipped // Clip to left prclRects[ulNumRects].left = max(iLeftEdge, ClipRect.left); // Clip to right prclRects[ulNumRects].right = min(pCurrentEdge->X, ClipRect.right); // Draw only if not fully clipped if (prclRects[ulNumRects].left < prclRects[ulNumRects].right) { prclRects[ulNumRects].top = iCurrentY; prclRects[ulNumRects].bottom = iCurrentY+1; ulNumRects++; } } else { // Unclipped prclRects[ulNumRects].top = iCurrentY; prclRects[ulNumRects].bottom = iCurrentY+1; prclRects[ulNumRects].left = iLeftEdge; prclRects[ulNumRects].right = pCurrentEdge->X; ulNumRects++; } } } while ((pCurrentEdge = pCurrentEdge->pNext) != pAETHead); iCurrentY++; // next scan } // Draw the remaining rectangles, if there are any. draw_remaining_rectangles: if (ulNumRects > 0) { (*pfnFill)(ppdev, ulNumRects, prclRects, logicop, bgLogicop, rbc, pptlBrush); } ReturnTrue: DISPDBG((DBGLVL, "Drawn")); bRetVal = TRUE; // done successfully ReturnFalse: // bRetVal is originally false. If you jumped to ReturnFalse from somewhere, // then it will remain false, and be returned. if (bMemAlloced) { // // we did allocate memory, so release it // ENGFREEMEM(pFreeEdges); } DISPDBG((DBGLVL, "Returning %s", bRetVal ? "True" : "False")); return(bRetVal); } // Advance the edges in the AET to the next scan, dropping any for which we've // done all scans. Assumes there is at least one edge in the AET. VOID AdvanceAETEdges(EDGE *pAETHead) { EDGE *pLastEdge, *pCurrentEdge; pLastEdge = pAETHead; pCurrentEdge = pLastEdge->pNext; do { // Count down this edge's remaining scans if (--pCurrentEdge->iScansLeft == 0) { // We've done all scans for this edge; drop this edge from the AET pLastEdge->pNext = pCurrentEdge->pNext; } else { // Advance the edge's X coordinate for a 1-scan Y advance // Advance by the minimum amount pCurrentEdge->X += pCurrentEdge->iXWhole; // Advance the error term and see if we got one extra pixel this // time pCurrentEdge->iErrorTerm += pCurrentEdge->iErrorAdjustUp; if (pCurrentEdge->iErrorTerm >= 0) { // The error term turned over, so adjust the error term and // advance the extra pixel pCurrentEdge->iErrorTerm -= pCurrentEdge->iErrorAdjustDown; pCurrentEdge->X += pCurrentEdge->iXDirection; } pLastEdge = pCurrentEdge; } } while ((pCurrentEdge = pLastEdge->pNext) != pAETHead); } // X-sort the AET, because the edges may have moved around relative to // one another when we advanced them. We'll use a multipass bubble // sort, which is actually okay for this application because edges // rarely move relative to one another, so we usually do just one pass. // Also, this makes it easy to keep just a singly-linked list. Assumes there // are at least two edges in the AET. VOID XSortAETEdges(EDGE *pAETHead) { BOOL bEdgesSwapped; EDGE *pLastEdge, *pCurrentEdge, *pNextEdge; do { bEdgesSwapped = FALSE; pLastEdge = pAETHead; pCurrentEdge = pLastEdge->pNext; pNextEdge = pCurrentEdge->pNext; do { if (pNextEdge->X < pCurrentEdge->X) { // Next edge is to the left of the current edge; swap them pLastEdge->pNext = pNextEdge; pCurrentEdge->pNext = pNextEdge->pNext; pNextEdge->pNext = pCurrentEdge; bEdgesSwapped = TRUE; pCurrentEdge = pNextEdge; // continue sorting before the edge // we just swapped; it might move // farther yet } pLastEdge = pCurrentEdge; pCurrentEdge = pLastEdge->pNext; } while ((pNextEdge = pCurrentEdge->pNext) != pAETHead); } while (bEdgesSwapped); } // Moves all edges that start on the current scan from the GET to the AET in // X-sorted order. Parameters are pointer to head of GET and pointer to dummy // edge at head of AET, plus current scan line. Assumes there's at least one // edge to be moved. VOID MoveNewEdges(EDGE *pGETHead, EDGE *pAETHead, INT iCurrentY) { EDGE *pCurrentEdge = pAETHead; EDGE *pGETNext = pGETHead->pNext; do { // Scan through the AET until the X-sorted insertion point for this // edge is found. We can continue from where the last search left // off because the edges in the GET are in X sorted order, as is // the AET. The search always terminates because the AET sentinel // is greater than any valid X while (pGETNext->X > ((EDGE *)pCurrentEdge->pNext)->X) { pCurrentEdge = pCurrentEdge->pNext; } // We've found the insertion point; add the GET edge to the AET, and // remove it from the GET pGETHead->pNext = pGETNext->pNext; pGETNext->pNext = pCurrentEdge->pNext; pCurrentEdge->pNext = pGETNext; pCurrentEdge = pGETNext; // continue insertion search for the next // GET edge after the edge we just added pGETNext = pGETHead->pNext; } while (pGETNext->Y == iCurrentY); } // Build the Global Edge Table from the path. There must be enough memory in // the free edge area to hold all edges. The GET is constructed in Y-X order, // and has a head/tail/sentinel node at pGETHead. BOOL ConstructGET( EDGE *pGETHead, EDGE *pFreeEdges, PATHOBJ *ppo, PATHDATA *pd, BOOL bMore, RECTL *pClipRect) { POINTFIX pfxPathStart; // point that started the current subpath POINTFIX pfxPathPrevious; // point before the current point in a subpath; // starts the current edge // Create an empty GET with the head node also a tail sentinel pGETHead->pNext = pGETHead; // mark that the GET is empty pGETHead->Y = 0x7FFFFFFF; // this is greater than any valid Y value, so // searches will always terminate // PATHOBJ_vEnumStart is implicitly performed by engine // already and first path is enumerated by the caller. next_subpath: // Make sure the PATHDATA is not empty (is this necessary) if (pd->count != 0) { // If first point starts a subpath, remember it as such // and go on to the next point, so we can get an edge if (pd->flags & PD_BEGINSUBPATH) { // the first point starts the subpath; remember it pfxPathStart = *pd->pptfx; // the subpath starts here pfxPathPrevious = *pd->pptfx; // this points starts the next edge pd->pptfx++; // advance to the next point pd->count--; // count off this point } // Add edges in PATHDATA to GET, in Y-X sorted order while (pd->count--) { if ((pFreeEdges = AddEdgeToGET(pGETHead, pFreeEdges, &pfxPathPrevious, pd->pptfx, pClipRect)) == NULL) { goto ReturnFalse; } pfxPathPrevious = *pd->pptfx; // current point becomes previous pd->pptfx++; // advance to the next point } // If last point ends the subpath, insert the edge that // connects to first point (is this built in already?) if (pd->flags & PD_ENDSUBPATH) { if ((pFreeEdges = AddEdgeToGET(pGETHead, pFreeEdges, &pfxPathPrevious, &pfxPathStart, pClipRect)) == NULL) { goto ReturnFalse; } } } // The initial loop conditions preclude a do, while or for if (bMore) { bMore = PATHOBJ_bEnum(ppo, pd); goto next_subpath; } return(TRUE); // done successfully ReturnFalse: return(FALSE); // failed } // Adds the edge described by the two passed-in points to the Global Edge // Table, if the edge spans at least one pixel vertically. EDGE * AddEdgeToGET(EDGE *pGETHead, EDGE *pFreeEdge, POINTFIX *ppfxEdgeStart, POINTFIX *ppfxEdgeEnd, RECTL *pClipRect) { INT iYStart, iYEnd, iXStart, iXEnd, iYHeight, iXWidth; INT yJump, yTop; // Set the winding-rule direction of the edge, and put the endpoints in // top-to-bottom order iYHeight = ppfxEdgeEnd->y - ppfxEdgeStart->y; if (iYHeight == 0) { return(pFreeEdge); // zero height; ignore this edge } else if (iYHeight >= 0) { iXStart = ppfxEdgeStart->x; iYStart = ppfxEdgeStart->y; iXEnd = ppfxEdgeEnd->x; iYEnd = ppfxEdgeEnd->y; pFreeEdge->iWindingDirection = 1; } else { iYHeight = -iYHeight; iXEnd = ppfxEdgeStart->x; iYEnd = ppfxEdgeStart->y; iXStart = ppfxEdgeEnd->x; iYStart = ppfxEdgeEnd->y; pFreeEdge->iWindingDirection = -1; } if (iYHeight & 0x80000000) { return(NULL); // too large; outside 2**27 GDI range } // Set the error term and adjustment factors, all in GIQ coordinates for // now iXWidth = iXEnd - iXStart; if (iXWidth >= 0) { // Left to right, so we change X as soon as we move at all pFreeEdge->iXDirection = 1; pFreeEdge->iErrorTerm = -1; } else { // Right to left, so we don't change X until we've moved a full GIQ // coordinate iXWidth = -iXWidth; pFreeEdge->iXDirection = -1; pFreeEdge->iErrorTerm = -iYHeight; } if (iXWidth & 0x80000000) { return(NULL); // too large; outside 2**27 GDI range } if (iXWidth >= iYHeight) { // Calculate base run length (minimum distance advanced in X for a 1- // scan advance in Y) pFreeEdge->iXWhole = iXWidth / iYHeight; // Add sign back into base run length if going right to left if (pFreeEdge->iXDirection == -1) { pFreeEdge->iXWhole = -pFreeEdge->iXWhole; } pFreeEdge->iErrorAdjustUp = iXWidth % iYHeight; } else { // Base run length is 0, because line is closer to vertical than // horizontal pFreeEdge->iXWhole = 0; pFreeEdge->iErrorAdjustUp = iXWidth; } pFreeEdge->iErrorAdjustDown = iYHeight; // Calculate the number of pixels spanned by this edge, accounting for // clipping // Top true pixel scan in GIQ coordinates // Shifting to divide and multiply by 16 is okay because the clip rect // always contains positive numbers yTop = max(pClipRect->top << 4, (iYStart + 15) & ~0x0F); pFreeEdge->Y = yTop >> 4; // initial scan line on which to fill edge // Calculate # of scans to actually fill, accounting for clipping if ((pFreeEdge->iScansLeft = min(pClipRect->bottom, ((iYEnd + 15) >> 4)) - pFreeEdge->Y) <= 0) { return(pFreeEdge); // no pixels at all are spanned, so we can // ignore this edge } // If the edge doesn't start on a pixel scan (that is, it starts at a // fractional GIQ coordinate), advance it to the first pixel scan it // intersects. Ditto if there's top clipping. Also clip to the bottom if // needed if (iYStart != yTop) { // Jump ahead by the Y distance in GIQ coordinates to the first pixel // to draw yJump = yTop - iYStart; // Advance x the minimum amount for the number of scans traversed iXStart += pFreeEdge->iXWhole * yJump; AdjustErrorTerm(&pFreeEdge->iErrorTerm, pFreeEdge->iErrorAdjustUp, pFreeEdge->iErrorAdjustDown, yJump, &iXStart, pFreeEdge->iXDirection); } // Turn the calculations into pixel rather than GIQ calculations // Move the X coordinate to the nearest pixel, and adjust the error term // accordingly // Dividing by 16 with a shift is okay because X is always positive pFreeEdge->X = (iXStart + 15) >> 4; // convert from GIQ to pixel coordinates //@@BEGIN_DDKSPLIT // LATER adjust only if needed (if prestepped above)? //@@END_DDKSPLIT if (pFreeEdge->iXDirection == 1) { // Left to right pFreeEdge->iErrorTerm -= pFreeEdge->iErrorAdjustDown * (((iXStart + 15) & ~0x0F) - iXStart); } else { // Right to left pFreeEdge->iErrorTerm -= pFreeEdge->iErrorAdjustDown * ((iXStart - 1) & 0x0F); } // Scale the error term down 16 times to switch from GIQ to pixels. // Shifts work to do the multiplying because these values are always // non-negative pFreeEdge->iErrorTerm >>= 4; // Insert the edge into the GET in YX-sorted order. The search always ends // because the GET has a sentinel with a greater-than-possible Y value while ((pFreeEdge->Y > ((EDGE *)pGETHead->pNext)->Y) || ((pFreeEdge->Y == ((EDGE *)pGETHead->pNext)->Y) && (pFreeEdge->X > ((EDGE *)pGETHead->pNext)->X))) { pGETHead = pGETHead->pNext; } pFreeEdge->pNext = pGETHead->pNext; // link the edge into the GET pGETHead->pNext = pFreeEdge; return(++pFreeEdge); // point to the next edge storage location for next // time } // Adjust the error term for a skip ahead in y. This is in ASM because there's // a multiply/divide that may involve a larger than 32-bit value. void AdjustErrorTerm(INT *pErrorTerm, INT iErrorAdjustUp, INT iErrorAdjustDown, INT yJump, INT *pXStart, INT iXDirection) { #if defined(_X86_) || defined(i386) // Adjust the error term up by the number of y coordinates we'll skip //*pErrorTerm += iErrorAdjustUp * yJump; _asm mov ebx,pErrorTerm _asm mov eax,iErrorAdjustUp _asm mul yJump _asm add eax,[ebx] _asm adc edx,-1 // the error term starts out negative // See if the error term turned over even once while skipping // if (*pErrorTerm >= 0) { _asm js short NoErrorTurnover // # of times we'll turn over the error term and step an extra x // coordinate while skipping // NumAdjustDowns = (*pErrorTerm / iErrorAdjustDown) + 1; _asm div iErrorAdjustDown _asm inc eax // Note that EDX is the remainder; (EDX - iErrorAdjustDown) is where // the error term ends up ultimately // Advance x appropriately for the # of times the error term // turned over // if (iXDirection == 1) { // *pXStart += NumAdjustDowns; // } else { // *pXStart -= NumAdjustDowns; // } _asm mov ecx,pXStart _asm cmp iXDirection,1 _asm jz short GoingRight _asm neg eax GoingRight: _asm add [ecx],eax // Adjust the error term down to its proper post-skip value // *pErrorTerm -= iErrorAdjustDown * NumAdjustDowns; _asm sub edx,iErrorAdjustDown _asm mov eax,edx // put into EAX for storing to pErrorTerm next // } NoErrorTurnover: _asm mov [ebx],eax #else // LONGLONGS are 64 bit integers (We hope!) as the multiply could // overflow 32 bit integers. If 64 bit ints are unsupported, the // LONGLONG will end up as a double. Hopefully there will be no // noticable difference in accuracy. LONGLONG NumAdjustDowns; LONGLONG tmpError = *pErrorTerm; // Adjust the error term up by the number of y coordinates we'll skip tmpError += (LONGLONG)iErrorAdjustUp * (LONGLONG)yJump; // See if the error term turned over even once while skipping if (tmpError >= 0) { // # of times we'll turn over the error term and step an extra x // coordinate while skipping NumAdjustDowns = (tmpError / (LONGLONG)iErrorAdjustDown) + 1; // Advance x appropriately for the # of times the error term // turned over if (iXDirection == 1) { *pXStart += (LONG) NumAdjustDowns; } else { *pXStart -= (LONG) NumAdjustDowns; } // Adjust the error term down to its proper post-skip value tmpError -= (LONGLONG)iErrorAdjustDown * NumAdjustDowns; } *pErrorTerm = (LONG)tmpError; #endif // X86 }